Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An Optimal Sequence Reconstruction Algorithm for Reed-Solomon Codes (2403.07754v1)

Published 12 Mar 2024 in cs.IT and math.IT

Abstract: The sequence reconstruction problem, introduced by Levenshtein in 2001, considers a scenario where the sender transmits a codeword from some codebook, and the receiver obtains $N$ noisy outputs of the codeword. We study the problem of efficient reconstruction using $N$ outputs that are each corrupted by at most $t$ substitutions. Specifically, for the ubiquitous Reed-Solomon codes, we adapt the Koetter-Vardy soft-decoding algorithm, presenting a reconstruction algorithm capable of correcting beyond Johnson radius. Furthermore, the algorithm uses $\mathcal{O}(nN)$ field operations, where $n$ is the codeword length.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (22)
  1. V. I. Levenshtein, “Efficient reconstruction of sequences,” IEEE Trans. Inf. Theory, vol. 47, no. 1, pp. 2–22, Jan 2001.
  2. V. I. Levenshtein, “Efficient reconstruction of sequences from their subsequences or supersequences,” J. Comb. Theory Ser. A, vol. 93, no. 2, pp. 310–332, Feb. 2001.
  3. E. Yaakobi and J. Bruck, “On the uncertainty of information retrieval in associative memories,” IEEE Trans. Inform. Theory, vol. 65, pp. 2155–2165. 2018.
  4. M. Abu-Sini and E. Yaakobi, “On Levenshtein’s reconstruction problem under insertions, deletions, and substitutions.” IEEE Trans on Inf. Theory, vol. 67, no. 11, pp. 7132–7158, 2021.
  5. V. L. P. Pham, K. Goyal and H. M. Kiah, “Sequence Reconstruction Problem for Deletion Channels: A Complete Asymptotic Solution,” Proc. IEEE Int. Symp. on Inf. Theory, Espoo, Finland, pp. 992-997, 2022.
  6. V. Junnila, T. Laihonen and T. Lehtilä, “Levenshtein’s Reconstruction Problem with Different Error Patterns,” Proc. IEEE Int. Symp. on Inf. Theory, Taipei, Taiwan, pp. 1300-1305, 2023.
  7. G. M. Church, Y. Gao, and S. Kosuri, “Next-generation digital information storage in DNA,” Science, vol. 337, no. 6102, pp. 1628–1628, Sep. 2012.
  8. S.H.T. Yazdi, H.M. Kiah, E. Garcia-Ruiz, J. Ma, H. Zhao, and O. Milenkovic, “DNA-based storage: Trends and methods,” IEEE Trans. Mol., Bio. and Multi-Scale Com., vol. 1, pp. 230–248, 2015.
  9. E. Konstantinova, “On reconstruction of signed permutations distorted by reversal errors,” Discrete Math., vol. 308, no. 5-6, pp. 974–984, Mar. 2008.
  10. E. Konstantinova, “Reconstruction of permutations distorted by reversal errors,” Discrete Applied Math., vol. 155, no. 18, pp. 2426–2434, 2007.
  11. E. Konstantinova, V. I. Levenshtein, and J. Siemons, “Reconstruction of permutations distorted by single transposition errors,” arXiv:0702.191v1, Feb. 2007.
  12. V. Levenshtein, E. Konstantinova, E. Konstantinov, and S. Molodtsov, “Reconstruction of a graph from 2-vicinities of its vertices,” Discrete Appl. Math., vol. 156, no. 9, pp. 1399–1406, May 2008.
  13. V. I. Levenshtein and J. Siemons, “Error graphs and the reconstruction of elements in groups,” J. Comb. Theory Ser. A, vol. 116, no. 4, pp. 795–815, May 2009.
  14. E. Yaakobi, M. Schwartz, M. Langberg, and J. Bruck, “Sequence reconstruction for grassmann graphs and permutations,” Proc. IEEE Int. Symp. on Inf. Theory, pp. 874–878, July 2013.
  15. F. Sala, R. Gabrys, C. Schoeny, and L. Dolecek, “Exact reconstruction from insertions in synchronization codes,” IEEE Trans on Inf. Theory, vol. 63, no. 4, pp. 2428–2445, 2017.
  16. R. Gabrys and E. Yaakobi, “Sequence reconstruction over the deletion channel,” Proc. Int. Symp. on Inf. Theory, pp. 1596–1600, Jul. 2016.
  17. V. Junnila and T. Laihonen, “Codes for information retrieval with small uncertainty,” IEEE Trans. on Inf. Theory, vol. 60, no. 2, pp. 976–985, Feb. 2014.
  18. T. Jiang and A. Vardy, “Asymptotic improvement of the Gilbert-Varshamov bound on the size of binary codes,” IEEE Trans on Inf. Theory, vol. 50, no. 8, pp. 1655–1664, Aug. 2004.
  19. I. S. Reed and G. Solomon. “Polynomial codes over certain finite fields.” Journal of the Society for Industrial and Applied Mathematics,vol. 8, no. 2, pp. 300–304, 1960.
  20. V. Guruswami and M. Sudan, “Improved decoding of Reed-Solomon and algebraic-geometry codes,” IEEE Trans on Inf. Theory, vol. 45, no. 6, pp. 1757-1767, Sept. 1999.
  21. R. Koetter and A. Vardy, “Algebraic soft-decision decoding of Reed-Solomon codes,” IEEE Trans on Inf. Theory, vol. 49, no. 11, pp. 2809-2825, Nov. 2003.
  22. M. Abu-Sini and E. Yaakobi, “On Levenshtein’s reconstruction problem under insertions, deletions, and substitutions,” IEEE Trans on Inf. Theory, vol. 67, no. 11, pp. 7132-7158, Nov. 2021.
Citations (1)

Summary

We haven't generated a summary for this paper yet.