Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Noisy Computing of the Threshold Function (2403.07227v3)

Published 12 Mar 2024 in cs.DS

Abstract: Let $\mathsf{TH}k$ denote the $k$-out-of-$n$ threshold function: given $n$ input Boolean variables, the output is $1$ if and only if at least $k$ of the inputs are $1$. We consider the problem of computing the $\mathsf{TH}_k$ function using noisy readings of the Boolean variables, where each reading is incorrect with some fixed and known probability $p \in (0,1/2)$. As our main result, we show that it is sufficient to use $(1+o(1)) \frac{n\log \frac{m}{\delta}}{D{\mathsf{KL}}(p | 1-p)}$ queries in expectation to compute the $\mathsf{TH}k$ function with a vanishing error probability $\delta = o(1)$, where $m\triangleq \min{k,n-k+1}$ and $D{\mathsf{KL}}(p | 1-p)$ denotes the Kullback-Leibler divergence between $\mathsf{Bern}(p)$ and $\mathsf{Bern}(1-p)$ distributions. Conversely, we show that any algorithm achieving an error probability of $\delta = o(1)$ necessitates at least $(1-o(1))\frac{(n-m)\log\frac{m}{\delta}}{D_{\mathsf{KL}}(p | 1-p)}$ queries in expectation. The upper and lower bounds are tight when $m=o(n)$, and are within a multiplicative factor of $\frac{n}{n-m}$ when $m=\Theta(n)$. In particular, when $k=n/2$, the $\mathsf{TH}_k$ function corresponds to the $\mathsf{MAJORITY}$ function, in which case the upper and lower bounds are tight up to a multiplicative factor of two. Compared to previous work, our result tightens the dependence on $p$ in both the upper and lower bounds.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (28)
  1. J. Hastad, T. Leighton, and M. Newman, “Reconfiguring a hypercube in the presence of faults,” in Proceedings of the Nineteenth Annual ACM Symposium on Theory of Computing, ser. STOC ’87, New York, NY, USA, 1987, p. 274–284.
  2. M. Pease, R. Shostak, and L. Lamport, “Reaching agreement in the presence of faults,” J. ACM, vol. 27, no. 2, p. 228–234, April 1980.
  3. N. Pippenger, G. D. Stamoulis, and J. N. Tsitsiklis, “On a lower bound for the redundancy of reliable networks with noisy gates,” IEEE Transactions on Information Theory, vol. 37, no. 3, pp. 639–643, 1991.
  4. N. B. Shah and M. J. Wainwright, “Simple, robust and optimal ranking from pairwise comparisons,” J. Mach. Learn. Res., vol. 18, no. 199, pp. 1–38, 2018.
  5. A. Agarwal, S. Agarwal, S. Assadi, and S. Khanna, “Learning with limited rounds of adaptivity: Coin tossing, multi-armed bandits, and ranking from pairwise comparisons,” in Proceedings of the 2017 Conference on Learning Theory, ser. Proceedings of Machine Learning Research, vol. 65.   PMLR, 07–10 Jul 2017, pp. 39–75.
  6. M. Falahatgar, A. Orlitsky, V. Pichapati, and A. T. Suresh, “Maximum selection and ranking under noisy comparisons,” in Proceedings of the 34th International Conference on Machine Learning, ser. Proceedings of Machine Learning Research, D. Precup and Y. W. Teh, Eds., vol. 70.   PMLR, 06–11 Aug 2017, pp. 1088–1096.
  7. R. Heckel, N. B. Shah, K. Ramchandran, and M. J. Wainwright, “Active ranking from pairwise comparisons and when parametric assumptions do not help,” Ann. Stat., vol. 47, no. 6, pp. 3099 – 3126, 2019.
  8. Z. Wang, N. Ghaddar, and L. Wang, “Noisy sorting capacity,” in Proc. IEEE Internat. Symp. Inf. Theory.   IEEE, 2022, pp. 2541–2546.
  9. Y. Gu and Y. Xu, “Optimal bounds for noisy sorting,” in Proceedings of the 55th Annual ACM Symposium on Theory of Computing, ser. STOC 2023.   New York, NY, USA: Association for Computing Machinery, 2023, p. 1502–1515.
  10. E. R. Berlekamp, “Block coding with noiseless feedback,” Ph.D. Thesis, MIT, Cambridge, MA, USA, 1964.
  11. M. Horstein, “Sequential transmission using noiseless feedback,” IEEE Trans. Inf. Theory, vol. 9, no. 3, pp. 136–143, 1963.
  12. M. V. Burnashev and K. Zigangirov, “An interval estimation problem for controlled observations,” Problemy Peredachi Informatsii, vol. 10, no. 3, pp. 51–61, 1974.
  13. A. Pelc, “Searching with known error probability,” Theoretical Computer Science, vol. 63, no. 2, pp. 185–202, 1989.
  14. R. M. Karp and R. Kleinberg, “Noisy binary search and its applications,” in Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms, ser. SODA ’07.   USA: Society for Industrial and Applied Mathematics, 2007, p. 881–890.
  15. U. Feige, P. Raghavan, D. Peleg, and E. Upfal, “Computing with noisy information,” SIAM Journal on Computing, vol. 23, no. 5, pp. 1001–1018, 1994.
  16. R. L. Dobrushin and S. Ortyukov, “Lower bound for the redundancy of self-correcting arrangements of unreliable functional elements,” Problemy Peredachi Informatsii, vol. 13, no. 1, pp. 82–89, 1977.
  17. ——, “Upper bound on the redundancy of self-correcting arrangements of unreliable functional elements,” Problemy Peredachi Informatsii, vol. 13, no. 3, pp. 56–76, 1977.
  18. J. Von Neumann, “Probabilistic logics and the synthesis of reliable organisms from unreliable components,” Automata studies, vol. 34, pp. 43–98, 1956.
  19. P. Gács and A. Gál, “Lower bounds for the complexity of reliable boolean circuits with noisy gates,” IEEE Trans. Inf. Theory, vol. 40, no. 2, pp. 579–583, 1994.
  20. W. Evans and N. Pippenger, “Average-case lower bounds for noisy boolean decision trees,” SIAM Journal on Computing, vol. 28, no. 2, pp. 433–446, 1998.
  21. R. Reischuk and B. Schmeltz, “Reliable computation with noisy circuits and decision trees-a general n log n lower bound,” in [1991] Proceedings 32nd Annual Symposium of Foundations of Computer Science.   IEEE Computer Society, 1991, pp. 602–611.
  22. E. Kushilevitz and Y. Mansour, “Computation in noisy radio networks,” SIAM Journal on Discrete Mathematics, vol. 19, no. 1, pp. 96–108, 2005.
  23. Z. Wang, N. Ghaddar, B. Zhu, and L. Wang, “Noisy sorting capacity,” 2023.
  24. B. Zhu, Z. Wang, N. Ghaddar, J. Jiao, and L. Wang, “Noisy computing of the 𝖮𝖱𝖮𝖱\mathsf{OR}sansserif_OR and 𝖬𝖠𝖷𝖬𝖠𝖷\mathsf{MAX}sansserif_MAX functions,” 2023.
  25. B. Yu, “Assouad, fano, and le cam,” in Festschrift for Lucien Le Cam.   Springer, 1997, pp. 423–435.
  26. J. Bretagnolle and C. Huber, “Estimation des densités: risque minimax,” Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete, vol. 47, no. 2, pp. 119–137, 1979.
  27. A. B. Tsybakov, “Introduction to nonparametric estimation,” Springer, vol. 9, no. 10, 2004.
  28. P. Auer, N. Cesa-Bianchi, Y. Freund, and R. E. Schapire, “Gambling in a rigged casino: The adversarial multi-armed bandit problem,” in Proceedings of IEEE 36th annual foundations of computer science.   IEEE, 1995, pp. 322–331.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com
Youtube Logo Streamline Icon: https://streamlinehq.com