Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
143 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Verification-Aided Learning of Neural Network Barrier Functions with Termination Guarantees (2403.07308v1)

Published 12 Mar 2024 in cs.LG, cs.AI, cs.SY, and eess.SY

Abstract: Barrier functions are a general framework for establishing a safety guarantee for a system. However, there is no general method for finding these functions. To address this shortcoming, recent approaches use self-supervised learning techniques to learn these functions using training data that are periodically generated by a verification procedure, leading to a verification-aided learning framework. Despite its immense potential in automating barrier function synthesis, the verification-aided learning framework does not have termination guarantees and may suffer from a low success rate of finding a valid barrier function in practice. In this paper, we propose a holistic approach to address these drawbacks. With a convex formulation of the barrier function synthesis, we propose to first learn an empirically well-behaved NN basis function and then apply a fine-tuning algorithm that exploits the convexity and counterexamples from the verification failure to find a valid barrier function with finite-step termination guarantees: if there exist valid barrier functions, the fine-tuning algorithm is guaranteed to find one in a finite number of iterations. We demonstrate that our fine-tuning method can significantly boost the performance of the verification-aided learning framework on examples of different scales and using various neural network verifiers.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (35)
  1. C. Dawson, S. Gao, and C. Fan, “Safe control with learned certificates: A survey of neural lyapunov, barrier, and contraction methods for robotics and control,” IEEE Transactions on Robotics, 2023.
  2. A. Abate, D. Ahmed, M. Giacobbe, and A. Peruffo, “Formal synthesis of lyapunov neural networks,” IEEE Control Systems Letters, vol. 5, no. 3, pp. 773–778, 2020.
  3. A. Abate, D. Ahmed, A. Edwards, M. Giacobbe, and A. Peruffo, “Fossil: a software tool for the formal synthesis of lyapunov functions and barrier certificates using neural networks,” in Proceedings of the 24th International Conference on Hybrid Systems: Computation and Control, 2021, pp. 1–11.
  4. H. Dai, B. Landry, L. Yang, M. Pavone, and R. Tedrake, “Lyapunov-stable neural-network control,” in Robotics: Science and Systems XVII, Virtual Event, July 12-16, 2021, D. A. Shell, M. Toussaint, and M. A. Hsieh, Eds., 2021. [Online]. Available: https://doi.org/10.15607/RSS.2021.XVII.063
  5. Q. Zhao, X. Chen, Z. Zhao, Y. Zhang, E. Tang, and X. Li, “Verifying neural network controlled systems using neural networks,” in Proceedings of the 25th ACM International Conference on Hybrid Systems: Computation and Control, 2022, pp. 1–11.
  6. S. Liu, C. Liu, and J. Dolan, “Safe control under input limits with neural control barrier functions,” in Conference on Robot Learning.   PMLR, 2023, pp. 1970–1980.
  7. A. Solar-Lezama, L. Tancau, R. Bodik, S. Seshia, and V. Saraswat, “Combinatorial sketching for finite programs,” in Proceedings of the 12th international conference on Architectural support for programming languages and operating systems, 2006, pp. 404–415.
  8. S. Chen, M. Fazlyab, M. Morari, G. J. Pappas, and V. M. Preciado, “Learning lyapunov functions for hybrid systems,” in Proceedings of the 24th International Conference on Hybrid Systems: Computation and Control, 2021, pp. 1–11.
  9. A. Sogokon, K. Ghorbal, Y. K. Tan, and A. Platzer, “Vector barrier certificates and comparison systems,” in International Symposium on Formal Methods.   Springer, 2018, pp. 418–437.
  10. D. S. Atkinson and P. M. Vaidya, “A cutting plane algorithm for convex programming that uses analytic centers,” Mathematical programming, vol. 69, no. 1-3, pp. 1–43, 1995.
  11. V. Tjeng, K. Y. Xiao, and R. Tedrake, “Evaluating robustness of neural networks with mixed integer programming,” in International Conference on Learning Representations, 2018.
  12. S. Wang, H. Zhang, K. Xu, X. Lin, S. Jana, C.-J. Hsieh, and J. Z. Kolter, “Beta-crown: Efficient bound propagation with per-neuron split constraints for neural network robustness verification,” Advances in Neural Information Processing Systems, vol. 34, pp. 29 909–29 921, 2021.
  13. Y.-C. Chang, N. Roohi, and S. Gao, “Neural lyapunov control,” Advances in neural information processing systems, vol. 32, 2019.
  14. W. Jin, Z. Wang, Z. Yang, and S. Mou, “Neural certificates for safe control policies,” CoRR, vol. abs/2006.08465, 2020. [Online]. Available: https://arxiv.org/abs/2006.08465
  15. A. Robey, H. Hu, L. Lindemann, H. Zhang, D. V. Dimarogonas, S. Tu, and N. Matni, “Learning control barrier functions from expert demonstrations,” arXiv preprint arXiv:2004.03315, 2020.
  16. Z. Qin, K. Zhang, Y. Chen, J. Chen, and C. Fan, “Learning safe multi-agent control with decentralized neural barrier certificates,” in International Conference on Learning Representations, 2020.
  17. L. Lindemann, H. Hu, A. Robey, H. Zhang, D. Dimarogonas, S. Tu, and N. Matni, “Learning hybrid control barrier functions from data,” in Conference on Robot Learning.   PMLR, 2021, pp. 1351–1370.
  18. N. Gaby, F. Zhang, and X. Ye, “Lyapunov-net: A deep neural network architecture for lyapunov function approximation,” in 2022 IEEE 61st Conference on Decision and Control (CDC).   IEEE, 2022, pp. 2091–2096.
  19. S. Zhang, Y. Xiu, G. Qu, and C. Fan, “Compositional neural certificates for networked dynamical systems,” in Learning for Dynamics and Control Conference.   PMLR, 2023, pp. 272–285.
  20. W. Xiao, T.-H. Wang, R. Hasani, M. Chahine, A. Amini, X. Li, and D. Rus, “Barriernet: Differentiable control barrier functions for learning of safe robot control,” IEEE Transactions on Robotics, 2023.
  21. C. Liu, T. Arnon, C. Lazarus, C. Strong, C. Barrett, M. J. Kochenderfer et al., “Algorithms for verifying deep neural networks,” Foundations and Trends® in Optimization, vol. 4, no. 3-4, pp. 244–404, 2021.
  22. K. Xu, Z. Shi, H. Zhang, Y. Wang, K.-W. Chang, M. Huang, B. Kailkhura, X. Lin, and C.-J. Hsieh, “Automatic perturbation analysis for scalable certified robustness and beyond,” Advances in Neural Information Processing Systems, vol. 33, pp. 1129–1141, 2020.
  23. H. Zhang, S. Wang, K. Xu, L. Li, B. Li, S. Jana, C.-J. Hsieh, and J. Z. Kolter, “General cutting planes for bound-propagation-based neural network verification,” Advances in Neural Information Processing Systems, vol. 35, pp. 1656–1670, 2022.
  24. H. Dai, B. Landry, M. Pavone, and R. Tedrake, “Counter-example guided synthesis of neural network lyapunov functions for piecewise linear systems,” in 2020 59th IEEE Conference on Decision and Control (CDC).   IEEE, 2020, pp. 1274–1281.
  25. A. Peruffo, D. Ahmed, and A. Abate, “Automated and formal synthesis of neural barrier certificates for dynamical models,” in International conference on tools and algorithms for the construction and analysis of systems.   Springer, 2021, pp. 370–388.
  26. H. Ravanbakhsh and S. Sankaranarayanan, “Learning control lyapunov functions from counterexamples and demonstrations,” Autonomous Robots, vol. 43, pp. 275–307, 2019.
  27. S. Chen, M. Fazlyab, M. Morari, G. J. Pappas, and V. M. Preciado, “Learning region of attraction for nonlinear systems,” in 2021 60th IEEE Conference on Decision and Control (CDC).   IEEE, 2021, pp. 6477–6484.
  28. S. Prajna and A. Jadbabaie, “Safety verification of hybrid systems using barrier certificates,” in International Workshop on Hybrid Systems: Computation and Control.   Springer, 2004, pp. 477–492.
  29. S. Prajna, A. Jadbabaie, and G. J. Pappas, “A framework for worst-case and stochastic safety verification using barrier certificates,” IEEE Transactions on Automatic Control, vol. 52, no. 8, pp. 1415–1428, 2007.
  30. H. Kong, F. He, X. Song, W. N. Hung, and M. Gu, “Exponential-condition-based barrier certificate generation for safety verification of hybrid systems,” in International Conference on Computer Aided Verification.   Springer, 2013, pp. 242–257.
  31. Y. Ye, “Complexity analysis of the analytic center cutting plane method that uses multiple cuts,” Mathematical Programming, vol. 78, no. 1, pp. 85–104, 1996.
  32. J. Ash and R. P. Adams, “On warm-starting neural network training,” Advances in neural information processing systems, vol. 33, pp. 3884–3894, 2020.
  33. S. Gao, S. Kong, and E. M. Clarke, “dreal: An smt solver for nonlinear theories over the reals,” in Automated Deduction–CADE-24: 24th International Conference on Automated Deduction, Lake Placid, NY, USA, June 9-14, 2013. Proceedings 24.   Springer, 2013, pp. 208–214.
  34. H. Zhang, T.-W. Weng, P.-Y. Chen, C.-J. Hsieh, and L. Daniel, “Efficient neural network robustness certification with general activation functions,” Advances in neural information processing systems, vol. 31, 2018.
  35. T. Entesari, S. Sharifi, and M. Fazlyab, “Reachlipbnb: A branch-and-bound method for reachability analysis of neural autonomous systems using lipschitz bounds,” in 2023 IEEE International Conference on Robotics and Automation (ICRA).   IEEE, 2023, pp. 1003–1010.
Citations (3)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com