Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Motility driven glassy dynamics in confluent epithelial monolayers (2403.08437v3)

Published 13 Mar 2024 in cond-mat.soft and physics.bio-ph

Abstract: As wounds heal, embryos develop, cancer spreads, or asthma progresses, the cellular monolayer undergoes glass transition between solid-like jammed and fluid-like flowing states. During some of these processes, the cells undergo an epithelial-to-mesenchymal transition (EMT): they acquire in-plane polarity and become motile. Thus, how motility drives the glassy dynamics in epithelial systems is critical for the EMT process. However, no analytical framework that is indispensable for deeper insights exists. Here, we develop such a theory inspired by a well-known glass theory. One crucial result of this work is that the confluency affects the effective persistence time-scale of active force, described by its rotational diffusivity, $D_r{\text{eff}}$. $D_r{\text{eff}}$ differs from the bare rotational diffusivity, $D_r$, of the motile force due to cell shape dynamics, which acts to rectify the force dynamics: $D_r{\text{eff}}$ is equal to $D_r$ when $D_r$ is small and saturates when $D_r$ is large. We test the theoretical prediction of $D_r{\text{eff}}$ and how it affects the relaxation dynamics in our simulations of active Vertex model. This novel effect of $D_r{\text{eff}}$ is crucial to understanding the new and previously published simulation data of active glassy dynamics in epithelial monolayers.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (34)
  1. P. Friedl and D. Gilmour, Nat. Rev. Mol. Cell Biol. 10, 445 (2009).
  2. P. Friedl and K. Wolf, Nat. Rev. Cancer 3, 362 (2003).
  3. L. Berthier and G. Biroli, Rev. Mod. Phys. 83, 587 (2011).
  4. A. S. Alvarado and S. Yamanaka, Cell 157, 110 (2014).
  5. S. Ramaswamy, Annu. Rev. Condens. Matter Phys. 1, 323 (2010).
  6. L. M. C. Janssen, J. Phys.: Condens. Matter 31, 503002 (2019).
  7. G. Szamel, Phys. Rev. E 90, 012111 (2014).
  8. G. Parisi, Nature 433, 221 (2005).
  9. L. Berthier, Phys. Rev. Lett. 112, 220602 (2014).
  10. L. Berthier and J. Kurchan, Nat. Phys. 9, 310 (2013).
  11. G. Szamel, Phys. Rev. E 93, 012603 (2016).
  12. M. Feng and Z. Hou, Soft Matter 13, 4464 (2017).
  13. S. K. Nandi and N. S. Gov, Soft Matter 13, 7609 (2017).
  14. F. Graner and J. A. Glazier, Phys. Rev. Lett. 69, 2013 (1992).
  15. J. A. Glazier and F. Graner, Phys. Rev. E 47, 2128 (1993).
  16. P. Hogeweg, J. Theor. Biol. 203, 317 (2000).
  17. M. Chiang and D. Marenduzzo, EPL (Europhysics Letters) 116, 28009 (2016).
  18. S. Sadhukhan and S. K. Nandi, Phys. Rev. E 103, 062403 (2021).
  19. H. Honda and G. Eguchi, J. Theor. Biol. 84, 575 (1980).
  20. M. Marder, Phys. Rev. A 36, 438(R) (1987).
  21. M. Nonomura, PLoS ONE 7, e33501 (2012).
  22. S. Sadhukhan and S. K. Nandi, eLife 11, e76406 (2022).
  23. V. Lubchenko and P. G. Wolynes, Annu. Rev. Phys. Chem. 58, 235 (2007).
  24. T. R. Kirkpatrick and D. Thirumalai, Rev. Mod. Phys. 87, 183 (2015).
  25. D. Weaire and S. Hutzler, Thephysicsof foams (Oxford University Press, 2001).
  26. P. J. Albert and U. S. Schwarz, Cell Adhesion & Migration 10, 516 (2016), pMID: 26838278.
  27. T. R. Kirkpatrick and P. G. Wolynes, Phys. Rev. A 35, 3072 (1987).
  28. G. Parisi and F. Zamponi, Rev. Mod. Phys. 82, 789 (2010).
  29. W. Kauzmann, Chemical Reviews 43, 219 (1948).
  30. C. A. Angell, J. Non-Cryst. Solids 131-133, 13 (1991).
  31. C. A. Angell, Science 267, 1924 (1995).
  32. N. Gnan and E. Zaccarelli, Nat. Phys. 15, 683 (2019).
  33. L. Berthier and T. A. Witten, Phys. Rev. E 80, 021502 (2009a).
  34. L. Berthier and T. A. Witten, Europhys. Lett. 86, 10001 (2009b).

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com