Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Synchronized Dual-arm Rearrangement via Cooperative mTSP (2403.08191v1)

Published 13 Mar 2024 in cs.RO

Abstract: Synchronized dual-arm rearrangement is widely studied as a common scenario in industrial applications. It often faces scalability challenges due to the computational complexity of robotic arm rearrangement and the high-dimensional nature of dual-arm planning. To address these challenges, we formulated the problem as cooperative mTSP, a variant of mTSP where agents share cooperative costs, and utilized reinforcement learning for its solution. Our approach involved representing rearrangement tasks using a task state graph that captured spatial relationships and a cooperative cost matrix that provided details about action costs. Taking these representations as observations, we designed an attention-based network to effectively combine them and provide rational task scheduling. Furthermore, a cost predictor is also introduced to directly evaluate actions during both training and planning, significantly expediting the planning process. Our experimental results demonstrate that our approach outperforms existing methods in terms of both performance and planning efficiency.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (36)
  1. R. Shome, K. Solovey, J. Yu, K. Bekris, and D. Halperin, “Fast, high-quality two-arm rearrangement in synchronous, monotone tabletop setups,” IEEE transactions on automation science and engineering, vol. 18, no. 3, pp. 888–901, 2021.
  2. A. Kimmel and K. E. Bekris, “Scheduling pick-and-place tasks for dual-arm manipulators using incremental search on coordination diagrams,” in ICAPS workshop on planning and robotics (PlanRob), 2016.
  3. N. Gafur, G. Kanagalingam, and M. Ruskowski, “Dynamic collision avoidance for multiple robotic manipulators based on a non-cooperative multi-agent game,” arXiv preprint arXiv:2103.00583, 2021.
  4. S. Jungbluth, N. Gafur, J. Popper, V. Yfantis, and M. Ruskowski, “Reinforcement learning-based scheduling of a job-shop process with distributedly controlled robotic manipulators for transport operations,” IFAC-PapersOnLine, vol. 55, no. 2, pp. 156–162, 2022.
  5. D. Batra, A. X. Chang, S. Chernova, A. J. Davison, J. Deng, V. Koltun, S. Levine, J. Malik, I. Mordatch, R. Mottaghi et al., “Rearrangement: A challenge for embodied ai,” arXiv preprint arXiv:2011.01975, 2020.
  6. R. Shome and K. E. Bekris, “Improving the scalability of asymptotically optimal motion planning for humanoid dual-arm manipulators,” in 2017 IEEE-RAS 17th International Conference on Humanoid Robotics (Humanoids).   IEEE, 2017, pp. 271–277.
  7. R. Shome, K. Solovey, A. Dobson, D. Halperin, and K. E. Bekris, “drrt*: Scalable and informed asymptotically-optimal multi-robot motion planning,” Autonomous Robots, vol. 44, no. 3-4, pp. 443–467, 2020.
  8. T. Pan, A. M. Wells, R. Shome, and L. E. Kavraki, “A general task and motion planning framework for multiple manipulators,” in 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).   IEEE, 2021, pp. 3168–3174.
  9. K. Gao and J. Yu, “Toward efficient task planning for dual-arm tabletop object rearrangement,” in 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).   IEEE, 2022, pp. 10 425–10 431.
  10. H. J. Yoon, S. Y. Chung, and M. J. Hwang, “Shadow space modeling and task planning for collision-free cooperation of dual manipulators for planar task,” International Journal of Control, Automation and Systems, vol. 17, pp. 995–1006, 2019.
  11. J. K. Behrens, R. Lange, and M. Mansouri, “A constraint programming approach to simultaneous task allocation and motion scheduling for industrial dual-arm manipulation tasks,” in 2019 International Conference on Robotics and Automation (ICRA).   IEEE, 2019, pp. 8705–8711.
  12. H. Zhang, S.-H. Chan, J. Zhong, J. Li, S. Koenig, and S. Nikolaidis, “A mip-based approach for multi-robot geometric task-and-motion planning,” in 2022 IEEE 18th International Conference on Automation Science and Engineering (CASE).   IEEE, 2022, pp. 2102–2109.
  13. J. K. Behrens, K. Stepanova, and R. Babuska, “Simultaneous task allocation and motion scheduling for complex tasks executed by multiple robots,” in 2020 IEEE International Conference on Robotics and Automation (ICRA).   IEEE, 2020, pp. 11 443–11 449.
  14. J. Chen, J. Li, Y. Huang, C. Garrett, D. Sun, C. Fan, A. Hofmann, C. Mueller, S. Koenig, and B. C. Williams, “Cooperative task and motion planning for multi-arm assembly systems,” arXiv preprint arXiv:2203.02475, 2022.
  15. O. Cheikhrouhou and I. Khoufi, “A comprehensive survey on the multiple traveling salesman problem: Applications, approaches and taxonomy,” Computer Science Review, vol. 40, p. 100369, 2021.
  16. Y. Cao, Z. Sun, and G. Sartoretti, “Dan: Decentralized attention-based neural network for the minmax multiple traveling salesman problem,” arXiv preprint arXiv:2109.04205, 2021.
  17. J. Park, S. Bakhtiyar, and J. Park, “Schedulenet: Learn to solve multi-agent scheduling problems with reinforcement learning,” arXiv preprint arXiv:2106.03051, 2021.
  18. S. Paul, P. Ghassemi, and S. Chowdhury, “Learning to solve multi-robot task allocation with a covariant-attention based neural architecture,” 2021.
  19. H. Gao, X. Zhou, X. Xu, Y. Lan, and Y. Xiao, “Amarl: An attention-based multiagent reinforcement learning approach to the min-max multiple traveling salesmen problem,” IEEE Transactions on Neural Networks and Learning Systems, 2023.
  20. W. Kool, H. Van Hoof, and M. Welling, “Attention, learn to solve routing problems!” arXiv preprint arXiv:1803.08475, 2018.
  21. V. N. Hartmann, A. Orthey, D. Driess, O. S. Oguz, and M. Toussaint, “Long-horizon multi-robot rearrangement planning for construction assembly,” IEEE Transactions on Robotics, vol. 39, no. 1, pp. 239–252, 2022.
  22. N. Funk, G. Chalvatzaki, B. Belousov, and J. Peters, “Learn2assemble with structured representations and search for robotic architectural construction,” in Conference on Robot Learning.   PMLR, 2022, pp. 1401–1411.
  23. M. Danielczuk, A. Mousavian, C. Eppner, and D. Fox, “Object rearrangement using learned implicit collision functions,” in 2021 IEEE International Conference on Robotics and Automation (ICRA).   IEEE, 2021, pp. 6010–6017.
  24. D. Driess, J.-S. Ha, R. Tedrake, and M. Toussaint, “Learning geometric reasoning and control for long-horizon tasks from visual input,” in 2021 IEEE International Conference on Robotics and Automation (ICRA).   IEEE, 2021, pp. 14 298–14 305.
  25. M. Zhang, P. Jian, Y. Wu, H. Xu, and X. Wang, “Dair: Disentangled attention intrinsic regularization for safe and efficient bimanual manipulation,” arXiv preprint arXiv:2106.05907, 2021.
  26. H. Ha, J. Xu, and S. Song, “Learning a decentralized multi-arm motion planner,” arXiv preprint arXiv:2011.02608, 2020.
  27. S. Kataoka, S. K. S. Ghasemipour, D. Freeman, and I. Mordatch, “Bi-manual manipulation and attachment via sim-to-real reinforcement learning,” arXiv preprint arXiv:2203.08277, 2022.
  28. H. Zhao, C. Zhu, X. Xu, H. Huang, and K. Xu, “Learning practically feasible policies for online 3d bin packing,” Science China Information Sciences, vol. 65, no. 1, p. 112105, 2022.
  29. H. Zhao, Q. She, C. Zhu, Y. Yang, and K. Xu, “Online 3d bin packing with constrained deep reinforcement learning,” in Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35, no. 1, 2021, pp. 741–749.
  30. Q. She, R. Hu, J. Xu, M. Liu, K. Xu, and H. Huang, “Learning high-dof reaching-and-grasping via dynamic representation of gripper-object interaction,” arXiv preprint arXiv:2204.13998, 2022.
  31. K. Zhang, F. He, Z. Zhang, X. Lin, and M. Li, “Multi-vehicle routing problems with soft time windows: A multi-agent reinforcement learning approach,” Transportation Research Part C: Emerging Technologies, vol. 121, p. 102861, 2020.
  32. J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Proximal policy optimization algorithms,” arXiv preprint arXiv:1707.06347, 2017.
  33. B. Bixby, “The gurobi optimizer,” Transp. Re-search Part B, vol. 41, no. 2, pp. 159–178, 2007.
  34. T. G. Crainic and J. Roy, “Or tools for tactical freight transportation planning,” European Journal of Operational Research, vol. 33, no. 3, pp. 290–297, 1988.
  35. R. Hu, J. Xu, B. Chen, M. Gong, H. Zhang, and H. Huang, “Tap-net: transport-and-pack using reinforcement learning,” ACM Transactions on Graphics (TOG), vol. 39, no. 6, pp. 1–15, 2020.
  36. S. D. Han, N. M. Stiffler, A. Krontiris, K. E. Bekris, and J. Yu, “Complexity results and fast methods for optimal tabletop rearrangement with overhand grasps,” The International Journal of Robotics Research, vol. 37, no. 13-14, pp. 1775–1795, 2018.

Summary

We haven't generated a summary for this paper yet.