Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Enhanced strong interaction effect in synthetic spin-orbit coupling with mixed spin symmetry (2403.07188v3)

Published 11 Mar 2024 in cond-mat.quant-gas and quant-ph

Abstract: Synthetic spin-orbit coupling in cold atoms couples the pseudo-spin and spatial degrees of freedom, and therefore the inherent spin symmetry of the system plays an important role. In systems of two pseudo-spin degrees, two particles contain symmetric states and anti-symmetric states, but the spin symmetry can be mixed for more particles. This mixed spin symmetry has been overlooked and has not been investigated thoroughly. We study the role of mixed spin symmetry in the presence of spin-orbit coupling and consider the system of three bosons with two hyper-fine states trapped in a harmonic potential. We investigate the ground state and the energy spectrum by implementing exact diagonalization. Similarly to two-particle systems, the interplay between spin-orbit coupling and repulsive interactions between anti-aligned pseudo-spins increases the population of the unaligned spin components in the ground state. Also, the emergence of the mixed spin symmetric states compensates for the rise of the interaction energy. In contrast to two-particle systems, the pair correlation of the ground state is analogous to the Tonks-Girardeau gas even for relatively small contact interactions, and this feature is enhanced by the spin-orbit coupling.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (10)
  1. M. Z. Hasan and C. L. Kane, Colloquium: Topological insulators, Rev. Mod. Phys. 82, 3045 (2010).
  2. Y. J. Lin, K. Jiménez-García, and I. B. Spielman, Spin–orbit-coupled bose–einstein condensates, Nature 471, 83 (2011).
  3. Y. Li, L. P. Pitaevskii, and S. Stringari, Quantum tricriticality and phase transitions in spin-orbit coupled bose-einstein condensates, Phys. Rev. Lett. 108, 225301 (2012).
  4. Y. Zhang, L. Mao, and C. Zhang, Mean-field dynamics of spin-orbit coupled bose-einstein condensates, Phys. Rev. Lett. 108, 035302 (2012b).
  5. P. Mujal, A. Polls, and B. Juliá-Díaz, Spin-orbit-coupled bosons interacting in a two-dimensional harmonic trap, Phys. Rev. A 101, 043619 (2020).
  6. A. Rojo-Francàs, A. Polls, and B. Juliá-Díaz, Static and dynamic properties of a few spin 1/2 interacting fermions trapped in a harmonic potential, Mathematics 8, 10.3390/math8071196 (2020).
  7. A. Usui, https://github.com/ayaka-usui/SOCED (2023).
  8. L. Tonks, The complete equation of state of one, two and three-dimensional gases of hard elastic spheres, Phys. Rev. 50, 955 (1936).
  9. E. H. Lieb and W. Liniger, Exact analysis of an interacting bose gas. i. the general solution and the ground state, Phys. Rev. 130, 1605 (1963).
  10. Y. Huang and Z.-D. Hu, Spin and field squeezing in a spin-orbit coupled bose-einstein condensate, Scientific Reports 5, 8006 (2015).

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com