Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The effect of cation-disorder on lithium transport in halide superionic conductors (2403.08237v1)

Published 13 Mar 2024 in cond-mat.mtrl-sci and physics.comp-ph

Abstract: Among the chloride-based Li-ion solid electrolytes, Li$_2$ZrCl$_6$ (LZC) have emerged as potential candidates due to their affordability, moisture stability, and high ionic conductivity. LZC synthesized by solid-state heating exhibits limited Li-ion conductivity while the mechanochemical ball-milled material is more conductive. In this computational study, we integrate thermodynamic modeling, using cluster-expansion Monte Carlo, and kinetic modeling, using molecular dynamics, to investigate whether cation disorder can be achieved in LZC, and how it affects Li-ion transport. Our results indicate that fast Li-ion conductivity is induced by the activation of Li/vacancy disorder, which itself depends on the degree of Zr disorder. We find that the very high-temperature scale at which equilibrium Zr-disorder can form precludes any equilibrium synthesis processes for achieving fast Li-ion conductivity, rationalizing why only non-equilibrium synthesis methods, such as ball milling leads to good conductivity. We identify as the critical mechanism the lack of Li/vacancy disorder near room temperature when Zr is well-ordered. Our simulations further show that the Li/vacancy order-disorder transition temperature is lowered by Zr disorder, which is necessary for creating high Li diffusivity at room temperature. The insights obtained from this study raise a challenge for the large-scale production of these materials and the potential for the long-term stability of their properties.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (13)
  1. J. Janek and W. G. Zeier, A solid future for battery development, Nature Energy 1, 16141 (2016).
  2. Y.-K. Sun, Promising all-solid-state batteries for future electric vehicles, ACS Energy Letters 5, 3221 (2020).
  3. Y. Zhu and Y. Mo, Materials Design Principles for Air‐Stable Lithium/Sodium Solid Electrolytes, Angewandte Chemie 132, 17625 (2020).
  4. S. Wang, Y. Liu, and Y. Mo, Frustration in Super‐Ionic Conductors Unraveled by the Density of Atomistic States, Angewandte Chemie 135 (2023).
  5. J. Sanchez, F. Ducastelle, and D. Gratias, Generalized cluster description of multicomponent systems, Physica A: Statistical Mechanics and its Applications 128, 334 (1984).
  6. C. Wolverton and A. Zunger, First-principles prediction of vacancy order-disorder and intercalation battery voltages in Lix𝑥{}_{x}start_FLOATSUBSCRIPT italic_x end_FLOATSUBSCRIPTCoO22{}_{2}start_FLOATSUBSCRIPT 2 end_FLOATSUBSCRIPT, Physical Review Letters 81, 606 (1998).
  7. Gurobi Optimization, LLC, Gurobi Optimizer Reference Manual (2021).
  8. J. Sun, A. Ruzsinszky, and J. P. Perdew, Strongly Constrained and Appropriately Normed Semilocal Density Functional, Physical Review Letters 115, 036402 (2015).
  9. G. Kresse and J. Furthmüller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set, Computational Materials Science 6, 15 (1996).
  10. G. Kresse and D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method, Physical Review B 59, 1758 (1999).
  11. C. Chen and S. P. Ong, A universal graph deep learning interatomic potential for the periodic table, Nature Computational Science 2, 718 (2022).
  12. J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple, Physical review letters 77, 3865 (1996).
  13. P. D. Tepesch, G. D. Garbulsky, and G. Ceder, Model for Configurational Thermodynamics in Ionic Systems, Physical Review Letters 74, 2272 (1995).

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com