2000 character limit reached
Explicit radial basis function Runge-Kutta methods (2403.08253v1)
Published 13 Mar 2024 in math.NA and cs.NA
Abstract: The aim of this paper is to design the explicit radial basis function (RBF) Runge-Kutta methods for the initial value problem. We construct the two-, three- and four-stage RBF Runge-Kutta methods based on the Gaussian RBF Euler method with the shape parameter, where the analysis of the local truncation error shows that the s-stage RBF Runge-Kutta method could formally achieve order s+1. The proof for the convergence of those RBF Runge-Kutta methods follows. We then plot the stability region of each RBF Runge-Kutta method proposed and compare with the one of the correspondent Runge-Kutta method. Numerical experiments are provided to exhibit the improved behavior of the RBF Runge-Kutta methods over the standard ones.
- SIAM J. Sci. Comput. 17(3), 777–782 (1996)
- J. Sci. Comput. 68, 975–1001 (2016)
- Math. Comp. 86, 747–769 (2017)
- Buhmann, M.D.: Radial Basis Functions. Cambridge University Press, Cambridge (2003)
- Butcher, J.C.: Numerical Methods for Ordinary Differential Equations. John Wiley & Sons, Ltd. (2008)
- SIAM J. Sci. Comput. 16(6), 1241–1252 (1995)
- Gottlieb, S.: On high order strong stability preserving Runge-Kutta and multi step time discretizations. J. Sci. Comput. 25, 105–128 (2005)
- Math. Comp. 67, 73–85 (1998)
- SIAM Rev. 43(1), 89–112 (2001)
- J. Sci. Comput. 82, 47 (2020)
- J. Comput. Appl. Math. 381, 113036 (2021)
- SIAM J. Numer. Anal. 43(3), 1069–1090 (2005)
- Appl. Numer. Math. 53(2), 323–339 (2005)
- Acta Numer. 19, 209–286 (2010)
- J. Sci. Comput. 25, 129–155 (2005)
- Ralston, A.: Runge-Kutta methods with minimum error bounds. Math. Comp. 16(80), 431–437 (1962)
- Sebastiano, B.: High-order semi-implicit schemes for evolutionary partial differential equations with higher order derivatives. J. Sci. Comput. 96, 11 (2023)
- J. Comput. Phys. 77(2), 439–471 (1988)