Localization-Delocalization Transitions in Non-Hermitian Aharonov-Bohm Cages (2403.07459v2)
Abstract: A unique feature of non-Hermitian systems is the extreme sensitivity of the eigenspectrum to boundary conditions with the emergence of the non-Hermitian skin effect (NHSE). A NHSE originates from the point-gap topology of complex eigenspectrum, where an extensive number of eigenstates are anomalously localized at the boundary driven by nonreciprocal dissipation. Two different approaches to create localization are disorder and flat-band spectrum, and their interplay can lead to the anomalous inverse Anderson localization, where the Bernoulli anti-symmetric disorder induce mobility in a full-flat band system in the presence of Aharonov-Bohm (AB) Cage. In this work, we study the localization-delocalization transitions due to the interplay of the point-gap topology, flat band and correlated disorder in the one-dimensional rhombic lattice, where both its Hermitian and non-Hermitian structures show AB cage in the presence of magnetic flux. Although it remains the coexistence of localization and delocalization for the Hermitian rhombic lattice in the presence of the random anti-symmetric disorder, it surprisingly becomes complete delocalization, accompanied by the emergence of NHSE. To further study the effects from the Bernoulli anti-symmetric disorder, we found the similar NHSE due to the interplay of the point-gap topology, correlated disorder and flat bands. Our anomalous localization-delocalization property can be experimentally tested in the classical physical platform, such as electrical circuit.
- V. V. Konotop, J. Yang, and D. A. Zezyulin, “Nonlinear waves in 𝒫𝒯𝒫𝒯\mathcal{PT}caligraphic_P caligraphic_T-symmetric systems,” Rev. Mod. Phys. 88, 035002 (2016).
- Tony E. Lee, “Anomalous edge state in a non-Hermitian lattice,” Phys. Rev. Lett. 116, 133903 (2016).
- D. Leykam, K. Y. Bliokh, C. Huang, Y. D. Chong, and F. Nori, “Edge modes, degeneracies, and topological numbers in non-Hermitian systems,” Phys. Rev. Lett. 118, 040401 (2017a).
- Y. Xu, S. T. Wang, and L. M. Duan, “Weyl exceptional rings in a three-dimensional dissipative cold atomic gas,” Phys. Rev. Lett. 118, 045701 (2017).
- Z. Gong, Y. Ashida, K. Kawabata, K. Takasan, S. Higashikawa, and M. Ueda, “Topological phases of non-Hermitian systems,” Phys. Rev. X 8, 031079 (2018a).
- S. Yao and Z. Wang, “Edge states and topological invariants of non-Hermitian systems,” Phys. Rev. Lett. 121, 086803 (2018).
- K. Zhang, Z. Yang, and C. Fang, “Correspondence between winding numbers and skin modes in non-Hermitian systems,” Phys. Rev. Lett. 125, 126402 (2020a).
- K. Yokomizo and S. Murakami, “Non-Bloch band theory of non-Hermitian systems,” Phys. Rev. Lett. 123, 066404 (2019).
- S. Yao, F. Song, and Z. Wang, “Non-Hermitian Chern bands,” Phys. Rev. Lett. 121, 136802 (2018).
- F. K. Kunst, E. Edvardsson, J. C. Budich, and E. J. Bergholtz, “Biorthogonal bulk-boundary correspondence in non-Hermitian systems,” Phys. Rev. Lett. 121, 026808 (2018).
- F. Song, S. Yao, and Z. Wang, “Non-Hermitian skin effect and chiral damping in open quantum systems,” Phys. Rev. Lett. 123, 170401 (2019).
- J. Y. Lee, J. Ahn, H. Zhou, and A. Vishwanath, “Topological correspondence between Hermitian and non-Hermitian systems: Anomalous dynamics,” Phys. Rev. Lett. 123, 206404 (2019).
- K. Kawabata, T. Bessho, and M. Sato, “Classification of exceptional points and non-Hermitian topological semimetals,” Phys. Rev. Lett. 123, 066405 (2019a).
- C. H. Lee and R. Thomale, “Anatomy of skin modes and topology in non-Hermitian systems,” Phys. Rev. B 99, 201103 (2019).
- Z. Y. Ge, Y. R. Zhang, T. Liu, S. W. Li, H. Fan, and F. Nori, “Topological band theory for non-Hermitian systems from the Dirac equation,” Phys. Rev. B 100, 054105 (2019).
- H. Zhou and J. Y. Lee, “Periodic table for topological bands with non-Hermitian symmetries,” Phys. Rev. B 99, 235112 (2019).
- H. Zhao, X. Qiao, T. Wu, B. Midya, S. Longhi, and L. Feng, “Non-Hermitian topological light steering,” Science 365, 1163 (2019).
- K. Kawabata, K. Shiozaki, M. Ueda, and M. Sato, “Symmetry and topology in non-Hermitian physics,” Phys. Rev. X 9, 041015 (2019b).
- D. S. Borgnia, A. J. Kruchkov, and R.-J. Slager, “Non-Hermitian boundary modes and topology,” Phys. Rev. Lett. 124, 056802 (2020).
- L. Li, C. H. Lee, S. Mu, and J. Gong, “Critical non-Hermitian skin effect,” Nat. Commun. 11 (2020), 10.1038/s41467-020-18917-4.
- K. Yokomizo and S. Murakami, “Scaling rule for the critical non-Hermitian skin effect,” Phys. Rev. B 104, 165117 (2021).
- Y. Ashida, Z. Gong, and M. Ueda, “Non-Hermitian physics,” Adv. Phys. 69, 249 (2020).
- K. Kawabata, M. Sato, and K. Shiozaki, “Higher-order non-Hermitian skin effect,” Phys. Rev. B 102, 205118 (2020).
- N. Okuma, K. Kawabata, K. Shiozaki, and M. Sato, “Topological origin of non-Hermitian skin effects,” Phys. Rev. Lett. 124, 086801 (2020).
- Y. Yi and Z. Yang, “Non-Hermitian skin modes induced by on-site dissipations and chiral tunneling effect,” Phys. Rev. Lett. 125, 186802 (2020).
- T. Liu, J. J. He, Z. Yang, and F. Nori, “Higher-order Weyl-exceptional-ring semimetals,” Phys. Rev. Lett. 127, 196801 (2021).
- L. Li, C. H. Lee, and J. Gong, “Impurity induced scale-free localization,” Commun. Phys. 4 (2021), 10.1038/s42005-021-00547-x.
- E. J. Bergholtz, J. C. Budich, and F. K. Kunst, “Exceptional topology of non-Hermitian systems,” Rev. Mod. Phys. 93, 015005 (2021).
- Y. Li, C. Liang, C. Wang, C. Lu, and Y.-C. Liu, “Gain-loss-induced hybrid skin-topological effect,” Phys. Rev. Lett. 128, 223903 (2022a).
- K. Zhang, Z. Yang, and C. Fang, “Universal non-Hermitian skin effect in two and higher dimensions,” Nat. Commun. 13 (2022), 10.1038/s41467-022-30161-6.
- K. Li and Y. Xu, “Non-Hermitian absorption spectroscopy,” Phys. Rev. Lett. 129, 093001 (2022).
- Z. Ren, D. Liu, E. Zhao, C. He, K. K. Pak, J. Li, and G.-B. Jo, “Chiral control of quantum states in non-Hermitian spin–orbit-coupled fermions,” Nat. Phys. 18, 385 (2022).
- K. Kawabata, T. Numasawa, and S. Ryu, “Entanglement phase transition induced by the non-Hermitian skin effect,” Phys. Rev. X 13, 021007 (2023).
- K. Zhang, C. Fang, and Z. Yang, “Dynamical degeneracy splitting and directional invisibility in non-Hermitian systems,” Phys. Rev. Lett. 131, 036402 (2023a).
- C.-A. Li, B. Trauzettel, T. Neupert, and S.-B. Zhang, “Enhancement of second-order non-Hermitian skin effect by magnetic fields,” Phys. Rev. Lett. 131, 116601 (2023).
- N. Okuma and M. Sato, ‘‘Non-Hermitian topological phenomena: A review,” Annu. Rev. Condens. Matter Phys. 14, 83 (2023).
- Z.-F. Cai, T. Liu, and Z. Yang, “Non-Hermitian skin effect in periodically-driven dissipative ultracold atoms,” arXiv:2311.06550 (2023), https://doi.org/10.48550/arXiv.2311.06550.
- Q. Zhou, J. Wu, Z. Pu, J. Lu, X. Huang, W. Deng, M. Ke, and Z. Liu, “Observation of geometry-dependent skin effect in non-Hermitian phononic crystals with exceptional points,” Nat. Commun. 14 (2023), 10.1038/s41467-023-40236-7.
- S. Weidemann, M. Kremer, T. Helbig, T. Hofmann, A. Stegmaier, M. Greiter, R. Thomale, and A. Szameit, “Topological funneling of light,” Science 368, 311 (2020).
- K. Wang, A. Dutt, K. Y. Yang, C. C. Wojcik, J. Vučković, and S. Fan, “Generating arbitrary topological windings of a non-Hermitian band,” Science 371, 1240 (2021).
- T. Helbig, T. Hofmann, S. Imhof, M. Abdelghany, T. Kiessling, L. W. Molenkamp, C. H. Lee, A. Szameit, M. Greiter, and R. Thomale, “Generalized bulk–boundary correspondence in non-Hermitian topolectrical circuits,” Nat. Phys. 16, 747 (2020).
- D. Zou, T. Chen, W. He, J. Bao, C. H. Lee, H. Sun, and X. Zhang, “Observation of hybrid higher-order skin-topological effect in non-Hermitian topolectrical circuits,” Nat. Commun. 12 (2021), 10.1038/s41467-021-26414-5.
- Q. Liang, D. Xie, Z. Dong, H. Li, H. Li, B. Gadway, W. Yi, and B. Yan, “Dynamic signatures of non-Hermitian skin effect and topology in ultracold atoms,” Phys. Rev. Lett. 129, 070401 (2022).
- Ramy El-Ganainy, Konstantinos G Makris, Mercedeh Khajavikhan, Ziad H Musslimani, Stefan Rotter, and Demetrios N Christodoulides, “Non-hermitian physics and pt symmetry,” Nat. Phys 14, 11–19 (2018b).
- Ş. K. Özdemir, S. Rotter, F. Nori, and L. Yang, “Parity–time symmetry and exceptional points in photonics,” Nat. Mater. 18, 783 (2019).
- Y. Wu, L. Kang, and D. H. Werner, “Generalized 𝒫𝒯𝒫𝒯\mathcal{P}\mathcal{T}caligraphic_P caligraphic_T symmetry in non-Hermitian wireless power transfer systems,” Phys. Rev. Lett. 129, 200201 (2022).
- X. Hao, K. Yin, J. Zou, R. Wang, Y. Huang, X. Ma, and T. Dong, “Frequency-stable robust wireless power transfer based on high-order pseudo-Hermitian physics,” Phys. Rev. Lett. 130, 077202 (2023).
- K. Kawabata and S. Ryu, “Nonunitary scaling theory of non-Hermitian localization,” Phys. Rev. Lett. 126, 166801 (2021).
- P. W. Anderson, “Absence of diffusion in certain random lattices,” Phys. Rev. 109, 1492 (1958).
- P. A. Lee and T. V. Ramakrishnan, “Disordered electronic systems,” Rev. Mod. Phys. 57, 287 (1985).
- N. Hatano and D. R. Nelson, “Localization transitions in non-Hermitian quantum mechanics,” Phys. Rev. Lett. 77, 570 (1996).
- N. Hatano and D. R. Nelson, “Non-Hermitian delocalization and eigenfunctions,” Phys. Rev. B 58, 8384 (1998).
- J. Feinberg and A. Zee, “Non-Hermitian localization and delocalization,” Phys. Rev. E 59, 6433 (1999).
- Z. Gong, Y. Ashida, K. Kawabata, K. Takasan, S. Higashikawa, and M. Ueda, “Topological phases of non-Hermitian systems,” Phys. Rev. X 8, 031079 (2018b).
- H. Jiang, L.-J. Lang, C. Yang, S.-L. Zhu, and S. Chen, “Interplay of non-Hermitian skin effects and Anderson localization in nonreciprocal quasiperiodic lattices,” Phys. Rev. B 100, 054301 (2019).
- C. Wang and X. R. Wang, “Level statistics of extended states in random non-Hermitian Hamiltonians,” Phys. Rev. B 101, 165114 (2020).
- S. Longhi, “Topological phase transition in non-Hermitian quasicrystals,” Phys. Rev. Lett. 122, 237601 (2019).
- D.-W. Zhang, L.-Z. Tang, L.-J. Lang, H. Yan, and S.-L. Zhu, “Non-Hermitian topological Anderson insulators,” Sci. China Phys. Mech. 63 (2020b), 10.1007/s11433-020-1521-9.
- J. Claes and Taylor L. Hughes, ‘‘Skin effect and winding number in disordered non-Hermitian systems,” Phys. Rev. B 103, L140201 (2021).
- X. Luo, T. Ohtsuki, and R. Shindou, “Universality classes of the Anderson transitions driven by non-Hermitian disorder,” Phys. Rev. Lett. 126, 090402 (2021a).
- X. Luo, T. Ohtsuki, and R. Shindou, “Transfer matrix study of the Anderson transition in non-Hermitian systems,” Phys. Rev. B 104, 104203 (2021b).
- K.-M. Kim and M. J. Park, “Disorder-driven phase transition in the second-order non-Hermitian skin effect,” Phys. Rev. B 104, L121101 (2021).
- C. C. Wanjura, M. Brunelli, and A. Nunnenkamp, “Correspondence between non-Hermitian topology and directional amplification in the presence of disorder,” Phys. Rev. Lett. 127, 213601 (2021).
- S. Weidemann, M. Kremer, S. Longhi, and A.Szameit, “Coexistence of dynamical delocalization and spectral localization through stochastic dissipation,” Nat. Photon. 15, 576 (2021).
- H. Liu, M. Lu, Z.-Q. Zhang, and H. Jiang, “Modified generalized Brillouin zone theory with on-site disorder,” Phys. Rev. B 107, 144204 (2023a).
- D. Leykam, A. Andreanov, and S. Flach, “Artificial flat band systems: from lattice models to experiments,” Adv. Phys.: X 3, 1473052 (2018).
- J.-W. Rhim and B.-J. Yang, “Singular flat bands,” Adv. Phys.: X 6 (2021), 10.1080/23746149.2021.1901606.
- Stefano Longhi, “Aharonov-bohm photonic cages in waveguide and coupled resonator lattices by synthetic magnetic fields,” Opt. Lett. 39, 5892–5895 (2014).
- S. Mukherjee, M. Di Liberto, P. Öhberg, R. R. Thomson, and N. Goldman, “Experimental observation of Aharonov-Bohm cages in photonic lattices,” Phys. Rev. Lett. 121, 075502 (2018).
- Mark Kremer, Ioannis Petrides, Eric Meyer, Matthias Heinrich, Oded Zilberberg, and Alexander Szameit, “A square-root topological insulator with non-quantized indices realized with photonic Aharonov-Bohm cages,” Nat. Commun. 11 (2020), 10.1038/s41467-020-14692-4.
- J. G. C. Martinez, C. S. Chiu, B. M. Smitham, and A. A. Houck, “Flat-band localization and interaction-induced delocalization of photons,” Sci. Adv. 9 (2023), 10.1126/sciadv.adj7195.
- M. Goda, S. Nishino, and H. Matsuda, “Inverse Anderson transition caused by flatbands,” Phys. Rev. Lett. 96, 126401 (2006).
- F. Baboux, L. Ge, T. Jacqmin, M. Biondi, E. Galopin, A. Lemaître, L. Le Gratiet, I. Sagnes, S. Schmidt, H. E. Türeci, A. Amo, and J. Bloch, “Bosonic condensation and disorder-induced localization in a flat band,” Phys. Rev. Lett. 116, 066402 (2016).
- L. Ge, “Parity-time symmetry in a flat-band system,” Phys. Rev. A 92, 052103 (2015).
- H. Ramezani, “Non-Hermiticity-induced flat band,” Phys. Rev. A 96, 011802 (2017).
- D. Leykam, S. Flach, and Y. D. Chong, “Flat bands in lattices with non-Hermitian coupling,” Phys. Rev. B 96, 064305 (2017b).
- S. M. Zhang and L. Jin, “Flat band in two-dimensional non-Hermitian optical lattices,” Phys. Rev. A 100, 043808 (2019).
- Peng He, Hai-Tao Ding, and Shi-Liang Zhu, “Geometry and superfluidity of the flat band in a non-Hermitian optical lattice,” Phys. Rev. A 103, 043329 (2021).
- T. Biesenthal, M. Kremer, M. Heinrich, and A. Szameit, “Experimental realization of 𝒫𝒯𝒫𝒯\mathcal{P}\mathcal{T}caligraphic_P caligraphic_T-symmetric flat bands,” Phys. Rev. Lett. 123, 183601 (2019).
- B. Qi, L. Zhang, and L. Ge, “Defect states emerging from a non-Hermitian flatband of photonic zero modes,” Phys. Rev. Lett. 120, 093901 (2018).
- S. M. Zhang and L. Jin, “Localization in non-Hermitian asymmetric rhombic lattice,” Phys. Rev. Res. 2, 033127 (2020).
- S. M. Zhang, H. S. Xu, and L. Jin, “Tunable Aharonov-Bohm cages through anti-𝒫𝒯-symmetricanti-𝒫𝒯-symmetric\text{anti-}\mathcal{PT}\text{-symmetric}anti- caligraphic_P caligraphic_T -symmetric imaginary couplings,” Phys. Rev. A 108, 023518 (2023b).
- S. Ke, W. Wen, D. Zhao, and Y. Wang, “Floquet engineering of the non-Hermitian skin effect in photonic waveguide arrays,” Phys. Rev. A 107, 053508 (2023).
- J. Vidal, R.́ Mosseri, and B. Douçot, “Aharonov-Bohm cages in two-dimensional structures,” Phys. Rev. Lett. 81, 5888 (1998).
- Stefano Longhi, “Inverse anderson transition in photonic cages,” Opt. Lett. 46, 2872–2875 (2021).
- P. Molignini, O. Arandes, and E. J. Bergholtz, “Anomalous skin effects in disordered systems with a single non-Hermitian impurity,” Phys. Rev. Res. 5, 033058 (2023).
- T. Hofmann, T. Helbig, C. H. Lee, M. Greiter, and R. Thomale, “Chiral voltage propagation and calibration in a topolectrical chern circuit,” Phys. Rev. Lett. 122, 247702 (2019).
- J. Dong, V. Juričić, and B. Roy, “Topolectric circuits: theory and construction,” Phys. Rev. Res. 3, 023056 (2021).
- C. H. Lee, S. Imhof, C. Berger, F. Bayer, J. Brehm, L. W. Molenkamp, T. Kiessling, and R. Thomale, “Topolectrical circuits,” Commun. Phys. 1, 39 (2018).