Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

GPT, Ontology, and CAABAC: A Tripartite Personalized Access Control Model Anchored by Compliance, Context and Attribute (2403.08264v1)

Published 13 Mar 2024 in cs.CY, cs.AI, and cs.CR

Abstract: As digital healthcare evolves, the security of electronic health records (EHR) becomes increasingly crucial. This study presents the GPT-Onto-CAABAC framework, integrating Generative Pretrained Transformer (GPT), medical-legal ontologies and Context-Aware Attribute-Based Access Control (CAABAC) to enhance EHR access security. Unlike traditional models, GPT-Onto-CAABAC dynamically interprets policies and adapts to changing healthcare and legal environments, offering customized access control solutions. Through empirical evaluation, this framework is shown to be effective in improving EHR security by accurately aligning access decisions with complex regulatory and situational requirements. The findings suggest its broader applicability in sectors where access control must meet stringent compliance and adaptability standards.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (118)
  1. D. M. Mann, J. Chen, R. Chunara, P. A. Testa, and O. Nov, “Covid-19 transforms health care through telemedicine: evidence from the field,” Journal of the American Medical Informatics Association, vol. 27, no. 7, pp. 1132–1135, 2020.
  2. A. R. Watson, “Impact of the digital age on transforming healthcare,” Healthcare Information Management Systems: Cases, Strategies, and Solutions, pp. 219–233, 2016.
  3. S. M. Erickson, B. Rockwern, M. Koltov, R. M. McLean, M. Practice, and Q. C. of the American College of Physicians*, “Putting patients first by reducing administrative tasks in health care: a position paper of the american college of physicians,” Annals of internal medicine, vol. 166, no. 9, pp. 659–661, 2017.
  4. M. A. Tutty, L. E. Carlasare, S. Lloyd, and C. A. Sinsky, “The complex case of ehrs: examining the factors impacting the ehr user experience,” Journal of the American Medical Informatics Association, vol. 26, no. 7, pp. 673–677, 2019.
  5. M. Abouzahra, K. Sartipi, D. Armstrong, and J. Tan, “Integrating data from ehrs to enhance clinical decision making: the inflammatory bowel disease case,” in 2014 IEEE 27th International Symposium on Computer-Based Medical Systems.   IEEE, 2014, pp. 531–532.
  6. O. Ben-Assuli, D. Sagi, M. Leshno, A. Ironi, and A. Ziv, “Improving diagnostic accuracy using ehr in emergency departments: A simulation-based study,” Journal of biomedical informatics, vol. 55, pp. 31–40, 2015.
  7. B. Aldosari, “Patients’ safety in the era of emr/ehr automation,” Informatics in Medicine Unlocked, vol. 9, pp. 230–233, 2017.
  8. J. E. Han, M. Rabinovich, P. Abraham, P. Satyanarayana, T. V. Liao, T. N. Udoji, G. A. Cotsonis, E. G. Honig, and G. S. Martin, “Effect of electronic health record implementation in critical care on survival and medication errors,” The American journal of the medical sciences, vol. 351, no. 6, pp. 576–581, 2016.
  9. T. Susnjak and P. Maddigan, “Forecasting patient demand at urgent care clinics using explainable machine learning,” CAAI Transactions on Intelligence Technology, vol. 8, no. 3, pp. 712–733, 2023.
  10. K. Paranjape, M. Schinkel, and P. Nanayakkara, “Short keynote paper: Mainstreaming personalized healthcare–transforming healthcare through new era of artificial intelligence,” IEEE journal of biomedical and health informatics, vol. 24, no. 7, pp. 1860–1863, 2020.
  11. H. Talpada, M. N. Halgamuge, and N. T. Q. Vinh, “An analysis on use of deep learning and lexical-semantic based sentiment analysis method on twitter data to understand the demographic trend of telemedicine,” in 2019 11th International Conference on Knowledge and Systems Engineering (KSE).   IEEE, 2019, pp. 1–9.
  12. T. Liu, F. Liu, Y. Wan, R. Hu, Y. Zhu, and L. Li, “Hierarchical graph learning with convolutional network for brain disease prediction,” Multimedia Tools and Applications, pp. 1–19, 2023.
  13. U. J. Munasinghe and M. N. Halgamuge, “Supply chain traceability and counterfeit detection of covid-19 vaccines using novel blockchain-based vacledger system,” Expert Systems with Applications, vol. 228, p. 120293, 2023.
  14. A. Dagliati, A. Malovini, V. Tibollo, and R. Bellazzi, “Health informatics and ehr to support clinical research in the covid-19 pandemic: an overview,” Briefings in bioinformatics, vol. 22, no. 2, pp. 812–822, 2021.
  15. T. F. Osborne, Z. P. Veigulis, D. M. Arreola, E. Röösli, and C. M. Curtin, “Automated ehr score to predict covid-19 outcomes at us department of veterans affairs,” PLoS One, vol. 15, no. 7, p. e0236554, 2020.
  16. N. N. Basil, S. Ambe, C. Ekhator, E. Fonkem, B. N. Nduma, and C. Ekhator, “Health records database and inherent security concerns: A review of the literature,” Cureus, vol. 14, no. 10, 2022.
  17. R. Ganiga, R. M. Pai, and R. K. Sinha, “Security framework for cloud based electronic health record (ehr) system,” International Journal of Electrical and Computer Engineering, vol. 10, no. 1, p. 455, 2020.
  18. T. McIntosh, J. Jang-Jaccard, P. Watters, and T. Susnjak, “Masquerade attacks against security software exclusion lists,” Australian Journal of Intelligent Information Processing Systems, vol. 16, no. 4, pp. 5–12, 2019.
  19. T. McIntosh, A. Kayes, Y.-P. P. Chen, A. Ng, and P. Watters, “Ransomware mitigation in the modern era: A comprehensive review, research challenges, and future directions,” ACM Computing Surveys (CSUR), vol. 54, no. 9, pp. 1–36, 2021.
  20. D. Vidanapathirana, A. Mohammad, and M. N. Halgamuge, “Rapid cyber-attack detection system with low probability of missed attack warnings,” in 2022 IEEE 17th Conference on Industrial Electronics and Applications (ICIEA).   IEEE, 2022, pp. 1423–1429.
  21. T. McIntosh, A. Kayes, Y.-P. P. Chen, A. Ng, and P. Watters, “Applying staged event-driven access control to combat ransomware,” Computers & Security, vol. 128, p. 103160, 2023.
  22. T. McIntosh, “Intercepting ransomware attacks with staged event-driven access control,” Ph.D. dissertation, La Trobe, 2022.
  23. J. L. Fernández-Alemán, I. C. Señor, P. Á. O. Lozoya, and A. Toval, “Security and privacy in electronic health records: A systematic literature review,” Journal of biomedical informatics, vol. 46, no. 3, pp. 541–562, 2013.
  24. F. Rezaeibagha, K. T. Win, and W. Susilo, “A systematic literature review on security and privacy of electronic health record systems: technical perspectives,” Health Information Management Journal, vol. 44, no. 3, pp. 23–38, 2015.
  25. W. Liu, X. Liu, J. Liu, Q. Wu, J. Zhang, and Y. Li, “Auditing and revocation enabled role-based access control over outsourced private ehrs,” in 2015 IEEE 17th international conference on high performance computing and communications, 2015 IEEE 7th international symposium on cyberspace safety and security, and 2015 IEEE 12th international conference on embedded software and systems.   IEEE, 2015, pp. 336–341.
  26. G. Abirami and R. Venkataraman, “Attribute based access control with trust calculation (abac-t) for decision policies of health care in pervasive environment,” IJITEE, vol. 8, 2019.
  27. E. Psarra, I. Patiniotakis, Y. Verginadis, D. Apostolou, and G. Mentzas, “Securing access to healthcare data with context-aware policies,” in 2020 11th International Conference on Information, Intelligence, Systems and Applications (IISA.   IEEE, 2020, pp. 1–6.
  28. G. Kopanitsa, “Integration of hospital information and clinical decision support systems to enable the reuse of electronic health record data,” Methods of information in medicine, vol. 56, no. 4, pp. 238–247, 2017.
  29. E. Adel, S. El-Sappagh, S. Barakat, and M. Elmogy, “A unified fuzzy ontology for distributed electronic health record semantic interoperability,” in U-Healthcare Monitoring Systems.   Elsevier, 2019, pp. 353–395.
  30. L. L. Fragidis and P. D. Chatzoglou, “Implementation of a nationwide electronic health record (ehr): The international experience in 13 countries,” International journal of health care quality assurance, vol. 31, no. 2, pp. 116–130, 2018.
  31. T. McIntosh, T. Liu, T. Susnjak, H. Alavizadeh, A. Ng, R. Nowrozy, and P. Watters, “Harnessing gpt-4 for generation of cybersecurity grc policies: A focus on ransomware attack mitigation,” Computers & Security, vol. 134, p. 103424, 2023.
  32. E. Ghazizadeh, E. Bagheri, and P. M. Singh, “Security ontology for electronic health records,” Journal of biomedical informatics, vol. 53, pp. 196–207, 2015.
  33. E. Vergara and J. Lopez, “Context-aware attribute-based access control,” in International Conference on Information Security and Cryptology.   Springer, 2013, pp. 165–180.
  34. J. He, X. Chen, J. Zhang, and J. Yu, “An ontology-driven approach for securing electronic health records,” BMC medical informatics and decision making, vol. 13, no. 1, p. 12, 2013.
  35. H. Liu, S. Yu, and X. Yang, “Ontology-driven context-aware attribute-based access control model for healthcare applications,” Journal of medical systems, vol. 42, no. 12, p. 249, 2018.
  36. D. Ntalasha, R. Li, and Y. Wang, “Adaptive context-aware design using context state information for the internet of things paradigm,” Journal of Mobile Multimedia, pp. 289–320, 2019.
  37. M. Sicuranza and A. Esposito, “An access control model for easy management of patient privacy in ehr systems,” in 8th International Conference for Internet Technology and Secured Transactions (ICITST-2013).   IEEE, 2013, pp. 463–470.
  38. M. A. de Carvalho Junior, P. Bandiera-Paiva et al., “Health information system role-based access control current security trends and challenges,” Journal of healthcare engineering, vol. 2018, 2018.
  39. R. Zhang, L. Liu, and R. Xue, “Role-based and time-bound access and management of ehr data,” Security and communication Networks, vol. 7, no. 6, pp. 994–1015, 2014.
  40. A. Esposito, M. Sicuranza, and M. Ciampi, “A patient centric approach for modeling access control in ehr systems,” in Algorithms and Architectures for Parallel Processing: 13th International Conference, ICA3PP 2013, Vietri sul Mare, Italy, December 18-20, 2013, Proceedings, Part II 13.   Springer, 2013, pp. 225–232.
  41. C. Santos-Pereira, A. B. Augusto, R. Cruz-Correia, and M. E. Correia, “A secure rbac mobile agent access control model for healthcare institutions,” in Proceedings of the 26th IEEE international symposium on computer-based medical systems.   IEEE, 2013, pp. 349–354.
  42. M. Sicuranza, A. Esposito, and M. Ciampi, “A view-based acces control model for ehr systems,” in Intelligent Distributed Computing VIII.   Springer, 2015, pp. 443–452.
  43. W. Liu, X. Liu, J. Liu, and Q. Wu, “Auditing revocable privacy-preserving access control for ehrs in clouds,” The Computer Journal, vol. 60, no. 12, pp. 1871–1888, 2017.
  44. L. Chen, M. J. Kollingbaum, T. J. Norman, and P. Edwards, “Risk-aware access control for electronic health records,” in Proceedings of the Third Annual Digital Economy All Hands Conference, Aberdeen, 2012.
  45. K. Abouelmehdi, A. Beni-Hessane, and H. Khaloufi, “Big healthcare data: preserving security and privacy,” Journal of big data, vol. 5, no. 1, pp. 1–18, 2018.
  46. M. Zarezadeh, M. A. Taluki, and M. Siavashi, “Attribute-based access control for cloud-based electronic health record (ehr) systems.” ISeCure, vol. 12, no. 2, 2020.
  47. A. M. Alshiky, S. M. Buhari, and A. Barnawi, “Attribute-based access control (abac) for ehr in fog computing environment,” International Journal on Cloud Computing: Services and Architecture (IJCCSA), vol. 7, no. 1, pp. 27–34, 2017.
  48. N. Sahavechaphan, U. Suriya, N. Harnsamut, J. Phengsuwan, K. Aroonrua et al., “An efficient technique for aspect-based ehr access policy administration on abac,” in 2011 Ninth International Conference on ICT and Knowledge Engineering.   IEEE, 2012, pp. 27–33.
  49. M. Joshi, K. Joshi, and T. Finin, “Attribute based encryption for secure access to cloud based ehr systems,” in 2018 IEEE 11th International Conference on Cloud Computing (CLOUD).   IEEE, 2018, pp. 932–935.
  50. H. Guo, W. Li, M. Nejad, and C.-C. Shen, “Access control for electronic health records with hybrid blockchain-edge architecture,” in 2019 IEEE International Conference on Blockchain (Blockchain).   IEEE, 2019, pp. 44–51.
  51. R. Walid, K. P. Joshi, and S. G. Choi, “Semantically rich differential access to secure cloud ehr,” in 2023 IEEE 9th Intl Conference on Big Data Security on Cloud (BigDataSecurity), IEEE Intl Conference on High Performance and Smart Computing,(HPSC) and IEEE Intl Conference on Intelligent Data and Security (IDS).   IEEE, 2023, pp. 1–9.
  52. K. Seol, Y.-G. Kim, E. Lee, Y.-D. Seo, and D.-K. Baik, “Privacy-preserving attribute-based access control model for xml-based electronic health record system,” IEEE Access, vol. 6, pp. 9114–9128, 2018.
  53. L. Patra, U. P. Rao, P. Choksi, and A. Chaurasia, “Controlling access to ehealth data using request denial cache in xacml reference architecture for abac,” in 2022 IEEE 3rd Global Conference for Advancement in Technology (GCAT).   IEEE, 2022, pp. 1–8.
  54. A. Arfaoui, S. Cherkaoui, A. Kribeche, S. M. Senouci, and M. Hamdi, “Context-aware adaptive authentication and authorization in internet of things,” in ICC 2019-2019 IEEE International Conference on Communications (ICC).   IEEE, 2019, pp. 1–6.
  55. R. El Sibai, N. Gemayel, J. Bou Abdo, and J. Demerjian, “A survey on access control mechanisms for cloud computing,” Transactions on Emerging Telecommunications Technologies, vol. 31, no. 2, p. e3720, 2020.
  56. L. Chen and D. B. Hoang, “Novel data protection model in healthcare cloud,” in 2011 IEEE International Conference on High Performance Computing and Communications.   IEEE, 2011, pp. 550–555.
  57. S. Padmapriya, R. Shankar, R. Thiagarajan, S. Arun, B. Liya, and B. Gunasundari, “Preserving privacy scheme using data-caac mechanism in e-health based on hybrid edge computing,” in 2021 3rd International Conference on Advances in Computing, Communication Control and Networking (ICAC3N).   IEEE, 2021, pp. 1394–1399.
  58. A. Kayes, J. Han, and A. Colman, “Ontcaac: an ontology-based approach to context-aware access control for software services,” The Computer Journal, vol. 58, no. 11, pp. 3000–3034, 2015.
  59. M. H. Yarmand, K. Sartipi, and D. G. Down, “Behavior-based access control for distributed healthcare environment,” in 2008 21st IEEE International Symposium on Computer-Based Medical Systems.   IEEE, 2008, pp. 126–131.
  60. ——, “Behavior-based access control for distributed healthcare systems,” Journal of Computer Security, vol. 21, no. 1, pp. 1–39, 2013.
  61. C. Ke, J. Wu, F. Xiao, Z. Huang, and Y. Meng, “A privacy risk assessment scheme for fog nodes in access control system,” IEEE Transactions on Reliability, vol. 71, no. 4, pp. 1513–1526, 2021.
  62. M. Sicuranza and M. Ciampi, “A semantic access control for easy management of the privacy for ehr systems,” in 2014 Ninth International Conference on P2P, Parallel, Grid, Cloud and Internet Computing.   IEEE, 2014, pp. 400–405.
  63. J. Calvillo-Arbizu, I. Román-Martínez, and L. M. Roa-Romero, “Standardized access control mechanisms for protecting iso 13606-based electronic health record systems,” in IEEE-EMBS International Conference on Biomedical and Health Informatics (BHI).   IEEE, 2014, pp. 539–542.
  64. S. Dixit, K. P. Joshi, and S. G. Choi, “Multi authority access control in a cloud ehr system with ma-abe,” in 2019 IEEE international conference on edge computing (EDGE).   IEEE, 2019, pp. 107–109.
  65. R. Walid, K. P. Joshi, S. G. Choi, and D.-y. Kim, “Cloud-based encrypted ehr system with semantically rich access control and searchable encryption,” in 2020 IEEE International Conference on Big Data (Big Data).   IEEE, 2020, pp. 4075–4082.
  66. M. Peleg, D. Beimel, D. Dori, and Y. Denekamp, “Situation-based access control: Privacy management via modeling of patient data access scenarios,” Journal of Biomedical Informatics, vol. 41, no. 6, pp. 1028–1040, 2008.
  67. D. Beimel, M. Peleg, and T. Redmond, “Reasoning about access-control situations with owl,” in The 11th Intl Protégé Conference, Amsterdam, Netherlands, 2009.
  68. X. Dong, R. Samavi, and T. Topaloglou, “Coc: An ontology for capturing semantics of circle of care,” Procedia Computer Science, vol. 63, pp. 589–594, 2015.
  69. R. Nowrozy, A. Khandakar, W. Hua, and T. Mcintosh, “Towards a universal privacy model for electronic health record systems: An ontology and machine learning approach,” Informatics, vol. 10, no. 3, 2023.
  70. B. Meskó and E. J. Topol, “The imperative for regulatory oversight of large language models (or generative ai) in healthcare,” NPJ digital medicine, vol. 6, no. 1, p. 120, 2023.
  71. M. Gupta, C. Akiri, K. Aryal, E. Parker, and L. Praharaj, “From chatgpt to threatgpt: Impact of generative ai in cybersecurity and privacy,” IEEE Access, 2023.
  72. T. F. Tan, A. J. Thirunavukarasu, J. P. Campbell, P. A. Keane, L. R. Pasquale, M. D. Abramoff, J. Kalpathy-Cramer, F. Lum, J. E. Kim, S. L. Baxter et al., “Generative artificial intelligence through chatgpt and other large language models in ophthalmology: Clinical applications and challenges,” Ophthalmology Science, vol. 3, no. 4, p. 100394, 2023.
  73. I. Molloy, Y. Park, and S. Chari, “Generative models for access control policies: applications to role mining over logs with attribution,” in Proceedings of the 17th ACM symposium on Access Control Models and Technologies, 2012, pp. 45–56.
  74. I. Solaiman, “The gradient of generative ai release: Methods and considerations,” in Proceedings of the 2023 ACM Conference on Fairness, Accountability, and Transparency, 2023, pp. 111–122.
  75. L. G. McCoy, C. T. Brenna, S. S. Chen, K. Vold, and S. Das, “Believing in black boxes: machine learning for healthcare does not need explainability to be evidence-based,” Journal of clinical epidemiology, vol. 142, pp. 252–257, 2022.
  76. H. Felzmann, E. Fosch-Villaronga, C. Lutz, and A. Tamò-Larrieux, “Towards transparency by design for artificial intelligence,” Science and Engineering Ethics, vol. 26, no. 6, pp. 3333–3361, 2020.
  77. W. A. Khattak and F. Rabbi, “Ethical considerations and challenges in the deployment of natural language processing systems in healthcare,” International Journal of Applied Health Care Analytics, vol. 8, no. 5, pp. 17–36, 2023.
  78. A. J. G. Sison, M. T. Daza, R. Gozalo-Brizuela, and E. C. Garrido-Merchán, “Chatgpt: More than a weapon of mass deception, ethical challenges and responses from the human-centered artificial intelligence (hcai) perspective,” arXiv preprint arXiv:2304.11215, 2023.
  79. M. Zerkouk, P. Cavalcante, A. Mhamed, J. Boudy, and B. Messabih, “Behavior and capability based access control model for personalized telehealthcare assistance,” Mobile Networks and Applications, vol. 19, pp. 392–403, 2014.
  80. A. M. Mustapha, T. E. Abioye, O. Oyedele, F. M. Okikiola, and C. Y. Alonge, “A systematic literature review of ontology-based techniques in medical diagnosis,” Available at SSRN 4394368.
  81. K. Sharma, S. Gupta, R. Kaur, and M. Kumar, “Ontology driven electronic health record,” in 2016 International Conference on Computing, Communication and Automation (ICCCA).   IEEE, 2016, pp. 940–944.
  82. A. M. Tall and C. C. Zou, “A framework for attribute-based access control in processing big data with multiple sensitivities,” Applied Sciences, vol. 13, no. 2, p. 1183, 2023.
  83. P. Dhillon and M. Singh, “An extended ontology model for trust evaluation using advanced hybrid ontology,” Journal of Information Science, p. 01655515221128424, 2023.
  84. L. Wahlberg, “Legal ontology, scientific expertise and the factual world,” Journal of Social Ontology, vol. 3, no. 1, pp. 49–65, 2017.
  85. Y. C. Kiong, S. Palaniappan, and N. A. Yahaya, “Health ontology system,” in 2011 7th International Conference on Information Technology in Asia.   IEEE, 2011, pp. 1–4.
  86. E. Helms and L. Williams, “Evaluating access control of open source electronic health record systems,” in Proceedings of the 3rd workshop on software engineering in health care, 2011, pp. 63–70.
  87. Y. Yang, R.-h. Shi, K. Li, Z. Wu, and S. Wang, “Multiple access control scheme for ehrs combining edge computing with smart contracts,” Future Generation Computer Systems, vol. 129, pp. 453–463, 2022.
  88. C. S. Kruse, B. Frederick, T. Jacobson, and D. K. Monticone, “Cybersecurity in healthcare: A systematic review of modern threats and trends,” Technology and Health Care, vol. 25, no. 1, pp. 1–10, 2017.
  89. T. R. McIntosh, T. Susnjak, T. Liu, P. Watters, and M. N. Halgamuge, “From google gemini to openai q*(q-star): A survey of reshaping the generative artificial intelligence (ai) research landscape,” arXiv preprint arXiv:2312.10868, 2023.
  90. Y. Zhang and M. Yang, “Intelligent cloud storage usage for electronic health record system,” Journal of Medical Systems, vol. 41, no. 3, p. 44, 2017.
  91. S. Ghanbari and M. A. Azgomi, “A taxonomy and survey of cloud resource orchestration techniques,” ACM Computing Surveys (CSUR), vol. 51, no. 3, pp. 1–34, 2018.
  92. V. Papakonstantinou, M. Poulymenopoulou, F. Malamateniou, and G. Vassilacopoulos, “Access control for cloud-based emergency medical data management systems,” Health Informatics Journal, vol. 22, no. 4, pp. 812–824, 2016.
  93. B. Chintagunta, N. Katariya, X. Amatriain, and A. Kannan, “Medically aware gpt-3 as a data generator for medical dialogue summarization,” in Machine Learning for Healthcare Conference.   PMLR, 2021, pp. 354–372.
  94. D. M. Korngiebel and S. D. Mooney, “Considering the possibilities and pitfalls of generative pre-trained transformer 3 (gpt-3) in healthcare delivery,” NPJ Digital Medicine, vol. 4, no. 1, p. 93, 2021.
  95. D. Lee and S. N. Yoon, “Application of artificial intelligence-based technologies in the healthcare industry: Opportunities and challenges,” International Journal of Environmental Research and Public Health, vol. 18, no. 1, p. 271, 2021.
  96. K. Yeung, “A study of the implications of advanced digital technologies (including ai systems) for the concept of responsibility within a human rights framework,” MSI-AUT (2018), vol. 5, 2018.
  97. C. Brandão, G. Rego, I. Duarte, and R. Nunes, “Social responsibility: a new paradigm of hospital governance?” Health Care Analysis, vol. 21, pp. 390–402, 2013.
  98. M. N. Aydin and A. Ali, “Ethical and security challenges in electronic health records: A review,” Journal of medical systems, vol. 45, no. 8, p. 90, 2021.
  99. W. R. Shadish, T. D. Cook, and D. T. Campbell, “Experimental and quasi-experimental designs for generalized causal inference,” 2021.
  100. Y. Yao, H. Wang, and Y. Li, “A novel security and privacy-preserving scheme for electronic health record systems,” IEEE Access, vol. 9, pp. 70 524–70 536, 2021.
  101. S. Gupta, A. Basheeruddin, and P. Kumar, “A systematic review on information security risks and threats in healthcare information systems,” Computers in Biology and Medicine, vol. 118, p. 103641, 2020.
  102. H. Ando, M. Ohkubo, and K. Ikeda, “Information security governance and management in healthcare: A systematic literature review,” International Journal of Medical Informatics, vol. 157, p. 104608, 2022.
  103. D. Wang and A. Bakhai, “Randomized controlled trials: design, conduct, and analysis,” The Lancet, vol. 395, no. 10223, pp. 1316–1325, 2020.
  104. V. Pereira and F. Santos, “An ontology-based approach for managing security in electronic health records,” Journal of biomedical informatics, vol. 118, p. 103792, 2021.
  105. X. Yuan and J. Huang, “Securing electronic health records using blockchain technology: A systematic review,” Journal of medical systems, vol. 45, no. 5, p. 49, 2021.
  106. Y. Zhang, B. Xie, M. Zhang, Q. Cui, and L. Xie, “Privacy preservation in electronic health records: A survey,” Journal of medical systems, vol. 44, no. 4, pp. 1–13, 2020.
  107. T. R. McIntosh, T. Liu, T. Susnjak, P. Watters, A. Ng, and M. N. Halgamuge, “A culturally sensitive test to evaluate nuanced gpt hallucination,” IEEE Transactions on Artificial Intelligence, vol. 1, no. 01, pp. 1–13, 2023.
  108. M. Abd and Y. Ma, “Access control and privacy protection in healthcare information systems: A systematic literature review,” Journal of Healthcare Engineering, vol. 2021, 2021.
  109. S. Kumar, K. S, J. Hanumanthappa, S. P. S. Prakash, and K. Krinkin, “Relationship-Based AES Security Model for Social Internet of Things,” in Intelligent Systems and Applications: Select Proceedings of ICISA 2022.   Springer Nature, 2023, pp. 143–151.
  110. G. Gäbler, D. Lycett, and W. Gall, “Integrating a New Dietetic Care Process in a Health Information System: A System and Process Analysis and Assessment,” International Journal of Environmental Research and Public Health, vol. 19, no. 5, pp. 2491–2491, 2022.
  111. C.-C. Huang and C.-L. Tsai, “Ontology-based access control for electronic health records: A survey,” Journal of medical systems, vol. 43, no. 9, p. 297, 2019.
  112. M. Dhanapal and Y. G, “Secure medical record management using blockchain technology in cloud environment,” Journal of Medical Systems, vol. 45, no. 2, p. 13, 2021.
  113. A. Name, “Title of the differential privacy in healthcare paper,” Journal Name, 2021.
  114. E. Author and F. Author, “Ethical considerations in ehr security,” International Journal of Health Ethics, vol. 15, no. 1, pp. 45–60, 2019.
  115. P. Coorevits, M. Sundgren, G. O. Klein, A. Bahr, B. Claerhout, C. Daniel, M. Dugas, D. Dupont, A. Schmidt, P. Singleton et al., “Electronic health records: new opportunities for clinical research,” Journal of internal medicine, vol. 274, no. 6, pp. 547–560, 2013.
  116. A. B. Carter, L. V. Abruzzo, J. W. Hirschhorn, D. Jones, D. C. Jordan, M. Nassiri, S. Ogino, N. R. Patel, C. G. Suciu, R. L. Temple-Smolkin et al., “Electronic health records and genomics: perspectives from the association for molecular pathology electronic health record (ehr) interoperability for clinical genomics data working group,” The Journal of Molecular Diagnostics, vol. 24, no. 1, pp. 1–17, 2022.
  117. R. Wang, Y. Guo, Y. Li, Z. Qin, Y. Huang, and Z. Li, “Towards personalized and privacy-preserving ehealth systems via semi-supervised learning,” Journal of medical systems, vol. 42, no. 7, p. 129, 2018.
  118. M. Bhuyan, A. Pal, and R. Barik, “Role based access control for secure data sharing in cloud using cloud computing,” in Proceedings of the 11th International Conference on Computing, Communication and Networking Technologies (ICCCNT), 2021, pp. 1–5.
Citations (4)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com