Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
80 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Emerging Technologies for 6G Non-Terrestrial-Networks: From Academia to Industrial Applications (2403.07763v2)

Published 12 Mar 2024 in cs.NI and cs.ET

Abstract: Terrestrial networks form the fundamental infrastructure of modern communication systems, serving more than 4 billion users globally. However, terrestrial networks are facing a wide range of challenges, from coverage and reliability to interference and congestion. As the demands of the 6G era are expected to be much higher, it is crucial to address these challenges to ensure a robust and efficient communication infrastructure for the future. To address these problems, Non-terrestrial Network (NTN) has emerged to be a promising solution. NTNs are communication networks that leverage airborne (e.g., unmanned aerial vehicles) and spaceborne vehicles (e.g., satellites) to facilitate ultra-reliable communications and connectivity with high data rates and low latency over expansive regions. This article aims to provide a comprehensive survey on the utilization of network slicing, Artificial Intelligence/Machine Learning (AI/ML), and Open Radio Access Network (ORAN) to address diverse challenges of NTNs from the perspectives of both academia and industry. Particularly, we first provide an in-depth tutorial on NTN and the key enabling technologies including network slicing, AI/ML, and ORAN. Then, we provide a comprehensive survey on how network slicing and AI/ML have been leveraged to overcome the challenges that NTNs are facing. Moreover, we present how ORAN can be utilized for NTNs. Finally, we highlight important challenges, open issues, and future research directions of NTN in the 6G era.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (105)
  1. A. Adinoyi, M. Aljamae, and A. Aljlaoud, “The future of broadband connectivity: Terrestrial networks vs satellite constellations,” International Journal of Communications, Network and System Sciences, vol. 15, no. 5, pp. 53–66, 2022.
  2. “An overview of 5G and non-terrestrial networks,” IPaccess International https://www.ipinternational.net/overview-of-5g-and-non-terrestrial-networks/, Jan 2023.
  3. L. Feltrin, N. Jaldén, E. Trojer, and G. Wikström, “Potential for deep rural broadband coverage with terrestrial and non-terrestrial radio networks,” Frontiers in Communications and Networks, vol. 2, p. 691625, 2021.
  4. F. Rinaldi, H.-L. Maattanen, J. Torsner, S. Pizzi, S. Andreev, A. Iera, Y. Koucheryavy, and G. Araniti, “Non-terrestrial networks in 5g & beyond: A survey,” IEEE Access, vol. 8, pp. 165 178–165 200, 2020.
  5. D.-H. Tran, V.-D. Nguyen, S. Chatzinotas, T. X. Vu, and B. Ottersten, “UAV Relay-Assisted Emergency Communications in IoT Networks: Resource Allocation and Trajectory Optimization,” IEEE Transactions on Wireless Communications, vol. 21, no. 3, pp. 1621–1637, 2022.
  6. M. M. Azari, S. Solanki, S. Chatzinotas, O. Kodheli, H. Sallouha, A. Colpaert, J. F. M. Montoya, S. Pollin, A. Haqiqatnejad, A. Mostaani et al., “Evolution of non-terrestrial networks from 5g to 6g: A survey,” IEEE Communications Surveys & Tutorials, 2022.
  7. M. Vaezi, A. Azari, S. R. Khosravirad, M. Shirvanimoghaddam, M. M. Azari, D. Chasaki, and P. Popovski, “Cellular, wide-area, and non-terrestrial iot: A survey on 5g advances and the road toward 6g,” IEEE Communications Surveys & Tutorials, vol. 24, no. 2, pp. 1117–1174, 2022.
  8. G. Araniti, A. Iera, S. Pizzi, and F. Rinaldi, “Toward 6g non-terrestrial networks,” IEEE Network, vol. 36, no. 1, pp. 113–120, 2021.
  9. A. Iqbal, M.-L. Tham, Y. J. Wong, G. Wainer, Y. X. Zhu, T. Dagiuklas et al., “Empowering non-terrestrial networks with artificial intelligence: A survey,” IEEE Access, 2023.
  10. P. Wang, J. Zhang, X. Zhang, Z. Yan, B. G. Evans, and W. Wang, “Convergence of satellite and terrestrial networks: A comprehensive survey,” IEEE Access, vol. 8, pp. 5550–5588, 2019.
  11. S. Zhang, D. Zhu, and Y. Wang, “A survey on space-aerial-terrestrial integrated 5g networks,” Computer Networks, vol. 174, p. 107212, 2020.
  12. S. Mahboob and L. Liu, “A tutorial on ai-enabled non-terrestrial networks in 6G,” arXiv preprint arXiv:2303.01633, 2023.
  13. T. N. Nguyen, T. Van Chien, D.-H. Tran, V.-D. Phan, M. Voznak, S. Chatzinotas, Z. Ding, and H. V. Poor, “Security-Reliability Tradeoffs for Satellite-Terrestrial Relay Networks With a Friendly Jammer and Imperfect CSI,” IEEE Transactions on Aerospace and Electronic Systems, vol. 59, no. 5, pp. 7004–7019, 2023.
  14. M. M. Azari, S. Solanki, S. Chatzinotas, O. Kodheli, H. Sallouha, A. Colpaert, J. F. M. Montoya, S. Pollin, A. Haqiqatnejad, A. Mostaani et al., “Evolution of non-terrestrial networks from 5G to 6G: A survey,” IEEE communications surveys & tutorials, 2022.
  15. D.-H. Tran, T. X. Vu, S. Chatzinotas, S. ShahbazPanahi, and B. Ottersten, “Coarse trajectory design for energy minimization in uav-enabled,” IEEE Transactions on Vehicular Technology, vol. 69, no. 9, pp. 9483–9496, 2020.
  16. G. Geraci, D. Lopez-Perez, M. Benzaghta, and S. Chatzinotas, “Integrating terrestrial and non-terrestrial networks: 3D opportunities and challenges,” IEEE Communications Magazine, 2022.
  17. “How starlink works.” [Online]. Available: https://www.starlink.com/technology
  18. “Project kuiper,” Feb 2023. [Online]. Available: https://www.aboutamazon.com/what-we-do/devices-services/project-kuiper
  19. F. Lardinois, “Google announces project Loon: Balloon-powered internet for remote areas,” Jun 2013. [Online]. Available: https://techcrunch.com/2013/06/14/google-x-announces-project-loon-balloon-powered-internet-for-rural-remote-and-underserved-areas/
  20. Sep 2020. [Online]. Available: https://www.nzherald.co.nz/nz/google-launches-project-loon/GFHWZAK4J2KNWU6IEPVC35TBIY/?c_id=137&objectid=10890750
  21. [Online]. Available: https://money.cnn.com/2015/07/30/technology/facebook-drone-aquila/index.html
  22. D.-H. Tran, S. Chatzinotas, and B. Ottersten, “Satellite- and Cache-Assisted UAV: A Joint Cache Placement, Resource Allocation, and Trajectory Optimization for 6G Aerial Networks,” IEEE Open Journal of Vehicular Technology, vol. 3, pp. 40–54, 2022.
  23. E. S. Agency, “Types of orbits.” [Online]. Available: https://www.esa.int/Enabling_Support/Space_Transportation/Types_of_orbits
  24. “UCS satellite database.” [Online]. Available: https://www.ucsusa.org/resources/satellite-database
  25. “GPS: The global positioning system.” [Online]. Available: https://www.gps.gov/systems/gps/space/
  26. T. 38.821, “Solutions for NR to support non-terrestrial networks (NTN),” 3GPP, Tech. Rep. V16.0.0, January 2020.
  27. X. Lin, B. Hofström, Y.-P. E. Wang, G. Masini, H.-L. Maattanen, H. Rydén, J. Sedin, M. Stattin, O. Liberg, S. Euler et al., “5G new radio evolution meets satellite communications: Opportunities, challenges, and solutions,” 5G and Beyond: Fundamentals and Standards, pp. 517–531, 2021.
  28. Y. Drif, E. Lavinal, E. Chaput, P. Berthou, B. T. Jou, O. Grémillet, and F. Arnal, “Slice aware non terrestrial networks,” in 2021 IEEE 46th Conference on Local Computer Networks (LCN).   IEEE, 2021, pp. 24–31.
  29. N. Van Huynh, D. T. Hoang, D. N. Nguyen, and E. Dutkiewicz, “Optimal and fast real-time resource slicing with deep dueling neural networks,” IEEE Journal on Selected Areas in Communications, vol. 37, no. 6, pp. 1455–1470, 2019.
  30. X. Foukas, G. Patounas, A. Elmokashfi, and M. K. Marina, “Network slicing in 5G: Survey and challenges,” IEEE Communications Magazine, vol. 55, no. 5, pp. 94–100, 2017.
  31. I. Afolabi, T. Taleb, K. Samdanis, A. Ksentini, and H. Flinck, “Network slicing and softwarization: A survey on principles, enabling technologies, and solutions,” IEEE Communications Surveys & Tutorials, vol. 20, no. 3, pp. 2429–2453, 2018.
  32. W. Xia, Y. Wen, C. H. Foh, D. Niyato, and H. Xie, “A survey on software-defined networking,” IEEE Communications Surveys & Tutorials, vol. 17, no. 1, pp. 27–51, 2014.
  33. B. Han, V. Gopalakrishnan, L. Ji, and S. Lee, “Network function virtualization: Challenges and opportunities for innovations,” IEEE Communications Magazine, vol. 53, no. 2, pp. 90–97, 2015.
  34. R. Mijumbi, J. Serrat, J.-L. Gorricho, N. Bouten, F. De Turck, and R. Boutaba, “Network function virtualization: State-of-the-art and research challenges,” IEEE Communications Surveys & Tutorials, vol. 18, no. 1, pp. 236–262, 2015.
  35. S. Wijethilaka and M. Liyanage, “Survey on network slicing for internet of things realization in 5G networks,” IEEE Communications Surveys & Tutorials, vol. 23, no. 2, pp. 957–994, 2021.
  36. Y. Drif, E. Chaput, E. Lavinal, P. Berthou, B. Tiomela Jou, O. Gremillet, and F. Arnal, “An extensible network slicing framework for satellite integration into 5G,” International Journal of Satellite Communications and Networking, vol. 39, no. 4, pp. 339–357, 2021.
  37. “What is open RAN (ORAN)?” Nov 2021. [Online]. Available: https://www.cisco.com/c/en/us/solutions/what-is-open-ran.html
  38. “Open RAN principles.” [Online]. Available: https://www.gov.uk/government/publications/uk-open-ran-principles/open-ran-principles
  39. “Why open RAN is the future of telecoms.” [Online]. Available: https://www.parallelwireless.com/blog/why-open-ran-is-the-future-of-telecoms/
  40. B. Deng, C. Jiang, H. Yao, S. Guo, and S. Zhao, “The next generation heterogeneous satellite communication networks: Integration of resource management and deep reinforcement learning,” IEEE Wireless Communications, vol. 27, no. 2, pp. 105–111, 2019.
  41. H. Wu, J. Chen, C. Zhou, J. Li, and X. Shen, “Learning-based joint resource slicing and scheduling in space-terrestrial integrated vehicular networks,” Journal of Communications and Information Networks, vol. 6, no. 3, pp. 208–223, 2021.
  42. S. Zhang and D. Zhu, “Towards artificial intelligence enabled 6g: State of the art, challenges, and opportunities,” Computer Networks, vol. 183, p. 107556, 2020.
  43. C. Suzhi, W. Junyong, H. Hao, Z. Yi, Y. Shuling, Y. Lei, W. Shaojun, and G. Yongsheng, “Space edge cloud enabling network slicing for 5G satellite network,” in 2019 15th International Wireless Communications & Mobile Computing Conference (IWCMC).   IEEE, 2019, pp. 787–792.
  44. T. Kim, J. Kwak, and J. P. Choi, “Satellite edge computing architecture and network slice scheduling for iot support,” IEEE Internet of Things journal, vol. 9, no. 16, pp. 14 938–14 951, 2021.
  45. B. Guo, H. Li, Z. Zhang, and Y. Yan, “Online network slicing for real time applications in large-scale satellite networks,” arXiv preprint arXiv:2301.09372, 2023.
  46. I. Bisio, F. Lavagetto, G. Verardo, and T. de Cola, “Network slicing optimization for integrated 5G-satellite networks,” in 2019 IEEE Global Communications Conference (GLOBECOM).   IEEE, 2019, pp. 1–6.
  47. Z. Deng, Q. Du, N. Li, and Y. Zhang, “Rl-based radio resource slicing strategy for software-defined satellite networks,” in 2019 IEEE 19th International Conference on Communication Technology (ICCT).   IEEE, 2019, pp. 897–901.
  48. P. Jinkun and S. Qibo, “Network slicing in LEO satellite network,” in 2021 2nd International Conference on Artificial Intelligence and Information Systems, 2021, pp. 1–5.
  49. T. Ahmed, A. Alleg, R. Ferrus, and R. Riggio, “On-demand network slicing using sdn/nfv-enabled satellite ground segment systems,” in 2018 4th IEEE Conference on Network Softwarization and Workshops (NetSoft).   ieee, 2018, pp. 242–246.
  50. T. Kim, J. Kwak, and J. P. Choi, “Satellite network slice planning: Architecture, performance analysis, and open issues,” IEEE Vehicular Technology Magazine, 2023.
  51. E. W. Dijkstra, “A note on two problems in connexion with graphs,” Numerische Mathematik, vol. 1, no. 1, pp. 269–271, 1959.
  52. A. Benavoli, L. Chisci, and A. Farina, “Fibonacci sequence, golden section, kalman filter and optimal control,” Signal Processing, vol. 89, no. 8, pp. 1483–1488, 2009.
  53. Y. Bai, C. Liang, and Q. Chen, “Network slice admission control and resource allocation in leo satellite networks: A robust optimization approach,” in 2022 27th Asia Pacific Conference on Communications (APCC).   IEEE, 2022, pp. 1–6.
  54. F. Mendoza, M. Minardi, S. Chatzinotas, L. Lei, and T. X. Vu, “An sdn based testbed for dynamic network slicing in satellite-terrestrial networks,” in 2021 IEEE International Mediterranean Conference on Communications and Networking (MeditCom).   IEEE, 2021, pp. 36–41.
  55. M. MINARDI, Y. DRIF, T. X. VU, and S. CHATZINOTAS, “Sast-vne: A flexible framework for network slicing in beyond-5G integrated satellite-terrestrial networks,” IEEE Journal on Selected Areas in Communications (JSAC).
  56. A. Fischer, J. F. Botero, M. T. Beck, H. De Meer, and X. Hesselbach, “Virtual network embedding: A survey,” IEEE Communications Surveys & Tutorials, vol. 15, no. 4, pp. 1888–1906, 2013.
  57. I. Maity, T. X. Vu, S. Chatzinotas, and M. Minardi, “D-vine: Dynamic virtual network embedding in non-terrestrial networks,” in 2022 IEEE Wireless Communications and Networking Conference (WCNC).   IEEE, 2022, pp. 166–171.
  58. X. Kong, L. Yang, Q. Huang, and C. Liang, “A dynamic integrated network slicing strategy for future networks,” in 2022 4th International Conference on Advances in Computer Technology, Information Science and Communications (CTISC).   IEEE, 2022, pp. 1–7.
  59. W. Jiang, Y. Zhan, and X. Xiao, “Multi-domain network slicing in satellite–terrestrial integrated networks: A multi-sided ascending-price auction approach,” Aerospace, vol. 10, no. 10, p. 830, 2023.
  60. A. Papa, H. M. Gürsu, L. Goratti, T. Rasheed, and W. Kellerer, “Cost of network slice collaboration: Edge network slicing for in-flight connectivity,” in ICC 2021-IEEE International Conference on Communications.   IEEE, 2021, pp. 1–6.
  61. S. Hendaoui, A. Mannai, and N. Zangar, “Cognitive cqi/5qi based scheme for software defined 5G hybrid satellite-terrestrial network: Slicing for ultra reliability and video congestion offloading,” in 2020 International Symposium on Networks, Computers and Communications (ISNCC).   IEEE, 2020, pp. 1–7.
  62. S. Hendaoui and C. N. Zangarz, “Leveraging sdn slicing isolation for improved adaptive satellite-5G downlink scheduler,” in 2021 International Symposium on Networks, Computers and Communications (ISNCC).   IEEE, 2021, pp. 1–5.
  63. N. Zangar and S. Hendaoui, “Leveraging multiuser diversity for adaptive hybrid satellite-lte downlink scheduler (h-mudos) in emerging 5G-satellite network,” International Journal of Satellite Communications and Networking, vol. 37, no. 2, pp. 113–125, 2019.
  64. T. K. Rodrigues and N. Kato, “Network slicing with centralized and distributed reinforcement learning for combined satellite/ground networks in a 6G environment,” IEEE Wireless Communications, vol. 29, no. 1, pp. 104–110, 2022.
  65. A. Kak and I. F. Akyildiz, “Towards automatic network slicing for the internet of space things,” IEEE Transactions on Network and Service Management, vol. 19, no. 1, pp. 392–412, 2021.
  66. Z. Yin, T. H. Luan, N. Cheng, Y. Hui, and W. Wang, “Cybertwin-enabled 6G space-air-ground integrated networks: Architecture, open issue, and challenges,” arXiv preprint arXiv:2204.12153, 2022.
  67. G. Zhou, L. Zhao, G. Zheng, S. Song, J. Zhang, and L. Hanzo, “Multi-objective optimization of space-air-ground integrated network slicing relying on a pair of central and distributed learning algorithms,” IEEE Internet of Things Journal, 2023.
  68. F. Lyu, P. Yang, H. Wu, C. Zhou, J. Ren, Y. Zhang, and X. Shen, “Service-oriented dynamic resource slicing and optimization for space-air-ground integrated vehicular networks,” IEEE Transactions on Intelligent Transportation Systems, vol. 23, no. 7, pp. 7469–7483, 2021.
  69. W. Wu, C. Zhou, M. Li, H. Wu, H. Zhou, N. Zhang, X. S. Shen, and W. Zhuang, “Ai-native network slicing for 6G networks,” IEEE Wireless Communications, vol. 29, no. 1, pp. 96–103, 2022.
  70. D. Yang, J. Liu, Y. Xia, Z. Wang, H. Ding, and S. Meng, “Research on the integrated space-air-ground communication network based on network slicing and its key technologies,” in 2020 IEEE Sustainable Power and Energy Conference (iSPEC).   IEEE, 2020, pp. 2652–2657.
  71. H. H. Esmat, B. Lorenzo, and J. Liu, “Leons: Multi-domain network slicing configuration and orchestration for satellite-terrestrial edge computing networks,” in ICC 2023-IEEE International Conference on Communications.   IEEE, 2023, pp. 6294–6300.
  72. B. Lorenzo, F. J. González-Castaño, L. Guo, F. Gil-Castiñeira, and Y. Fang, “Autonomous robustness control for fog reinforcement in dynamic wireless networks,” IEEE/ACM Transactions on Networking, vol. 29, no. 6, pp. 2522–2535, 2021.
  73. K. Liu and Q. Zhao, “Indexability of restless bandit problems and optimality of whittle index for dynamic multichannel access,” IEEE Transactions on Information Theory, vol. 56, no. 11, pp. 5547–5567, 2010.
  74. Y. Hu, N. Shi, L. Lu, and C. Wang, “Space-air-ground integrated heterogeneous network slicing with native intelligence,” in 2023 IEEE/CIC International Conference on Communications in China (ICCC Workshops).   IEEE, 2023, pp. 1–6.
  75. E. T. Michailidis, S. M. Potirakis, and A. G. Kanatas, “Ai-inspired non-terrestrial networks for iiot: Review on enabling technologies and applications,” IoT, vol. 1, no. 1, p. 3, 2020.
  76. X. Zhu and C. Jiang, “Integrated satellite-terrestrial networks toward 6g: Architectures, applications, and challenges,” IEEE Internet of Things Journal, vol. 9, no. 1, pp. 437–461, 2021.
  77. Y. Cao, S.-Y. Lien, and Y.-C. Liang, “Deep reinforcement learning for multi-user access control in non-terrestrial networks,” IEEE Transactions on Communications, vol. 69, no. 3, pp. 1605–1619, 2021.
  78. S.-Y. Lien and D.-J. Deng, “Autonomous non-terrestrial base station deployment for non-terrestrial networks: A reinforcement learning approach,” IEEE Transactions on Vehicular Technology, vol. 71, no. 10, pp. 10 894–10 909, 2022.
  79. C. Qiu, H. Yao, F. R. Yu, F. Xu, and C. Zhao, “Deep q-learning aided networking, caching, and computing resources allocation in software-defined satellite-terrestrial networks,” IEEE Transactions on Vehicular Technology, vol. 68, no. 6, pp. 5871–5883, 2019.
  80. T. Darwish, G. K. Kurt, H. Yanikomeroglu, G. Senarath, and P. Zhu, “A vision of self-evolving network management for future intelligent vertical hetnet,” IEEE Wireless Communications, vol. 28, no. 4, pp. 96–105, 2021.
  81. L. Lei, Y. Yuan, T. X. Vu, S. Chatzinotas, M. Minardi, and J. F. M. Montoya, “Dynamic-adaptive ai solutions for network slicing management in satellite-integrated b5g systems,” IEEE Network, vol. 35, no. 6, pp. 91–97, 2021.
  82. T. De Cola and I. Bisio, “Qos optimisation of embb services in converged 5g-satellite networks,” IEEE Transactions on Vehicular Technology, vol. 69, no. 10, pp. 12 098–12 110, 2020.
  83. K. Li, H. Zhou, Z. Tu, W. Wang, and H. Zhang, “Distributed network intrusion detection system in satellite-terrestrial integrated networks using federated learning,” IEEE Access, vol. 8, pp. 214 852–214 865, 2020.
  84. J. Xu and B. Ai, “Deep reinforcement learning for handover-aware mptcp congestion control in space-ground integrated network of railways,” IEEE Wireless Communications, vol. 28, no. 6, pp. 200–207, 2021.
  85. H. Kim, J. Ben-Othman, and L. Mokdad, “Intelligent terrestrial and non-terrestrial vehicular networks with green ai and red ai perspectives,” Sensors, vol. 23, no. 2, p. 806, 2023.
  86. D.-H. Tran, S. Chatzinotas, and B. Ottersten, “Throughput Maximization for Backscatter- and Cache-Assisted Wireless Powered UAV Technology,” IEEE Transactions on Vehicular Technology, vol. 71, no. 5, pp. 5187–5202, 2022.
  87. M. Mozaffari, X. Lin, and S. Hayes, “Toward 6g with connected sky: Uavs and beyond,” IEEE Communications Magazine, vol. 59, no. 12, pp. 74–80, 2021.
  88. M. Nemati, B. Al Homssi, S. Krishnan, J. Park, S. W. Loke, and J. Choi, “Non-terrestrial networks with uavs: A projection on flying ad-hoc networks,” Drones, vol. 6, no. 11, p. 334, 2022.
  89. J.-H. Lee, J. Park, M. Bennis, and Y.-C. Ko, “Integrating leo satellites and multi-uav reinforcement learning for hybrid fso/rf non-terrestrial networks,” IEEE Transactions on Vehicular Technology, 2022.
  90. S. Saafi, O. Vikhrova, G. Fodor, J. Hosek, and S. Andreev, “Ai-aided integrated terrestrial and non-terrestrial 6g solutions for sustainable maritime networking,” IEEE Network, vol. 36, no. 3, pp. 183–190, 2022.
  91. Z. Yin, T. H. Luan, N. Cheng, Y. Hui, and W. Wang, “Cybertwin-enabled 6g space-air-ground integrated networks: Architecture, open issue, and challenges,” arXiv preprint arXiv:2204.12153, 2022.
  92. M. Liu, G. Feng, L. Cheng, and S. Qin, “A deep reinforcement learning based adaptive transmission strategy in space-air-ground integrated networks,” in ICC 2022 - IEEE International Conference on Communications, 2022, pp. 4697–4702.
  93. N. Kato, Z. M. Fadlullah, F. Tang, B. Mao, S. Tani, A. Okamura, and J. Liu, “Optimizing space-air-ground integrated networks by artificial intelligence,” IEEE Wireless Communications, vol. 26, no. 4, pp. 140–147, 2019.
  94. F. Ortiz, E. Lagunas, and S. Chatzinotas, “Unsupervised learning for user scheduling in multibeam precoded geo satellite systems,” in 2022 Joint European Conference on Networks and Communications & 6G Summit (EuCNC/6G Summit), 2022, pp. 190–195.
  95. O. Alliance, “O-ran.wg1.use-cases-analysis-report-r003-v10.00,” Specification, March, 2023.
  96. ——, “O-ran.wg1.slicing-architecture-r003-v09.00,” Specification, March, 2023.
  97. 3GPP, “TS 38.470,” Specification RAN99, April, 2023.
  98. ——, “TS 38.410,” Specification, June, 2022.
  99. ——, “TS 38.420,” Specification, September, 2022.
  100. ——, “TS 36.423,” Specification, April, 2023.
  101. O. Alliance, “O-ran.wg1.use-cases-detailed-specification-r003-v10.00,” Specification, March, 2023.
  102. C. Castro, “Not grounded, in reality. open ran & ntn take off as 6g develops,” https://www.6gworld.com/exclusives/not-grounded-in-reality-open-ran-ntn-take-off-as-6g-develops/, 2022.
  103. O. Alliance, “O-ran minimum viable plan and acceleration towards commercialization,” White Paper, June, 2021.
  104. J. HAN and Y. GAO, “General Introduction of Non-Terrestrial Networks for New Radio,” ZTE Communications, vol. 20, no. S1, pp. 72–78, 2022.
  105. R. Campana, C. Amatetti, and A. Vanelli-Coralli, “O-RAN based non-terrestrial networks: Trends and challenges,” in 2023 Joint European Conference on Networks and Communications and 6G Summit (EuCNC/6G Summit).   IEEE, 2023, pp. 264–269.
User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (10)
  1. Cong T. Nguyen (13 papers)
  2. Yuris Mulya Saputra (10 papers)
  3. Nguyen Van Huynh (34 papers)
  4. Tan N. Nguyen (4 papers)
  5. Dinh Thai Hoang (125 papers)
  6. Van-Quan Pham (3 papers)
  7. Miroslav Voznak (7 papers)
  8. Symeon Chatzinotas (334 papers)
  9. Dinh-Hieu Tran (11 papers)
  10. Diep N Nguyen (2 papers)
Citations (4)
X Twitter Logo Streamline Icon: https://streamlinehq.com