Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Object Permanence Filter for Robust Tracking with Interactive Robots (2403.08231v1)

Published 13 Mar 2024 in cs.RO

Abstract: Object permanence, which refers to the concept that objects continue to exist even when they are no longer perceivable through the senses, is a crucial aspect of human cognitive development. In this work, we seek to incorporate this understanding into interactive robots by proposing a set of assumptions and rules to represent object permanence in multi-object, multi-agent interactive scenarios. We integrate these rules into the particle filter, resulting in the Object Permanence Filter (OPF). For multi-object scenarios, we propose an ensemble of K interconnected OPFs, where each filter predicts plausible object tracks that are resilient to missing, noisy, and kinematically or dynamically infeasible measurements, thus bringing perceptional robustness. Through several interactive scenarios, we demonstrate that the proposed OPF approach provides robust tracking in human-robot interactive tasks agnostic to measurement type, even in the presence of prolonged and complete occlusion. Webpage: https://opfilter.github.io/.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (19)
  1. P. A. Lasota, T. Fong, and J. A. Shah, “A survey of methods for safe human-robot interaction,” Foundations and Trends® in Robotics, vol. 5, no. 4, pp. 261–349, 2017.
  2. S. Li, N. Figueroa, A. Shah, and J. A. Shah, “Provably Safe and Efficient Motion Planning with Uncertain Human Dynamics,” in Proceedings of Robotics: Science and Systems, Virtual, July 2021.
  3. J. Piaget, “Part i: Cognitive development in children: Piaget development and learning,” Journal of Research in Science Teaching, vol. 2, no. 3, pp. 176–186, 1964.
  4. J. Saiki, “Multiple-object permanence tracking: limitation in maintenance and transformation of perceptual objects,” in The Brain’s eye: Neurobiological and clinical aspects of oculomotor research, ser. Progress in Brain Research.   Elsevier, 2002, vol. 140, pp. 133–148.
  5. S. Chen, “Kalman filter for robot vision: A survey,” IEEE Transactions on Industrial Electronics, vol. 59, pp. 4409–4420, 2012.
  6. Y. Labb’e, J. Carpentier, M. Aubry, and J. Sivic, “Cosypose: Consistent multi-view multi-object 6d pose estimation,” in European Conference on Computer Vision, 2020.
  7. B. Wen, J. Tremblay, V. Blukis, S. Tyree, T. Muller, A. Evans, D. Fox, J. Kautz, and S. Birchfield, “Bundlesdf: Neural 6-dof tracking and 3d reconstruction of unknown objects,” 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 606–617, 2023.
  8. B. V. Hoorick, P. Tendulkar, D. Surís, D. Park, S. Stent, and C. Vondrick, “Revealing occlusions with 4d neural fields,” 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3001–3011, 2022.
  9. M. Nagy, M. Khonji, J. Dias, and S. Javed, “Dfr-fastmot: Detection failure resistant tracker for fast multi-object tracking based on sensor fusion,” in 2023 IEEE International Conference on Robotics and Automation (ICRA), 2023, pp. 827–833.
  10. N. Piga, F. Bottarel, C. Fantacci, and e. a. Vezzani, “Maskukf: An instance segmentation aided unscented kalman filter for 6d object pose and velocity tracking,” Frontiers in Robotics and AI, vol. 8, 03 2021.
  11. X. Deng, A. Mousavian, Y. Xiang, F. Xia, T. Bretl, and D. Fox, “Poserbpf: A rao-blackwellized particle filter for6d object pose estimation,” Robotics: Science and Systems XV, 2019.
  12. K. Meshgi, S.-i. Maeda, S. Oba, H. Skibbe, Y.-z. Li, and S. Ishii, “An occlusion-aware particle filter tracker to handle complex and persistent occlusions,” CVIU, vol. 150, 05 2016.
  13. P. Tokmakov, J. Li, W. Burgard, and A. Gaidon, “Learning to track with object permanence,” in ICCV, oct 2021, pp. 10 840–10 849.
  14. T. Kloek and H. K. van Dijk, “Bayesian Estimates of Equation System Parameters: An Application of Integration by Monte Carlo,” University Rotterdam, Econometric Institute Archives 272139, Nov. 1976.
  15. T. Li, S. Sun, T. Sattar, and J. Corchado Rodríguez, “Fight sample degeneracy and impoverishment in particle filters: A review,” Expert Systems with Applications, vol. 41, p. 3944–3954, 06 2014.
  16. T. Kailath, “The divergence and bhattacharyya distance measures in signal selection,” IEEE Transactions on Communication Technology, vol. 15, no. 1, pp. 52–60, 1967.
  17. M. Moore and A. Meltzoff, “New findings on object permanence: A developmental difference between two types of occlusion,” British Journal of Developmental Psychology, vol. 17, pp. 623 – 644, 11 1999.
  18. C. Lugaresi, J. Tang, H. Nash, C. McClanahan, E. Uboweja, M. Hays, F. Zhang, and C.-L. C. et al., “Mediapipe: A framework for perceiving and processing reality,” in Workshop on CV for AR/VR at CVPR, 2019.
  19. B. Çalli, A. Singh, J. Bruce, A. Walsman, K. Konolige, S. S. Srinivasa, P. Abbeel, and A. M. Dollar, “Yale-cmu-berkeley dataset for robotic manipulation research,” The International Journal of Robotics Research, vol. 36, pp. 261 – 268, 2017.
Citations (1)

Summary

We haven't generated a summary for this paper yet.