Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Arithmetic on $q$-deformed rational numbers (2403.08446v2)

Published 13 Mar 2024 in math.CO and math.QA

Abstract: Recently, Morier-Genoud and Ovsienko introduced a $q$-deformation of rational numbers. More precisely, for an irreducible fraction $\frac{r}s>0$, they constructed coprime polynomials $\mathcal{R}{\frac{r}s}(q),~ \mathcal{S}{\frac{r}s}(q) \in {\mathbb Z}[q]$ with $\mathcal{R}{\frac{r}s}(1)=r,~\mathcal{S}{\frac{r}s}(1)=s$. Their theory has a rich background and many applications. By definition, if $r \equiv r' \pmod{s}$, then $\mathcal{S}{\frac{r}s}(q)=\mathcal{S}{\frac{r'}s}(q)$. We show that $rr'{\equiv} -1 \pmod{s}$ implies $\mathcal{S}{\frac{r}s}(q)=\mathcal{S}{\frac{r'}s}(q)$, and it is conjectured that the converse holds if $s$ is prime (and $r \not \equiv r' \pmod{s}$). We also show that $s$ is a multiple of 3 (resp. 4) if and only if $\mathcal{S}_{\frac{r}s}(\zeta)=0$ for $\zeta=(-1+\sqrt{-3})/2$ (resp. $\zeta=i$). We give applications to the representation theory of quivers of type $A$ and the Jones polynomials of rational links.

Citations (1)

Summary

We haven't generated a summary for this paper yet.