Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
124 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

SpeechColab Leaderboard: An Open-Source Platform for Automatic Speech Recognition Evaluation (2403.08196v1)

Published 13 Mar 2024 in cs.CL and eess.AS

Abstract: In the wake of the surging tide of deep learning over the past decade, Automatic Speech Recognition (ASR) has garnered substantial attention, leading to the emergence of numerous publicly accessible ASR systems that are actively being integrated into our daily lives. Nonetheless, the impartial and replicable evaluation of these ASR systems encounters challenges due to various crucial subtleties. In this paper we introduce the SpeechColab Leaderboard, a general-purpose, open-source platform designed for ASR evaluation. With this platform: (i) We report a comprehensive benchmark, unveiling the current state-of-the-art panorama for ASR systems, covering both open-source models and industrial commercial services. (ii) We quantize how distinct nuances in the scoring pipeline influence the final benchmark outcomes. These include nuances related to capitalization, punctuation, interjection, contraction, synonym usage, compound words, etc. These issues have gained prominence in the context of the transition towards an End-to-End future. (iii) We propose a practical modification to the conventional Token-Error-Rate (TER) evaluation metric, with inspirations from Kolmogorov complexity and Normalized Information Distance (NID). This adaptation, called modified-TER (mTER), achieves proper normalization and symmetrical treatment of reference and hypothesis. By leveraging this platform as a large-scale testing ground, this study demonstrates the robustness and backward compatibility of mTER when compared to TER. The SpeechColab Leaderboard is accessible at https://github.com/SpeechColab/Leaderboard

Definition Search Book Streamline Icon: https://streamlinehq.com
References (39)
  1. L. Deng, P. Kenny, M. Lennig, V. Gupta, F. Seitz, and P. Mermelstein, “Phonemic hidden Markov models with continuous mixture output densities for large vocabulary word recognition,” IEEE Transactions on Signal Processing, vol. 39, no. 7, pp. 1677–1681, 1991.
  2. G. E. Dahl, D. Yu, L. Deng, and A. Acero, “Context-dependent pre-trained deep neural networks for large-vocabulary speech recognition,” IEEE Transactions on audio, speech, and language processing, vol. 20, no. 1, pp. 30–42, 2011.
  3. D. Povey, V. Peddinti, D. Galvez, P. Ghahremani, V. Manohar, X. Na, Y. Wang, and S. Khudanpur, “Purely sequence-trained neural networks for ASR based on lattice-free MMI.” in Interspeech, 2016, pp. 2751–2755.
  4. A. Hannun, C. Case, J. Casper, B. Catanzaro, G. Diamos, E. Elsen, R. Prenger, S. Satheesh, S. Sengupta, A. Coates et al., “Deep speech: Scaling up end-to-end speech recognition,” arXiv preprint arXiv:1412.5567, 2014.
  5. A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” Advances in neural information processing systems, vol. 30, 2017.
  6. A. Gulati, J. Qin, C.-C. Chiu, N. Parmar, Y. Zhang, J. Yu, W. Han, S. Wang, Z. Zhang, Y. Wu et al., “Conformer: Convolution-augmented transformer for speech recognition,” Interspeech 2020, 2020.
  7. A. Graves, S. Fernández, F. Gomez, and J. Schmidhuber, “Connectionist temporal classification: Labelling unsegmented sequence data with recurrent neural networks,” in Proc. ICML, 2006.
  8. A. Graves, “Sequence transduction with recurrent neural networks,” Computer Science, vol. 58, no. 3, pp. 235–242, 2012.
  9. A. Radford, J. W. Kim, T. Xu, G. Brockman, C. McLeavey, and I. Sutskever, “Robust speech recognition via large-scale weak supervision,” in International Conference on Machine Learning.   PMLR, 2023, pp. 28 492–28 518.
  10. Y. Zhang, W. Han, J. Qin, Y. Wang, A. Bapna, Z. Chen, N. Chen, B. Li, V. Axelrod, G. Wang et al., “Google USM: Scaling automatic speech recognition beyond 100 languages,” arXiv preprint arXiv:2303.01037, 2023.
  11. A. Baevski, Y. Zhou, A. Mohamed, and M. Auli, “wav2vec 2.0: A framework for self-supervised learning of speech representations,” Advances in neural information processing systems, vol. 33, pp. 12 449–12 460, 2020.
  12. W.-N. Hsu, B. Bolte, Y.-H. H. Tsai, K. Lakhotia, R. Salakhutdinov, and A. Mohamed, “Hubert: Self-supervised speech representation learning by masked prediction of hidden units,” IEEE/ACM Transactions on Audio, Speech, and Language Processing, vol. 29, pp. 3451–3460, 2021.
  13. S. Chen, C. Wang, Z. Chen, Y. Wu, S. Liu, Z. Chen, J. Li, N. Kanda, T. Yoshioka, X. Xiao et al., “Wavlm: Large-scale self-supervised pre-training for full stack speech processing,” IEEE Journal of Selected Topics in Signal Processing, vol. 16, no. 6, pp. 1505–1518, 2022.
  14. A. Baevski, W.-N. Hsu, Q. Xu, A. Babu, J. Gu, and M. Auli, “Data2vec: A general framework for self-supervised learning in speech, vision and language,” in International Conference on Machine Learning.   PMLR, 2022, pp. 1298–1312.
  15. S. Young, G. Evermann, M. Gales, T. Hain, D. Kershaw, X. Liu, G. Moore, J. Odell, D. Ollason, D. Povey et al., “The HTK book,” Cambridge university engineering department, vol. 3, no. 175, p. 12, 2002.
  16. D. Povey, A. Ghoshal, G. Boulianne, L. Burget, O. Glembek, N. Goel, M. Hannemann, P. Motlicek, Y. Qian, P. Schwarz et al., “The Kaldi speech recognition toolkit,” in IEEE 2011 workshop on automatic speech recognition and understanding, no. CONF.   IEEE Signal Processing Society, 2011.
  17. S. Watanabe, T. Hori, S. Karita, T. Hayashi, J. Nishitoba, Y. Unno, N. Enrique Yalta Soplin, J. Heymann, M. Wiesner, N. Chen, A. Renduchintala, and T. Ochiai, “ESPnet: End-to-end speech processing toolkit,” in Proceedings of Interspeech, 2018, pp. 2207–2211.
  18. O. Kuchaiev, J. Li, H. Nguyen, O. Hrinchuk, R. Leary, B. Ginsburg, S. Kriman, S. Beliaev, V. Lavrukhin, J. Cook et al., “Nemo: A toolkit for building ai applications using neural modules,” arXiv preprint arXiv:1909.09577, 2019.
  19. M. Ravanelli, T. Parcollet, P. Plantinga, A. Rouhe, S. Cornell, L. Lugosch, C. Subakan, N. Dawalatabad, A. Heba, J. Zhong et al., “SpeechBrain: A general-purpose speech toolkit,” arXiv preprint arXiv:2106.04624, 2021.
  20. Z. Yao, D. Wu, X. Wang, B. Zhang, F. Yu, C. Yang, Z. Peng, X. Chen, L. Xie, and X. Lei, “WeNet: Production oriented streaming and non-streaming end-to-end speech recognition toolkit,” in Proc. Interspeech.   Brno, Czech Republic: IEEE, 2021.
  21. M. Del Rio, N. Delworth, R. Westerman, M. Huang, N. Bhandari, J. Palakapilly, Q. McNamara, J. Dong, P. Zelasko, and M. Jetté, “Earnings-21: A practical benchmark for ASR in the wild,” arXiv preprint arXiv:2104.11348, 2021.
  22. S. Gandhi, P. Von Platen, and A. M. Rush, “ESB: A benchmark for multi-domain end-to-end speech recognition,” arXiv preprint arXiv:2210.13352, 2022.
  23. A. Faria, A. Janin, K. Riedhammer, and S. Adkoli, “Toward zero oracle word error rate on the switchboard benchmark,” arXiv preprint arXiv:2206.06192, 2022.
  24. V. Panayotov, G. Chen, D. Povey, and S. Khudanpur, “Librispeech: An ASR corpus based on public domain audio books,” in 2015 IEEE international conference on acoustics, speech and signal processing (ICASSP).   IEEE, 2015, pp. 5206–5210.
  25. F. Hernandez, V. Nguyen, S. Ghannay, N. Tomashenko, and Y. Esteve, “TED-LIUM 3: Twice as much data and corpus repartition for experiments on speaker adaptation,” in Speech and Computer: 20th International Conference, SPECOM 2018, Leipzig, Germany, September 18–22, 2018, Proceedings 20.   Springer, 2018, pp. 198–208.
  26. G. Chen, S. Chai, G. Wang, J. Du, W.-Q. Zhang, C. Weng, D. Su, D. Povey, J. Trmal, J. Zhang et al., “GigaSpeech: An evolving, multi-domain ASR corpus with 10,000 hours of transcribed audio,” in 22nd Annual Conference of the International Speech Communication Association, INTERSPEECH 2021.   International Speech Communication Association, 2021, pp. 4376–4380.
  27. C. Wang, M. Rivière, A. Lee, A. Wu, C. Talnikar, D. Haziza, M. Williamson, J. Pino, and E. Dupoux, “VoxPopuli: A large-scale multilingual speech corpus for representation learning, semi-supervised learning and interpretation,” in ACL 2021-59th Annual Meeting of the Association for Computational Linguistics, 2021.
  28. R. Ardila, M. Branson, K. Davis, M. Kohler, J. Meyer, M. Henretty, R. Morais, L. Saunders, F. Tyers, and G. Weber, “Common Voice: A massively-multilingual speech corpus,” in Proceedings of the 12th Language Resources and Evaluation Conference, 2020, pp. 4218–4222.
  29. F. Kuang, L. Guo, W. Kang, L. Lin, M. Luo, Z. Yao, and D. Povey, “Pruned RNN-T for fast, memory-efficient ASR training,” arXiv preprint arXiv:2206.13236, 2022.
  30. E. Bakhturina, Y. Zhang, and B. Ginsburg, “Shallow fusion of weighted finite-state transducer and language model for text normalization,” arXiv preprint arXiv:2203.15917, 2022.
  31. C. Allauzen, M. Riley, J. Schalkwyk, W. Skut, and M. Mohri, “OpenFst: A general and efficient weighted finite-state transducer library: (extended abstract of an invited talk),” in Implementation and Application of Automata: 12th International Conference, CIAA 2007, Praque, Czech Republic, July 16-18, 2007, Revised Selected Papers 12.   Springer, 2007, pp. 11–23.
  32. K. Gorman, “Pynini: A python library for weighted finite-state grammar compilation,” in Proceedings of the SIGFSM Workshop on Statistical NLP and Weighted Automata, 2016, pp. 75–80.
  33. K. Gorman and R. Sproat, “Finite-state text processing,” Synthesis Lectures onSynthesis Lectures on Human Language Technologies, vol. 14, no. 2, pp. 1–158, 2021.
  34. V. Maier, “Evaluating RIL as basis of automatic speech recognition devices and the consequences of using probabilistic string edit distance as input,” Univ. of Sheffield, third year project, 2002.
  35. A. C. Morris, V. Maier, and P. Green, “From WER and RIL to MER and WIL: improved evaluation measures for connected speech recognition,” in Eighth International Conference on Spoken Language Processing, 2004.
  36. R. Cilibrasi and P. M. Vitányi, “Clustering by compression,” IEEE Transactions on Information theory, vol. 51, no. 4, pp. 1523–1545, 2005.
  37. M. Li, J. H. Badger, X. Chen, S. Kwong, P. Kearney, and H. Zhang, “An information-based sequence distance and its application to whole mitochondrial genome phylogeny,” Bioinformatics, vol. 17, no. 2, pp. 149–154, 2001.
  38. X. Chen, B. Francia, M. Li, B. Mckinnon, and A. Seker, “Shared information and program plagiarism detection,” IEEE Transactions on Information Theory, vol. 50, no. 7, pp. 1545–1551, 2004.
  39. R. L. Cilibrasi and P. M. B. Vitanyi, “Normalized web distance and word similarity,” Computer Science, pp. 293–314, 2009.
Citations (2)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com