Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Learning-Augmented Algorithms with Explicit Predictors (2403.07413v1)

Published 12 Mar 2024 in cs.LG and cs.DS

Abstract: Recent advances in algorithmic design show how to utilize predictions obtained by machine learning models from past and present data. These approaches have demonstrated an enhancement in performance when the predictions are accurate, while also ensuring robustness by providing worst-case guarantees when predictions fail. In this paper we focus on online problems; prior research in this context was focused on a paradigm where the predictor is pre-trained on past data and then used as a black box (to get the predictions it was trained for). In contrast, in this work, we unpack the predictor and integrate the learning problem it gives rise for within the algorithmic challenge. In particular we allow the predictor to learn as it receives larger parts of the input, with the ultimate goal of designing online learning algorithms specifically tailored for the algorithmic task at hand. Adopting this perspective, we focus on a number of fundamental problems, including caching and scheduling, which have been well-studied in the black-box setting. For each of the problems we consider, we introduce new algorithms that take advantage of explicit learning algorithms which we carefully design towards optimizing the overall performance. We demonstrate the potential of our approach by deriving performance bounds which improve over those established in previous work.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (43)
  1. J. M. Altschuler and K. Talwar. Online learning over a finite action set with limited switching. ArXiv, abs/1803.01548, 2018.
  2. Online algorithms with multiple predictions. In ICML, volume 162 of Proceedings of Machine Learning Research, pages 582–598. PMLR, 2022.
  3. Mixing predictions for online metric algorithms. CoRR, abs/2304.01781, 2023a. doi: 10.48550/arXiv.2304.01781. URL https://doi.org/10.48550/arXiv.2304.01781.
  4. Online metric algorithms with untrusted predictions. ACM Trans. Algorithms, 19(2), apr 2023b. ISSN 1549-6325. doi: 10.1145/3582689. URL https://doi.org/10.1145/3582689.
  5. The competitiveness of on-line assignments. J. Algorithms, 18:221–237, 1992.
  6. M.-F. Balcan. Data-Driven Algorithm Design, page 626–645. Cambridge University Press, 2021. doi: 10.1017/9781108637435.036.
  7. Generalization in portfolio-based algorithm selection. Proceedings of the AAAI Conference on Artificial Intelligence, 35(14):12225–12232, May 2021. doi: 10.1609/aaai.v35i14.17451. URL https://ojs.aaai.org/index.php/AAAI/article/view/17451.
  8. L. A. Belady. A study of replacement algorithms for virtual-storage computer. IBM Syst. J., 5(2):78–101, 1966. doi: 10.1147/sj.52.0078. URL https://doi.org/10.1147/sj.52.0078.
  9. Online linear optimization with many hints. In NeurIPS, 2020.
  10. A. Blum and C. Burch. On-line learning and the metrical task system problem. Mach. Learn., 39(1):35–58, 2000. doi: 10.1023/A:1007621832648.
  11. A. Borodin and R. El-Yaniv. Online computation and competitive analysis. Cambridge University Press, 1998. ISBN 978-0-521-56392-5.
  12. N. Cesa-Bianchi and G. Lugosi. Prediction, learning, and games. Cambridge University Press, 2006. ISBN 978-0-521-84108-5. doi: 10.1017/CBO9780511546921. URL https://doi.org/10.1017/CBO9780511546921.
  13. Online learning with switching costs and other adaptive adversaries. ArXiv, abs/1302.4387, 2013.
  14. Smoothed online convex optimization in high dimensions via online balanced descent. ArXiv, abs/1803.10366, 2018.
  15. Algorithms with prediction portfolios. In NeurIPS, 2022.
  16. Online paging with a vanishing regret. In ITCS, 2021.
  17. Competitive paging algorithms. Journal of Algorithms, 12(4):685–699, 1991. ISSN 0196-6774. doi: https://doi.org/10.1016/0196-6774(91)90041-V. URL https://www.sciencedirect.com/science/article/pii/019667749190041V.
  18. Y. Freund and R. E. Schapire. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of Computer and System Sciences, 55(1):119–139, 1997. ISSN 0022-0000. doi: https://doi.org/10.1006/jcss.1997.1504. URL https://www.sciencedirect.com/science/article/pii/S002200009791504X.
  19. Beyond online balanced descent: An optimal algorithm for smoothed online optimization. In Neural Information Processing Systems, 2019.
  20. The lost boarding pass and other practical problems. The Mathematical Gazette, 105(563):216–221, 2021. doi: 10.1017/mag.2021.49.
  21. Online knapsack with frequency predictions. In NeurIPS, pages 2733–2743, 2021.
  22. K. Jansen and L. Rohwedder. On the Configuration-LP of the Restricted Assignment Problem, pages 2670–2678. 2017. doi: 10.1137/1.9781611974782.176. URL https://epubs.siam.org/doi/abs/10.1137/1.9781611974782.176.
  23. Learning predictions for algorithms with predictions. In Advances in Neural Information Processing Systems, volume 35, pages 3542–3555, 2022.
  24. The case for learned index structures. In Proceedings of SIGMOD’18, pages 489–504, 2018. doi: 10.1145/3183713.3196909.
  25. Online scheduling via learned weights. In Proceedings of the 2020 ACM-SIAM Symposium on Discrete Algorithms, SODA 2020, pages 1859–1877. SIAM, 2020. URL https://doi.org/10.1137/1.9781611975994.114.
  26. Approximation algorithms for scheduling unrelated parallel machines. Math. Program., 46:259–271, 1990. doi: 10.1007/BF01585745. URL https://doi.org/10.1007/BF01585745.
  27. S. Li and J. Xian. Online unrelated machine load balancing with predictions revisited. In M. Meila and T. Zhang, editors, Proceedings of the 38th International Conference on Machine Learning, volume 139 of Proceedings of Machine Learning Research, pages 6523–6532. PMLR, 18–24 Jul 2021.
  28. A. Lindermayr and N. Megow. Permutation predictions for non-clairvoyant scheduling. In SPAA, pages 357–368. ACM, 2022.
  29. A. Lindermayr and N. Megow. Algorithms with predictions. https://algorithms-with-predictions.github.io, 2023. URL https://algorithms-with-predictions.github.io. Online: accessed 2023-07-12.
  30. N. Littlestone. Learning quickly when irrelevant attributes abound: A new linear-threshold algorithm. In 28th Annual Symposium on Foundations of Computer Science (sfcs 1987), pages 68–77, 1987. doi: 10.1109/SFCS.1987.37.
  31. N. Littlestone and M. K. Warmuth. The weighted majority algorithm. Inf. Comput., 108(2):212–261, 1994. doi: 10.1006/inco.1994.1009. URL https://doi.org/10.1006/inco.1994.1009.
  32. T. Lykouris and S. Vassilvitskii. Competitive caching with machine learned advice. J. ACM, 68(4):24:1–24:25, 2021.
  33. M. Mitzenmacher and S. Vassilvitskii. Algorithms with predictions. In Beyond the Worst-Case Analysis of Algorithms, pages 646–662. Cambridge University Press, 2020.
  34. Non-clairvoyant scheduling. In Proceedings of the Fourth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’93, page 422–431, USA, 1993. Society for Industrial and Applied Mathematics. ISBN 0898713137.
  35. Improving online algorithms via ML predictions. In NeurIPS, 2018.
  36. D. Rohatgi. Near-optimal bounds for online caching with machine learned advice. In SODA, 2020.
  37. T. Roughgarden, editor. Beyond the Worst-Case Analysis of Algorithms. Cambridge University Press, 2020. ISBN 9781108637435. doi: 10.1017/9781108637435. URL https://doi.org/10.1017/9781108637435.
  38. Amortized efficiency of list update and paging rules. Commun. ACM, 28(2):202–208, 1985. doi: 10.1145/2786.2793.
  39. O. Svensson. Santa claus schedules jobs on unrelated machines. SIAM J. Comput., 41(5):1318–1341, 2012. doi: 10.1137/110851201. URL https://doi.org/10.1137/110851201.
  40. R. Vershynin. High-Dimensional Probability: An Introduction with Applications in Data Science. Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge University Press, 2018. doi: 10.1017/9781108231596.
  41. A. Wei. Better and simpler learning-augmented online caching. In APPROX/RANDOM, 2020.
  42. A. Wei and F. Zhang. Optimal robustness-consistency trade-offs for learning-augmented online algorithms. In Advances in Neural Information Processing Systems, volume 33, pages 8042–8053, 2020.
  43. Revisiting smoothed online learning. In Neural Information Processing Systems, 2021.
Citations (2)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com