Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Explicit radial basis function Runge-Kutta methods (2403.08253v1)

Published 13 Mar 2024 in math.NA and cs.NA

Abstract: The aim of this paper is to design the explicit radial basis function (RBF) Runge-Kutta methods for the initial value problem. We construct the two-, three- and four-stage RBF Runge-Kutta methods based on the Gaussian RBF Euler method with the shape parameter, where the analysis of the local truncation error shows that the s-stage RBF Runge-Kutta method could formally achieve order s+1. The proof for the convergence of those RBF Runge-Kutta methods follows. We then plot the stability region of each RBF Runge-Kutta method proposed and compare with the one of the correspondent Runge-Kutta method. Numerical experiments are provided to exhibit the improved behavior of the RBF Runge-Kutta methods over the standard ones.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (18)
  1. SIAM J. Sci. Comput. 17(3), 777–782 (1996)
  2. J. Sci. Comput. 68, 975–1001 (2016)
  3. Math. Comp. 86, 747–769 (2017)
  4. Buhmann, M.D.: Radial Basis Functions. Cambridge University Press, Cambridge (2003)
  5. Butcher, J.C.: Numerical Methods for Ordinary Differential Equations. John Wiley & Sons, Ltd. (2008)
  6. SIAM J. Sci. Comput. 16(6), 1241–1252 (1995)
  7. Gottlieb, S.: On high order strong stability preserving Runge-Kutta and multi step time discretizations. J. Sci. Comput. 25, 105–128 (2005)
  8. Math. Comp. 67, 73–85 (1998)
  9. SIAM Rev. 43(1), 89–112 (2001)
  10. J. Sci. Comput. 82, 47 (2020)
  11. J. Comput. Appl. Math. 381, 113036 (2021)
  12. SIAM J. Numer. Anal. 43(3), 1069–1090 (2005)
  13. Appl. Numer. Math. 53(2), 323–339 (2005)
  14. Acta Numer. 19, 209–286 (2010)
  15. J. Sci. Comput. 25, 129–155 (2005)
  16. Ralston, A.: Runge-Kutta methods with minimum error bounds. Math. Comp. 16(80), 431–437 (1962)
  17. Sebastiano, B.: High-order semi-implicit schemes for evolutionary partial differential equations with higher order derivatives. J. Sci. Comput. 96, 11 (2023)
  18. J. Comput. Phys. 77(2), 439–471 (1988)

Summary

We haven't generated a summary for this paper yet.