Point-to-set Principle and Constructive Dimension Faithfulness (2403.08278v2)
Abstract: Hausdorff $\Phi$-dimension is a notion of Hausdorff dimension developed using a restricted class of coverings of a set. We introduce a constructive analogue of $\Phi$-dimension using the notion of constructive $\Phi$-$s$-supergales. We prove a Point-to-Set Principle for $\Phi$-dimension, through which we get Point-to-Set Principles for Hausdorff dimension, continued-fraction dimension and dimension of Cantor coverings as special cases. We also provide a Kolmogorov complexity characterization of constructive $\Phi$-dimension. A class of covering sets $\Phi$ is said to be "faithful" to Hausdorff dimension if the $\Phi$-dimension and Hausdorff dimension coincide for every set. Similarly, $\Phi$ is said to be "faithful" to constructive dimension if the constructive $\Phi$-dimension and constructive dimension coincide for every set. Using the Point-to-Set Principle for Cantor coverings and a new technique for the construction of sequences satisfying a certain Kolmogorov complexity condition, we show that the notions of ``faithfulness'' of Cantor coverings at the Hausdorff and constructive levels are equivalent. We adapt the result by Albeverio, Ivanenko, Lebid, and Torbin to derive the necessary and sufficient conditions for the constructive dimension faithfulness of the coverings generated by the Cantor series expansion, based on the terms of the expansion.
- On the Hausdorff dimension faithfulness and the Cantor series expansion. Methods of Functional Analysis and Topology, 26(4):298–310, 2020.
- Fractal properties of singular probability distributions with independent Q*superscript𝑄Q^{*}italic_Q start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT-digits. Bull. Sci. Math., 129(4):356–367, 2005. doi:10.1016/j.bulsci.2004.12.001.
- A. S. Besicovitch. On existence of subsets of finite measure of sets of infinite measure. Indag. Math., 14:339–344, 1952. Nederl. Akad. Wetensch. Proc. Ser. A 55.
- George Cantor. Uber die einfachen zahlensysteme, zeit. für math. 14 (1869), 121-128. Coll. Papers, Berlin, pages 35–53, 1932.
- Algorithmic randomness and complexity. Theory and Applications of Computability. Springer, New York, 2010. doi:10.1007/978-0-387-68441-3.
- Kenneth Falconer. Fractal geometry. John Wiley & Sons, Inc., Hoboken, NJ, second edition, 2003. Mathematical foundations and applications. doi:10.1002/0470013850.
- F. Hausdorff. Dimension und äusseres Mass. Mathematische Annalen, 79:157–179, 1919.
- Base invariance of feasible dimension. Inform. Process. Lett., 113(14-16):546–551, 2013. doi:10.1016/j.ipl.2013.04.004.
- On a probabilistic approach to the DP-transformations and faithfulness of covering systems for calculating the Hausdorff-Besicovitch dimension. Teor. Ĭmovīr. Mat. Stat., (92):28–40, 2015. doi:10.1090/tpms/980.
- An introduction to Kolmogorov complexity and its applications. Texts in Computer Science. Springer, New York, third edition, 2008. doi:10.1007/978-0-387-49820-1.
- Jack H. Lutz. Dimension in complexity classes. SIAM J. Comput., 32(5):1236–1259, 2003. doi:10.1137/S0097539701417723.
- Jack H. Lutz. The dimensions of individual strings and sequences. Inform. and Comput., 187(1):49–79, 2003. doi:10.1016/S0890-5401(03)00187-1.
- Algorithmic information, plane kakeya sets, and conditional dimension. ACM Trans. Comput. Theory, 10(2):7:1–7:22, 2018. doi:10.1145/3201783.
- Who asked us? how the theory of computing answers questions about analysis. In Ding-Zhu Du and Jie Wang, editors, Complexity and Approximation - In Memory of Ker-I Ko, volume 12000 of Lecture Notes in Computer Science, pages 48–56. Springer, 2020. doi:10.1007/978-3-030-41672-0_4.
- Extending the reach of the point-to-set principle. In Petra Berenbrink and Benjamin Monmege, editors, 39th International Symposium on Theoretical Aspects of Computer Science, STACS 2022, March 15-18, 2022, Marseille, France (Virtual Conference), volume 219 of LIPIcs, pages 48:1–48:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022. doi:10.4230/LIPIcs.STACS.2022.48.
- Connectivity properties of dimension level sets. MLQ Math. Log. Q., 54(5):483–491, 2008. doi:10.1002/malq.200710060.
- Neil Lutz. Fractal intersections and products via algorithmic dimension. ACM Trans. Comput. Theory, 13(3):Art. 14, 15, 2021. doi:10.1145/3460948.
- Bounding the dimension of points on a line. Inform. and Comput., 275:104601, 15, 2020. doi:10.1016/j.ic.2020.104601.
- Projection theorems using effective dimension. In 43rd International Symposium on Mathematical Foundations of Computer Science, volume 117 of LIPIcs. Leibniz Int. Proc. Inform., pages Art. No. 71, 15. Schloss Dagstuhl. Leibniz-Zent. Inform., Wadern, 2018.
- Bill Mance. Normal numbers with respect to the Cantor series expansion. ProQuest LLC, Ann Arbor, MI, 2010. Thesis (Ph.D.)–The Ohio State University. URL: http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:3417854.
- Elvira Mayordomo. A Kolmogorov complexity characterization of constructive Hausdorff dimension. Inform. Process. Lett., 84(1):1–3, 2002. doi:10.1016/S0020-0190(02)00343-5.
- Elvira Mayordomo. Effective hausdorff dimension in general metric spaces. Theory Comput. Syst., 62(7):1620–1636, 2018. doi:10.1007/s00224-018-9848-3.
- Satyadev Nandakumar. An effective ergodic theorem and some applications. In STOC’08, pages 39–44. ACM, New York, 2008. doi:10.1145/1374376.1374383.
- Effective continued fraction dimension versus effective Hausdorff dimension of reals. In 48th International Symposium on Mathematical Foundations of Computer Science, volume 272 of LIPIcs. Leibniz Int. Proc. Inform., pages Paper No. 70, 15. Schloss Dagstuhl. Leibniz-Zent. Inform., Wadern, 2023. doi:10.4230/lipics.mfcs.2023.70.
- Randomness and effective dimension of continued fractions. In 45th International Symposium on Mathematical Foundations of Computer Science, volume 170 of LIPIcs. Leibniz Int. Proc. Inform., pages Art. No. 73, 13. Schloss Dagstuhl. Leibniz-Zent. Inform., Wadern, 2020.
- On continued fraction randomness and normality. Information and Computation, 285(part B):104876, 2022. URL: https://www.sciencedirect.com/science/article/pii/S0890540122000189, doi:https://doi.org/10.1016/j.ic.2022.104876.
- André Nies. Computability and randomness, volume 51. OUP Oxford, 2009.
- Continued fractions and dimensional gaps. In preparation.
- C. A. Rogers. Hausdorff measures. Cambridge University Press, London-New York, 1970.
- Kolmogorov complexity and algorithmic randomness, volume 220. American Mathematical Society, 2022.
- Ludwig Staiger. The Kolmogorov complexity of real numbers. Theor. Comput. Sci., 284(2):455–466, 2002. doi:10.1016/S0304-3975(01)00102-5.