Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

From Channel Measurement to Training Data for PHY Layer AI Applications (2403.08317v1)

Published 13 Mar 2024 in cs.NI and eess.SP

Abstract: Learning-based techniques such as AI and ML play an increasingly important role in the development of future communication networks. The success of a learning algorithm depends on the quality and quantity of the available training data. In the physical layer (PHY), channel information data can be obtained either through measurement campaigns or through simulations based on predefined channel models. Performing measurements can be time consuming while only gaining information about one specific position or scenario. Simulated data, on the other hand, are more generalized and reflect in most cases not a real environment but instead, a statistical approximation based on a mathematical model. This paper presents a procedure for acquiring channel data by means of fast and flexible software defined radio (SDR) based channel measurements along with a method for a parameter extraction that provides configuration input to the simulator. The procedure from the measurement to the simulated channel data is demonstrated in two exemplary propagation scenarios. It is shown, that in both cases the simulated data is in good accordance to the measurements

Definition Search Book Streamline Icon: https://streamlinehq.com
References (17)
  1. W. Jiang, B. Han, M. A. Habibi, and H. D. Schotten, “The road towards 6G: A comprehensive survey,” IEEE Open Journal of the Communications Society, vol. 2, pp. 334–366, 2021.
  2. T. Wang, C.-K. Wen, H. Wang, F. Gao, T. Jiang, and S. Jin, “Deep learning for wireless physical layer: Opportunities and challenges,” China Communications, vol. 14, pp. 92–111, 2017.
  3. T. J. O’Shea and J. Hoydis, “An introduction to deep learning for the physical layer,” IEEE Trans. Cogn. Commun. Netw., vol. 3, no. 4, pp. 563–575, 2017.
  4. O. Simeone, “A very brief introduction to machine learning with applications to communication systems,” IEEE Trans. Cogn. Commun. Netw., vol. 4, no. 4, pp. 648–664, 2018.
  5. Y. Jiang, H. Kim, H. Asnani, S. Kannan, S. Oh, and P. Viswanath, “Turbo autoencoder: Deep learning based channel code for point-to-point communication channels,” in Proc. 33rd Conf. on Neural Information Processing Systems, NeurIPS 2019, Vancouver, British Columbia, Canada, Dec. 2019, pp. 2758–2768.
  6. F. A. Aoudia and J. Hoydis, “End-to-end learning of communications systems without a channel model,” in Proc. 52nd Asilomar Conf. on Signals, Systems, and Computers, Pacific Grove, CA, USA, Oct. 2018.
  7. A. Felix, S. Cammerer, S. Dörner, J. Hoydis, and S. ten Brink, “OFDM-autoencoder for end-to-end learning of communications systems,” in Proc. IEEE 19th Int. Workshop on Signal Processing Advances in Wireless Communications (SPAWC), Kalamata, Greece, Aug. 2018.
  8. L. Ahrens, J. Ahrens, and H. D. Schotten, “Convolutional-type neural networks for fading channel forecasting,” IEEE Access, vol. 8, pp. 193 075–193 090, 2020.
  9. W. Jiang and H. D. Schotten, “Deep learning for fading channel prediction,” IEEE Open Journal of the Communications Society, vol. 1, pp. 320–332, 3 2020.
  10. Q. Zhou, W. Jiang, D. Wang, and H. D. Schotten, “Deep learning-based signal-to-noise ratio prediction for realistic wireless communication,” in 2022 IEEE 95th Vehicular Technology Conference: (VTC2022-Spring), 2022, pp. 1–5.
  11. F. Euchner, M. Gauger, S. Doerner, and S. ten Brink, “A distributed massive MIMO channel sounder for “big CSI data”-driven machine learning,” in WSA 2021; 25th International ITG Workshop on Smart Antennas, 2021, pp. 1–6.
  12. P. Kyösti, J. Meinilä, L. Hentila, X. Zhao, T. Jämsä, C. Schneider, M. Narandzic, M. Milojević, A. Hong, J. Ylitalo, V.-M. Holappa, M. Alatossava, R. Bultitude, Y. Jong, and T. Rautiainen, “WINNER II channel models,” IST-4-027756 WINNER II D1.1.2 V1.2, 02 2008.
  13. C.-X. Wang, J. Bian, J. Sun, W. Zhang, and M. Zhang, “A survey of 5G channel measurements and models,” IEEE Communications Surveys & Tutorials, vol. 20, no. 4, pp. 3142–3168, 2018.
  14. USRP B200/B210 Bus Series, Ettus Research. [Online]. Available: https://www.ettus.com/wp-content/uploads/2019/01/b200-b210_spec_sheet.pdf
  15. J. Ahrens, L. Ahrens, M. Zentarra, and H. D. Schotten, “Signal restoration and channel estimation for channel sounding with SDRs,” in Mobile Communication - Technologies and Applications; 26th ITG-Symposium, 2022, pp. 1–6.
  16. S. Jaeckel, L. Raschkowski, K. Börner, and L. Thiele, “QuaDRiGa: A 3-D multi-cell channel model with time evolution for enabling virtual field trials,” IEEE Transactions on Antennas and Propagation, vol. 62, no. 6, pp. 3242–3256, 2014.
  17. S. Jaeckel, L. Raschkowski, K. Börner, L. Thiele, F. Burkhardt, and E. Eberlein, “QuaDRiGa - quasi deterministic radio channel generator, user manual and documentation,” 2021, fraunhofer Heinrich Hertz Institute, Tech. Rep. v2.6.1.

Summary

We haven't generated a summary for this paper yet.