Papers
Topics
Authors
Recent
Search
2000 character limit reached

An Optimal Sequence Reconstruction Algorithm for Reed-Solomon Codes

Published 12 Mar 2024 in cs.IT and math.IT | (2403.07754v1)

Abstract: The sequence reconstruction problem, introduced by Levenshtein in 2001, considers a scenario where the sender transmits a codeword from some codebook, and the receiver obtains $N$ noisy outputs of the codeword. We study the problem of efficient reconstruction using $N$ outputs that are each corrupted by at most $t$ substitutions. Specifically, for the ubiquitous Reed-Solomon codes, we adapt the Koetter-Vardy soft-decoding algorithm, presenting a reconstruction algorithm capable of correcting beyond Johnson radius. Furthermore, the algorithm uses $\mathcal{O}(nN)$ field operations, where $n$ is the codeword length.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (22)
  1. V. I. Levenshtein, “Efficient reconstruction of sequences,” IEEE Trans. Inf. Theory, vol. 47, no. 1, pp. 2–22, Jan 2001.
  2. V. I. Levenshtein, “Efficient reconstruction of sequences from their subsequences or supersequences,” J. Comb. Theory Ser. A, vol. 93, no. 2, pp. 310–332, Feb. 2001.
  3. E. Yaakobi and J. Bruck, “On the uncertainty of information retrieval in associative memories,” IEEE Trans. Inform. Theory, vol. 65, pp. 2155–2165. 2018.
  4. M. Abu-Sini and E. Yaakobi, “On Levenshtein’s reconstruction problem under insertions, deletions, and substitutions.” IEEE Trans on Inf. Theory, vol. 67, no. 11, pp. 7132–7158, 2021.
  5. V. L. P. Pham, K. Goyal and H. M. Kiah, “Sequence Reconstruction Problem for Deletion Channels: A Complete Asymptotic Solution,” Proc. IEEE Int. Symp. on Inf. Theory, Espoo, Finland, pp. 992-997, 2022.
  6. V. Junnila, T. Laihonen and T. Lehtilä, “Levenshtein’s Reconstruction Problem with Different Error Patterns,” Proc. IEEE Int. Symp. on Inf. Theory, Taipei, Taiwan, pp. 1300-1305, 2023.
  7. G. M. Church, Y. Gao, and S. Kosuri, “Next-generation digital information storage in DNA,” Science, vol. 337, no. 6102, pp. 1628–1628, Sep. 2012.
  8. S.H.T. Yazdi, H.M. Kiah, E. Garcia-Ruiz, J. Ma, H. Zhao, and O. Milenkovic, “DNA-based storage: Trends and methods,” IEEE Trans. Mol., Bio. and Multi-Scale Com., vol. 1, pp. 230–248, 2015.
  9. E. Konstantinova, “On reconstruction of signed permutations distorted by reversal errors,” Discrete Math., vol. 308, no. 5-6, pp. 974–984, Mar. 2008.
  10. E. Konstantinova, “Reconstruction of permutations distorted by reversal errors,” Discrete Applied Math., vol. 155, no. 18, pp. 2426–2434, 2007.
  11. E. Konstantinova, V. I. Levenshtein, and J. Siemons, “Reconstruction of permutations distorted by single transposition errors,” arXiv:0702.191v1, Feb. 2007.
  12. V. Levenshtein, E. Konstantinova, E. Konstantinov, and S. Molodtsov, “Reconstruction of a graph from 2-vicinities of its vertices,” Discrete Appl. Math., vol. 156, no. 9, pp. 1399–1406, May 2008.
  13. V. I. Levenshtein and J. Siemons, “Error graphs and the reconstruction of elements in groups,” J. Comb. Theory Ser. A, vol. 116, no. 4, pp. 795–815, May 2009.
  14. E. Yaakobi, M. Schwartz, M. Langberg, and J. Bruck, “Sequence reconstruction for grassmann graphs and permutations,” Proc. IEEE Int. Symp. on Inf. Theory, pp. 874–878, July 2013.
  15. F. Sala, R. Gabrys, C. Schoeny, and L. Dolecek, “Exact reconstruction from insertions in synchronization codes,” IEEE Trans on Inf. Theory, vol. 63, no. 4, pp. 2428–2445, 2017.
  16. R. Gabrys and E. Yaakobi, “Sequence reconstruction over the deletion channel,” Proc. Int. Symp. on Inf. Theory, pp. 1596–1600, Jul. 2016.
  17. V. Junnila and T. Laihonen, “Codes for information retrieval with small uncertainty,” IEEE Trans. on Inf. Theory, vol. 60, no. 2, pp. 976–985, Feb. 2014.
  18. T. Jiang and A. Vardy, “Asymptotic improvement of the Gilbert-Varshamov bound on the size of binary codes,” IEEE Trans on Inf. Theory, vol. 50, no. 8, pp. 1655–1664, Aug. 2004.
  19. I. S. Reed and G. Solomon. “Polynomial codes over certain finite fields.” Journal of the Society for Industrial and Applied Mathematics,vol. 8, no. 2, pp. 300–304, 1960.
  20. V. Guruswami and M. Sudan, “Improved decoding of Reed-Solomon and algebraic-geometry codes,” IEEE Trans on Inf. Theory, vol. 45, no. 6, pp. 1757-1767, Sept. 1999.
  21. R. Koetter and A. Vardy, “Algebraic soft-decision decoding of Reed-Solomon codes,” IEEE Trans on Inf. Theory, vol. 49, no. 11, pp. 2809-2825, Nov. 2003.
  22. M. Abu-Sini and E. Yaakobi, “On Levenshtein’s reconstruction problem under insertions, deletions, and substitutions,” IEEE Trans on Inf. Theory, vol. 67, no. 11, pp. 7132-7158, Nov. 2021.
Citations (1)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 2 tweets with 0 likes about this paper.