Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Harnessing two-photon dissipation for enhanced quantum measurement and control (2403.07744v2)

Published 12 Mar 2024 in quant-ph

Abstract: Dissipation engineering offers a powerful tool for quantum technologies. Recently, new superconducting devices have achieved an engineered two-photon dissipation rate exceeding all other relevant timescales. In particular, they have proven most useful in preventing transitions between the logical states $|\pm\alpha\rangle$ of a cat qubit. Here, we present three key applications of strong two-photon dissipation for quantum measurement and control, beyond cat qubit stabilization. Firstly, we demonstrate its efficacy in overcoming limitations encountered in Wigner tomography at high photon numbers. Secondly, we showcase its potential for realizing universal gates on cat qubits, exploiting the coherent mapping between cat qubit states and superpositions of 0 and 1 photons. Finally, we harness the transient dynamics of a cat state under two-photon dissipation to prepare squeezed cat states with a squeezing factor exceeding 3.96$\pm$0.07 dB.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (12)
  1. J. F. Poyatos, J. I. Cirac, and P. Zoller, Quantum reservoir engineering with laser cooled trapped ions, Phys. Rev. Lett. 77, 4728 (1996).
  2. P. M. Harrington, E. J. Mueller, and K. W. Murch, Engineered dissipation for quantum information science, Nature Reviews Physics 4, 660 (2022).
  3. J. Guillaud, J. Cohen, and M. Mirrahimi, Quantum computation with cat qubits, SciPost Physics Lecture Notes 72, 72 (2023).
  4. H. Jeong and T. C. Ralph, Schrödinger Cat States for Quantum Information Processing, in Quantum Information with Continuous Variables of Atoms and Light (Imperial College Press) , 159 (2007).
  5. R. Gautier, A. Sarlette, and M. Mirrahimi, Combined dissipative and hamiltonian confinement of cat qubits, PRX Quantum 3, 20339 (2022).
  6. Supplementary materials .
  7. L. G. Lutterbach and L. Davidovich, Method for direct measurement of the wigner function in cavity qed and ion traps, Physical Review Letters 78, 2547 (1997).
  8. M. A. Nielsen and I. L. Chuang, Quantum computation and quantum information, Cambridge: Cambridge University Press.  (2000).
  9. A. I. Lvovsky, Squeezed light, arXiv:1401.4118  (2014).
  10. J. Guillaud and M. Mirrahimi, Repetition cat qubits for fault-tolerant quantum computation, Physical Review X 9, 41053 (2019).
  11. D. S. Schlegel, F. Minganti, and V. Savona, Quantum error correction using squeezed schrödinger cat states, Phys. Rev. A 106, 022431 (2022).
  12. T. Hillmann and F. Quijandría, Quantum error correction with dissipatively stabilized squeezed-cat qubits, Phys. Rev. A 107, 032423 (2023).
Citations (2)

Summary

We haven't generated a summary for this paper yet.