Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Configuration and EMT Simulation of the 240-bus MiniWECC System Integrating Offshore Wind Farms (OWFs) (2403.07988v1)

Published 12 Mar 2024 in eess.SY and cs.SY

Abstract: As offshore wind farms (OWFs) become increasingly prevalent in Northern California and Southern Oregon, they introduce faster dynamics into the Western Electricity Coordinating Council (WECC) system, reshaping its dynamic behavior. Accordingly, electromagnetic transient (EMT) simulation is essential to assess high frequency dynamics of the WECC system with integrated OWFs. Against this background, this paper presents the integration of detailed dynamic models of OWFs into a 240-bus miniWECC system in PSCAD software. The sequential initialization technique is employed to facilitate the smooth initiation of a large-scale system in an EMT simulation. The performance of the configured model is assessed under wind speed variations and grounded faults, demonstrating the effectiveness of the miniWECC system with OWFs. This system serves as a valuable basic use case for validating the fast dynamic performance of future WECC systems with high penetration of wind energy.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (19)
  1. J. Lesser, “The biden administration’s offshore wind fantasy,” 2022.
  2. D. Travis, S. Mark, D. Sohom, and et.al, “An offshore wind energy development strategy to maximize electrical system benefits in southern oregon and northern california,” Pacific Northwest National Laboratory, 2023.
  3. C.-J. Chou, Y.-K. Wu, G.-Y. Han, and C.-Y. Lee, “Comparative evaluation of the HVDC and HVAC links integrated in a large offshore wind farm—an actual case study in taiwan,” IEEE Transactions on Industry Applications, vol. 48, no. 5, pp. 1639–1648, 2012.
  4. K. Sun, Y. Liu, H. Xiao, and J. Pan, “Cross-seam hybrid MTDC system for integration and delivery of large-scale renewable energy,” Journal of Modern Power Systems and Clean Energy, vol. 9, no. 6, pp. 1352–1362, 2021.
  5. Y. Liao, H. Wu, X. Wang, M. Ndreko, R. Dimitrovski, and W. Winter, “Stability and sensitivity analysis of multi-vendor, multi-terminal HVDC systems,” IEEE Open Journal of Power Electronics, vol. 4, pp. 52–66, 2023.
  6. B. She, F. Li, H. Cui, H. Shuai, O. Oboreh-Snapps, R. Bo, N. Praisuwanna, J. Wang, and L. M. Tolbert, “Inverter PQ control with trajectory tracking capability for microgrids based on physics-informed reinforcement learning,” IEEE Transactions on Smart Grid, 2023.
  7. L. Fan, “Modeling type-4 wind in weak grids,” IEEE Transactions on Sustainable Energy, vol. 10, no. 2, pp. 853–864, 2018.
  8. H. Zong, J. Lyu, X. Wang, C. Zhang, R. Zhang, and X. Cai, “Grey box aggregation modeling of wind farm for wideband oscillations analysis,” Applied Energy, vol. 283, p. 116035, 2021.
  9. S. W. Ali, M. Sadiq, Y. Terriche, S. A. R. Naqvi, M. U. Mutarraf, M. A. Hassan, G. Yang, C.-L. Su, J. M. Guerrero et al., “Offshore wind farm-grid integration: A review on infrastructure, challenges, and grid solutions,” IEEE Access, vol. 9, pp. 102 811–102 827, 2021.
  10. N. Lin and V. Dinavahi, “Exact nonlinear micro modeling for fine-grained parallel EMT simulation of mtdc grid interaction with wind farm,” IEEE Transactions on Industrial Electronics, vol. 66, no. 8, pp. 6427–6436, 2018.
  11. J. Jung, C.-C. Liu, S. L. Tanimoto, and V. Vittal, “Adaptation in load shedding under vulnerable operating conditions,” IEEE Transactions on Power Systems, vol. 17, no. 4, pp. 1199–1205, 2002.
  12. N.-P. Yu, C.-C. Liu, and J. Price, “Evaluation of market rules using a multi-agent system method,” IEEE Transactions on Power Systems, vol. 25, no. 1, pp. 470–479, 2009.
  13. J. E. Price and J. Goodin, “Reduced network modeling of WECC as a market design prototype,” in 2011 IEEE Power and Energy Society General Meeting.   IEEE, 2011, pp. 1–6.
  14. H. Yuan, R. S. Biswas, J. Tan, and Y. Zhang, “Developing a reduced 240-bus WECC dynamic model for frequency response study of high renewable integration,” in 2020 IEEE/PES transmission and distribution conference and exposition (T&D).   IEEE, 2020, pp. 1–5.
  15. B. Wang, R. W. Kenyon, and J. Tan, “Developing a PSCAD model of the reduced 240-bus WECC test system,” National Renewable Energy Lab.(NREL), Golden, CO (United States), Tech. Rep., 2022.
  16. Y. Cui, X.-x. He, X. Yang, W.-h. Wang, L. Cao, and M.-j. Jin, “Electromechanical-electromagnetic hybrid simulation based on e-TRAN plus,” in IOP Conference Series: Materials Science and Engineering, vol. 563, no. 5.   IOP Publishing, 2019, p. 052103.
  17. N. Parsly, J. Wang, N. West, Q. Zhang, H. Cui, and F. Li, “Dime and AGVIS a distributed messaging environment and geographical visualizer for large-scale power system simulation,” in 2023 North American Power Symposium (NAPS).   IEEE, 2023, pp. 1–5.
  18. M. H. I. Ltd, “Type-4 wind turbine model,” https://www.pscad.com/knowledge-base/download/type_4_wind_turbine_model_v46.pdf.
  19. Y. Sheng, C. Li, H. Jia, B. Liu, B. Li, and T. A. Coombs, “Investigation on FRT capability of pmsg-based offshore wind farm using the SFCL,” IEEE Transactions on Applied Superconductivity, vol. 31, no. 8, pp. 1–4, 2021.

Summary

We haven't generated a summary for this paper yet.