Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Nonlinear Manifold Learning Determines Microgel Size from Raman Spectroscopy (2403.08376v1)

Published 13 Mar 2024 in cs.LG and eess.SP

Abstract: Polymer particle size constitutes a crucial characteristic of product quality in polymerization. Raman spectroscopy is an established and reliable process analytical technology for in-line concentration monitoring. Recent approaches and some theoretical considerations show a correlation between Raman signals and particle sizes but do not determine polymer size from Raman spectroscopic measurements accurately and reliably. With this in mind, we propose three alternative machine learning workflows to perform this task, all involving diffusion maps, a nonlinear manifold learning technique for dimensionality reduction: (i) directly from diffusion maps, (ii) alternating diffusion maps, and (iii) conformal autoencoder neural networks. We apply the workflows to a data set of Raman spectra with associated size measured via dynamic light scattering of 47 microgel (cross-linked polymer) samples in a diameter range of 208nm to 483 nm. The conformal autoencoders substantially outperform state-of-the-art methods and results for the first time in a promising prediction of polymer size from Raman spectra.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (13)
  1. Chew W, Sharratt P. Trends in process analytical technology Analytical Methods. 2010;2:1412.
  2. Pomerantsev AL, Rodionova OY. Process analytical technology: a critical view of the chemometricians Journal of Chemometrics. 2012;26:299–310.
  3. Beer A. Bestimmung der Absorption des rothen Lichts in farbigen Flüssigkeiten Annalen der Physik und Chemie. 1852;162:78–88.
  4. Bohren Craig F., Huffman Donald R.. Absorption and Scattering of Light by Small Particles. Wiley 1998.
  5. Coifman RR, Lafon S. Diffusion maps Applied and Computational Harmonic Analysis. 2006;21:5–30.
  6. Lederman RR, Talmon R. Learning the geometry of common latent variables using alternating-diffusion Applied and Computational Harmonic Analysis. 2018;44:509–536.
  7. Nyström EJ. Über die praktische Auflösung von linearen Integralgleichungen mit Anwendungen auf Randwertaufgaben der Potentialtheorie. Akademische Buchhandlung 1929.
  8. Kaven L, Mitsos A. Dataset to: Nonlinear Manifold Learning Determines Microgel Size from Raman Spectroscopy 2023. doi:10.18154/RWTH-2023-05604.
  9. doi:10.18154/RWTH-2021-09666.
  10. Coifman Ronald R, Lafon Stéphane. Geometric harmonics: a novel tool for multiscale out-of-sample extension of empirical functions Applied and Computational Harmonic Analysis. 2006;21:31–52.
  11. Talmon R, Wu H-T. Latent common manifold learning with alternating diffusion: Analysis and applications Applied and Computational Harmonic Analysis. 2019;47:848-892.
  12. https://gitlab.com/eleni.koronaki/mlforpolymersizeraman.git.
  13. Ltd. Malvern Instruments. Zetasizer Nano technical note MRK728-01 - The accuracy and precision expected from dynamic light scattering measurements 2006. https://kdsi.ru/upload/iblock/357/be4ecfa4fcce215f870e4acb8eb229d6.pdf.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets