A cascaded deep network for automated tumor detection and segmentation in clinical PET imaging of diffuse large B-cell lymphoma (2403.07092v1)
Abstract: Accurate detection and segmentation of diffuse large B-cell lymphoma (DLBCL) from PET images has important implications for estimation of total metabolic tumor volume, radiomics analysis, surgical intervention and radiotherapy. Manual segmentation of tumors in whole-body PET images is time-consuming, labor-intensive and operator-dependent. In this work, we develop and validate a fast and efficient three-step cascaded deep learning model for automated detection and segmentation of DLBCL tumors from PET images. As compared to a single end-to-end network for segmentation of tumors in whole-body PET images, our three-step model is more effective (improves 3D Dice score from 58.9% to 78.1%) since each of its specialized modules, namely the slice classifier, the tumor detector and the tumor segmentor, can be trained independently to a high degree of skill to carry out a specific task, rather than a single network with suboptimal performance on overall segmentation.
- “A clinical evaluation of the International Lymphoma Study Group classification of non-Hodgkin’s lymphoma. The Non-Hodgkin’s Lymphoma Classification Project,” Blood 89, 3909–3918 (Jun 1997).
- Weisman, A. J., Kim, J., Lee, I., McCarten, K. M., Kessel, S., Schwartz, C. L., Kelly, K. M., Jeraj, R., Cho, S. Y., and Bradshaw, T. J., “Automated quantification of baseline imaging PET metrics on FDG PET/CT images of pediatric Hodgkin lymphoma patients,” EJNMMI Phys 7, 76 (Dec 2020).
- Slattery, A., “Validating an image segmentation program devised for staging lymphoma,” Australas Phys Eng Sci Med 40, 799–809 (Dec 2017).
- Capobianco, N., Meignan, M., Cottereau, A. S., Vercellino, L., Sibille, L., Spottiswoode, B., Zuehlsdorff, S., Casasnovas, O., Thieblemont, C., and Buvat, I., “F-FDG Uptake Classification Enables Total Metabolic Tumor Volume Estimation in Diffuse Large B-Cell Lymphoma,” J Nucl Med 62, 30–36 (01 2021).
- Guo, B., Tan, X., Ke, Q., and Cen, H., “Prognostic value of baseline metabolic tumor volume and total lesion glycolysis in patients with lymphoma: A meta-analysis,” PLoS One 14(1), e0210224 (2019).
- Vercellino, L., Cottereau, A. S., Casasnovas, O., Tilly, H., Feugier, P., Chartier, L., Fruchart, C., Roulin, L., Oberic, L., Pica, G. M., Ribrag, V., Abraham, J., Simon, M., Gonzalez, H., Bouabdallah, R., Fitoussi, O., Sebban, C., López-Guillermo, A., Sanhes, L., Morschhauser, F., Trotman, J., Corront, B., Choufi, B., Snauwaert, S., Godmer, P., Briere, J., Salles, G., Gaulard, P., Meignan, M., and Thieblemont, C., “High total metabolic tumor volume at baseline predicts survival independent of response to therapy,” Blood 135, 1396–1405 (04 2020).
- Martín-Saladich, Q., Reynés-Llompart, G., Sabaté-Llobera, A., Palomar-Muñoz, A., Domingo-Domènech, E., and Cortés-Romera, M., “Comparison of different automatic methods for the delineation of the total metabolic tumor volume in I-II stage Hodgkin Lymphoma,” Sci Rep 10, 12590 (07 2020).
- Casasnovas, R.-O., Kanoun, S., Tal, I., Cottereau, A.-S., Edeline, V., Brice, P., Bouabdallah, R., Salles, G. A., Stamatoullas, A., Dupuis, J., Reman, O., Gastinne, T., Joly, B., Bouabdallah, K., Nicolas-Virelizier, E., Andre, M., Mounier, N., Ferme, C., Meignan, M., and Berriolo-Riedinger, A., “Baseline total metabolic volume (tmtv) to predict the outcome of patients with advanced hodgkin lymphoma (hl) enrolled in the ahl2011 lysa trial.,” Journal of Clinical Oncology 34(15_suppl), 7509–7509 (2016).
- Willemink, M. J., Koszek, W. A., Hardell, C., Wu, J., Fleischmann, D., Harvey, H., Folio, L. R., Summers, R. M., Rubin, D. L., and Lungren, M. P., “Preparing Medical Imaging Data for Machine Learning,” Radiology 295, 4–15 (04 2020).
- Lundervold, A. S. and Lundervold, A., “An overview of deep learning in medical imaging focusing on mri,” Zeitschrift fur Medizinische Physik 29(2), 102–127 (2019). Special Issue: Deep Learning in Medical Physics.
- Buvat, I. and Orlhac, F., “The T.R.U.E. Checklist for Identifying Impactful Artificial Intelligence-Based Findings in Nuclear Medicine: Is It True? Is It Reproducible? Is It Useful? Is It Explainable?,” J Nucl Med 62, 752–754 (06 2021).
- Yousefirizi, F., Jha, A. K., Brosch-Lenz, J., Saboury, B., and Rahmim, A., “Toward High-Throughput Artificial Intelligence-Based Segmentation in Oncological PET Imaging,” PET Clin 16, 577–596 (Oct 2021).
- He, K., Gkioxari, G., Dollar, P., and Girshick, R., “Mask r-cnn,” IEEE transactions on pattern analysis and machine intelligence 42(2), 386–397 (2020).
- Kumar, A., Fulham, M., Feng, D., and Kim, J., “Co-Learning Feature Fusion Maps from PET-CT Images of Lung Cancer,” IEEE Trans Med Imaging (Jun 2019).
- Blanc-Durand, P., Van Der Gucht, A., Schaefer, N., Itti, E., and Prior, J. O., “Automatic lesion detection and segmentation of 18F-FET PET in gliomas: A full 3D U-Net convolutional neural network study,” PLoS One 13(4), e0195798 (2018).
- Lempitsky, V., Kohli, P., Rother, C., and Sharp, T., “Image segmentation with a bounding box prior,” in [2009 IEEE 12th International Conference on Computer Vision ], 277–284 (2009).
- Weisman, A. J., Kieler, M. W., Perlman, S. B., Hutchings, M., Jeraj, R., Kostakoglu, L., and Bradshaw, T. J., “Convolutional Neural Networks for Automated PET/CT Detection of Diseased Lymph Node Burden in Patients with Lymphoma,” Radiol Artif Intell 2, e200016 (Sep 2020).
- He, K., Zhang, X., Ren, S., and Sun, J., “Deep residual learning for image recognition,” in [2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) ], 770–778 (2016).
- Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-Fei, L., “Imagenet: A large-scale hierarchical image database,” in [2009 IEEE Conference on Computer Vision and Pattern Recognition ], 248–255 (2009).
- Ren, S., He, K., Girshick, R., and Sun, J., “Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks,” IEEE Trans Pattern Anal Mach Intell 39, 1137–1149 (06 2017).
- Lin, T.-Y., Dollár, P., Girshick, R., He, K., Hariharan, B., and Belongie, S., “Feature pyramid networks for object detection,” (2016).
- Yousefirizi, F., Bloise, I., Martineau, P., Wilson, D., Benard, F., Bradshaw, T., Rahmim, A., and Uribe, C. F., “Reproducibility of a semi-automatic gradient-based segmentation approach for lymphoma pet,” European Journal of Nuclear Medicine and Molecular Imaging 48(1) (2021).
- Lin, T.-Y., Goyal, P., Girshick, R., He, K., and Dollár, P., “Focal loss for dense object detection,” IEEE Transactions on Pattern Analysis and Machine Intelligence 42(2), 318–327 (2020).
- Sudre, C. H., Li, W., Vercauteren, T., Ourselin, S., and Jorge Cardoso, M., “Generalised dice overlap as a deep learning loss function for highly unbalanced segmentations,” Deep learning in medical image analysis and multimodal learning for clinical decision support : Third International Workshop, DLMIA 2017, and 7th International Workshop, ML-CDS 2017, held in conjunction with MICCAI 2017 Quebec City, QC,… 2017, 240–248 (2017). 34104926[pmid].
- Weisman, A. J., Kieler, M. W., Perlman, S., Hutchings, M., Jeraj, R., Kostakoglu, L., and Bradshaw, T. J., “Comparison of 11 automated PET segmentation methods in lymphoma,” Phys Med Biol 65, 235019 (11 2020).
- Foster, B., Bagci, U., Mansoor, A., Xu, Z., and Mollura, D. J., “A review on segmentation of positron emission tomography images,” Comput Biol Med 50, 76–96 (Jul 2014).
- Rizwan I Haque, I. and Neubert, J., “Deep learning approaches to biomedical image segmentation,” Informatics in Medicine Unlocked 18, 100297 (2020).
- Dai, J., Qi, H., Xiong, Y., Li, Y., Zhang, G., Hu, H., and Wei, Y., “Deformable convolutional networks,” 764–773, IEEE (2017).
- Shadab Ahamed (16 papers)
- Natalia Dubljevic (4 papers)
- Ingrid Bloise (7 papers)
- Claire Gowdy (4 papers)
- Patrick Martineau (5 papers)
- Don Wilson (4 papers)
- Carlos F. Uribe (7 papers)
- Arman Rahmim (54 papers)
- Fereshteh Yousefirizi (16 papers)