Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Deep Learning-Assisted Parallel Interference Cancellation for Grant-Free NOMA in Machine-Type Communication (2403.07255v1)

Published 12 Mar 2024 in eess.SP, cs.AI, and cs.LG

Abstract: In this paper, we present a novel approach for joint activity detection (AD), channel estimation (CE), and data detection (DD) in uplink grant-free non-orthogonal multiple access (NOMA) systems. Our approach employs an iterative and parallel interference removal strategy inspired by parallel interference cancellation (PIC), enhanced with deep learning to jointly tackle the AD, CE, and DD problems. Based on this approach, we develop three PIC frameworks, each of which is designed for either coherent or non-coherence schemes. The first framework performs joint AD and CE using received pilot signals in the coherent scheme. Building upon this framework, the second framework utilizes both the received pilot and data signals for CE, further enhancing the performances of AD, CE, and DD in the coherent scheme. The third framework is designed to accommodate the non-coherent scheme involving a small number of data bits, which simultaneously performs AD and DD. Through joint loss functions and interference cancellation modules, our approach supports end-to-end training, contributing to enhanced performances of AD, CE, and DD for both coherent and non-coherent schemes. Simulation results demonstrate the superiority of our approach over traditional techniques, exhibiting enhanced performances of AD, CE, and DD while maintaining lower computational complexity.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (35)
  1. L. Chettri and R. Bera, “A comprehensive survey on Internet of Things (IoT) toward 5G wireless systems,” IEEE Internet Things J., vol. 7, no. 1, pp. 16–32, Jan. 2020.
  2. D. C. Nguyen, M. Ding, P. N. Pathirana, A. Seneviratne, J. Li, D. Niyato, O. Dobre, and H. V. Poor, “6G Internet of Things: A comprehensive survey,” IEEE Internet Things J., vol. 9, no. 1, pp. 359–383, Jan. 2022.
  3. M. B. Shahab, R. Abbas, M. Shirvanimoghaddam, and S. J. Johnson, “Grant-free non-orthogonal multiple access for IoT: A survey,” IEEE Commun. Surveys Tuts., vol. 22, no. 3, pp. 1805–1838, thirdquarter 2020.
  4. X. Chen, D. W. K. Ng, W. Yu, E. G. Larsson, N. Al-Dhahir, and R. Schober, “Massive access for 5G and beyond,” IEEE J. Sel. Areas Commun., vol. 39, no. 3, pp. 615–637, Feb. 2021.
  5. W. Shin, M. Vaezi, B. Lee, D. J. Love, J. Lee, and H. V. Poor, “Non-orthogonal multiple access in multi-cell networks: Theory, performance, and practical challenges,” IEEE Commun. Mag., vol. 55, no. 10, pp. 176–183, Oct. 2017.
  6. Y. Yuan, S. Wang, Y. Wu, H. V. Poor, Z. Ding, X. You, and L. Hanzo, “NOMA for next-generation massive IoT: Performance potential and technology directions,” IEEE Commun. Mag., vol. 59, no. 7, pp. 115–121, Jul. 2021.
  7. R. Abbas, M. Shirvanimoghaddam, Y. Li, and B. Vucetic, “A novel analytical framework for massive grant-free NOMA,” IEEE Trans. Commun., vol. 67, no. 3, pp. 2436–2449, Mar. 2019.
  8. J.-C. Jiang and H.-M. Wang, “Massive random access with sporadic short packets: Joint active user detection and channel estimation via sequential message passing,” IEEE Trans. Wireless Commun., vol. 20, no. 7, pp. 4541–4555, Jul. 2021.
  9. W. Kim, Y. Ahn, and B. Shim, “Deep neural network-based active user detection for grant-free NOMA systems,” IEEE Trans. Commun., vol. 68, no. 4, pp. 2143–2155, Apr. 2020.
  10. L. Liu, E. G. Larsson, W. Yu, P. Popovski, C. Stefanovic, and E. de Carvalho, “Sparse signal processing for grant-free massive connectivity: A future paradigm for random access protocols in the Internet of Things,” IEEE Signal Process. Mag., vol. 35, no. 5, pp. 88–99, Sep. 2018.
  11. K. Senel and E. G. Larsson, “Grant-free massive MTC-enabled massive MIMO: A compressive sensing approach,” IEEE Trans. Commun., vol. 66, no. 12, pp. 6164–6175, Dec. 2018.
  12. Z. Ma, W. Wu, F. Gao, and X. Shen, “Model-driven deep learning for non-coherent massive machine-type communications,” IEEE Trans. Wireless Commun., early access, Jul. 24, 2023.
  13. Y. Ahn, W. Kim, and B. Shim, “Active user detection and channel estimation for massive machine-type communication: Deep learning approach,” IEEE Internet Things J., vol. 9, no. 14, pp. 11 904–11 917, Jul. 2022.
  14. K. Senel and E. G. Larsson, “Device activity and embedded information bit detection using AMP in massive MIMO,” in Proc. IEEE Glob. Commun. Conf. (GLOBECOM), Singapore, Dec. 2017, pp. 1–6.
  15. A. T. Abebe and C. G. Kang, “MIMO-based reliable grant-free massive access with QoS differentiation for 5G and beyond,” IEEE J. Sel. Areas Commun., vol. 39, no. 3, pp. 773–787, Mar. 2021.
  16. Y. Du, C. Cheng, B. Dong, Z. Chen, X. Wang, J. Fang, and S. Li, “Block-sparsity-based multiuser detection for uplink grant-free NOMA,” IEEE Trans. Wireless Commun., vol. 17, no. 12, pp. 7894–7909, Dec. 2018.
  17. M. Borgerding, P. Schniter, and S. Rangan, “AMP-inspired deep networks for sparse linear inverse problems,” IEEE Trans. Signal Process., vol. 65, no. 16, pp. 4293–4308, Aug. 2017.
  18. D. L. Donoho, A. Maleki, and A. Montanari, “The noise-sensitivity phase transition in compressed sensing,” IEEE Trans. Inf. Theory, vol. 57, no. 10, pp. 6920–6941, Oct. 2011.
  19. L. Liu and W. Yu, “Massive connectivity with massive MIMO–Part I: Device activity detection and channel estimation,” IEEE Trans. Signal Process., vol. 66, no. 11, pp. 2933–2946, Jun. 2018.
  20. Z. Chen, F. Sohrabi, Y.-F. Liu, and W. Yu, “Phase transition analysis for covariance-based massive random access with massive MIMO,” IEEE Trans. Inf. Theory, vol. 68, no. 3, pp. 1696–1715, Mar. 2022.
  21. S. R. Pokhrel, J. Ding, J. Park, O.-S. Park, and J. Choi, “Towards enabling critical mMTC: A review of URLLC within mMTC,” IEEE Access, vol. 8, pp. 131 796–131 813, Jul. 2020.
  22. U. K. Ganesan, E. Björnson, and E. G. Larsson, “Clustering-based activity detection algorithms for grant-free random access in cell-free massive MIMO,” IEEE Trans. Commun., vol. 69, no. 11, pp. 7520–7530, Nov. 2021.
  23. T. Li, A. K. Sahu, A. Talwalkar, and V. Smith, “Channel estimation and user activity identification in massive grant-free multiple-access,” IEEE Open J. Veh. Technol., vol. 1, pp. 296–316, Aug. 2020.
  24. X. Bian, Y. Mao, and J. Zhang, “Supporting more active users for massive access via data-assisted activity detection,” in Proc. IEEE Int. Conf. Commun. (ICC), Montreal, QC, Canada, Jun. 2021, pp. 1–6.
  25. J. Ahn, B. Shim, and K. B. Lee, “Sparsity-aware ordered successive interference cancellation for massive machine-type communications,” IEEE Wireless Commun. Lett., vol. 7, no. 1, pp. 134–137, Feb. 2018.
  26. X. Song and K. Li, “Improved channel estimation algorithm based on parallel interference cancellation,” in Proc. Int. Conf. Neural Netw. Signal Process. (ICNNSP), Zhenjiang, China, Jun. 2008, pp. 466–469.
  27. N. Ye, X. Li, H. Yu, L. Zhao, W. Liu, and X. Hou, “DeepNOMA: A unified framework for NOMA using deep multi-task learning,” IEEE Trans. Wireless Commun., vol. 19, no. 4, pp. 2208–2225, Sep. 2020.
  28. J. Andrews, “Interference cancellation for cellular systems: A contemporary overview,” IEEE Wireless Commun., vol. 12, no. 2, pp. 19–29, Apr. 2005.
  29. H. Yu, Z. Fei, Z. Zheng, N. Ye, and Z. Han, “Deep learning-based user activity detection and channel estimation in grant-free NOMA,” IEEE Trans. Wireless Commun., vol. 22, no. 4, pp. 2202–2214, Apr. 2023.
  30. Y. Bai, W. Chen, B. Ai, Z. Zhong, and I. J. Wassell, “Prior information aided deep learning method for grant-free NOMA in mMTC,” IEEE J. Sel. Areas Commun., vol. 40, no. 1, pp. 112–126, Jan. 2022.
  31. Z. Zhang, Y. Li, C. Huang, Q. Guo, C. Yuen, and Y. L. Guan, “DNN-aided block sparse Bayesian learning for user activity detection and channel estimation in grant-free non-orthogonal random access,” IEEE Trans. Veh. Technol., vol. 68, no. 12, pp. 12 000–12 012, Dec. 2019.
  32. H. S. Jang, B. C. Jung, T. Q. S. Quek, and D. K. Sung, “Resource-hopping-based grant-free multiple access for 6G-enabled massive IoT networks,” IEEE Internet of Things Journal, vol. 8, no. 20, pp. 15 349–15 360, Oct. 2021.
  33. D. A. Tubiana, J. Farhat, G. Brante, and R. D. Souza, “Q-learning NOMA random access for IoT-satellite terrestrial relay networks,” IEEE Wireless Commun. Lett., vol. 11, no. 8, pp. 1619–1623, Aug. 2022.
  34. D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” in Proc. Int. Conf. Learn. Represent. (ICLR), San Diego, CA, USA, May 2015, pp. 1–13.
  35. A. Maleki, L. Anitori, Z. Yang, and R. G. Baraniuk, “Asymptotic analysis of complex LASSO via complex approximate message passing (CAMP),” IEEE Trans. Inf. Theory, vol. 59, no. 7, pp. 4290–4308, Jul. 2013.

Summary

We haven't generated a summary for this paper yet.