Essential self-adjointness of $\left(Δ^2 +c|x|^{-4}\right)\big|_{C_0^{\infty}(\mathbb{R}^n \backslash \{0\})}$ (2403.07160v1)
Abstract: Let $n\in\mathbb{N}, n\geq 2$. We prove that the strongly singular differential operator [\left(\Delta2 +c|x|{-4}\right)\big|_{C_0{\infty}(\mathbb{R}n \backslash {0})}, \quad c \in \mathbb{R}, ] is essentially self-adjoint in $L2(\mathbb{R}n; dn x)$ if and only if [c\geq \begin{cases}3(n+2)(6-n)&\mbox{for $2\leq n\leq 5$};\[5pt] {\displaystyle -\frac{n(n+4)(n-4)(n-8)}{16}}&\mbox{for $n\geq 6$}.\end{cases}] Via separation of variables, our proof reduces to studying the essential self-adjointness on the space $C_0{\infty}((0,\infty))$ of fourth-order Euler-type differential operators of the form [ \frac{d4}{dr4}+c_1\left(\frac{1}{r2}\frac{d2}{dr2}+\frac{d2}{dr2}\frac{1}{r2}\right)+\frac{c_2}{r4},\quad r\in(0,\infty),\quad(c_1,c_2)\in \mathbb{R}2,] in $L2((0,\infty);dr)$. Our methods generalize to differential operators related to higher-order powers of the Laplacian, however, there are some nontrivial subtleties that arise. For example, the natural expectation that for $m,n\in\mathbb{N}$, $n \geq 2$, there exist $c_{m,n}\in\mathbb{R}$ such that $\left(\Deltam+c|x|{-2m}\right)\big|_{C_0{\infty}(\mathbb{R}n \backslash {0})}$ is essentially self-adjoint in $L2(\mathbb{R}n; dn x)$ if and only if $c \geq c_{m,n}$, turns out to be false. Indeed, for $n=20$, we prove that the differential operator [ \left((-\Delta)5+c|x|{-10}\right)\big|_{C_0{\infty}(\mathbb{R}{20} \backslash {0})}, \quad c \in \mathbb{R},] is essentially self-adjoint in $L2\big( \mathbb{R}{20}; d{20} x\big)$ if and only if $c\in [0,\beta]\cup [\gamma,\infty)$, where $\beta\approx 1.0436\times 10{10}$, and $\gamma\approx 1.8324\times 10{10}$ are the two real roots of the quartic equation \begin{align*}&3125z4-83914629120000z3+429438995162964368031744 z2\&\quad+1045471534388841527438982355353600z\&\quad +629847004905001626921946285352115240960000=0.\end{align*}