Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
175 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A time-adaptive finite element phase-field model suitable for rate-independent fracture mechanics (2403.07461v1)

Published 12 Mar 2024 in cs.CE

Abstract: The modeling of cracks is an important topic - both in engineering as well as in mathematics. Since crack propagation is characterized by a free boundary value problem (the geometry of the crack is not known beforehand, but part of the solution), approximations of the underlying sharp-interface problem based on phase-field models are often considered. Focusing on a rate-independent setting, these models are defined by a unidirectional gradient-flow of an energy functional. Since this energy functional is non-convex, the evolution of the variables such as the displacement field and the phase-field variable might be discontinuous in time leading to so-called brutal crack growth. For this reason, solution concepts have to be carefully chosen in order to predict discontinuities that are physically reasonable. One such concept is that of Balanced Viscosity solutions (BV solutions). This concept predicts physically sound energy trajectories that do not jump across energy barriers. The paper deals with a time-adaptive finite element phase-field model for rate-independent fracture which converges to BV solutions. The model is motivated by constraining the pseudo-velocity of the crack tip. The resulting constrained minimization problem is solved by the augmented Lagrangian method. Numerical examples highlight the predictive capabilities of the model and furthermore show the efficiency and the robustness of the final algorithm.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (20)
  1. doi:10.1098/rsta.1921.0006. URL https://royalsocietypublishing.org/doi/10.1098/rsta.1921.0006
  2. doi:10.1016/S0065-2156(08)70121-2. URL https://linkinghub.elsevier.com/retrieve/pii/S0065215608701212
  3. doi:10.1016/S0022-5096(98)00034-9. URL https://linkinghub.elsevier.com/retrieve/pii/S0022509698000349
  4. doi:10.1007/s002050100187. URL http://link.springer.com/10.1007/s002050100187
  5. doi:10.1007/978-1-4939-2706-7. URL https://doi.org/10.1007/978-1-4939-2706-7
  6. doi:10.1142/S0218202508003121. URL https://www.worldscientific.com/doi/abs/10.1142/S0218202508003121
  7. doi:10.1007/s10659-007-9107-3. URL https://doi.org/10.1007/s10659-007-9107-3
  8. doi:10.1016/j.jmps.2020.104027. URL https://linkinghub.elsevier.com/retrieve/pii/S0022509620302623
  9. doi:10.1098/rsta.2021.0361. URL https://royalsocietypublishing.org/doi/10.1098/rsta.2021.0361
  10. doi:10.1016/S0022-5096(99)00028-9. URL https://linkinghub.elsevier.com/retrieve/pii/S0022509699000289
  11. doi:10.1002/cpa.3160430805. URL https://onlinelibrary.wiley.com/doi/10.1002/cpa.3160430805
  12. doi:10.1007/s00526-004-0269-6.
  13. doi:https://doi.org/10.1002/nme.2861. URL https://onlinelibrary.wiley.com/doi/abs/10.1002/nme.2861
  14. doi:10.3934/dcdss.2013.6.63. URL http://aimsciences.org//article/doi/10.3934/dcdss.2013.6.63
  15. doi:10.48550/ARXIV.2211.12940. URL https://arxiv.org/abs/2211.12940
  16. doi:10.1051/m2an/2022034. URL https://www.esaim-m2an.org/10.1051/m2an/2022034
  17. doi:10.1016/j.cma.2021.114137. URL https://linkinghub.elsevier.com/retrieve/pii/S0045782521004680
  18. doi:10.1016/j.jmps.2015.04.011. URL https://linkinghub.elsevier.com/retrieve/pii/S0022509615000782
  19. doi:10.1142/S0218202517500312. URL https://doi.org/10.1142/S0218202517500312
  20. doi:10.1007/978-3-642-56004-0. URL http://link.springer.com/10.1007/978-3-642-56004-0

Summary

We haven't generated a summary for this paper yet.