Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The solenoidal Heisenberg Virasoro algebra and its simple weight modules (2403.07381v1)

Published 12 Mar 2024 in math.RT

Abstract: Let $A_n=\mathbb{C}[t_i{\pm1},~1\leq i\leq n]$ and $\mathbf{W}(n)\mu=A_nd\mu$ the solenoidal Lie algebra introduced by Y.Billig and V.Futorny in \cite{BiFu2}, where $\mu=(\mu_1,\ldots,\mu_n)\in\mathbb{C}n$ is a generic vector and $$d_\mu=\sum_{i=1}n\mu_it_i\frac{\partial}{\partial t_i}.$$ We consider the semi-direct product Lie algebra $\mathbf{WA}(n)\mu:=\mathbf{W}(n)\mu\ltimes A_n$. In the first part, We prove that $\mathbf{WA}(n)\mu$ has a unique three-dimensional universal central extension. In fact we construct a higher rank Heisenberg-Virasoro algebra (see \cite{LiuGuo, LdZ}). It will be denoted by $\mathbf{HVir}(n)\mu$ and it will be called the solenoidal Heisenberg-Virasoro algebra. Then we will study Harish-Chandra modules of $\mathbf{HVir}(n)\mu$ following \cite{LiuGuo}. We will obtain two classes of Harich-Chandra modules: generalized highest weight modules(\textbf{GHW} modules) and intermediate series modules. Our results are particular cases of \cite{LiuGuo}. In the end, we will construct $\mathbf{HVir}(n)\mu$ Verma modules using the lexicographic order on $\mathbb{Z}{n}$. In particular we give examples of irreducible weight modules which have infinite dimensional weight spaces.

Summary

We haven't generated a summary for this paper yet.