Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Unified Model for Spatio-Temporal Prediction Queries with Arbitrary Modifiable Areal Units (2403.07022v1)

Published 10 Mar 2024 in cs.LG and cs.AI

Abstract: Spatio-Temporal (ST) prediction is crucial for making informed decisions in urban location-based applications like ride-sharing. However, existing ST models often require region partition as a prerequisite, resulting in two main pitfalls. Firstly, location-based services necessitate ad-hoc regions for various purposes, requiring multiple ST models with varying scales and zones, which can be costly to support. Secondly, different ST models may produce conflicting outputs, resulting in confusing predictions. In this paper, we propose One4All-ST, a framework that can conduct ST prediction for arbitrary modifiable areal units using only one model. To reduce the cost of getting multi-scale predictions, we design an ST network with hierarchical spatial modeling and scale normalization modules to efficiently and equally learn multi-scale representations. To address prediction inconsistencies across scales, we propose a dynamic programming scheme to solve the formulated optimal combination problem, minimizing predicted error through theoretical analysis. Besides, we suggest using an extended quad-tree to index the optimal combinations for quick response to arbitrary modifiable areal units in practical online scenarios. Extensive experiments on two real-world datasets verify the efficiency and effectiveness of One4All-ST in ST prediction for arbitrary modifiable areal units. The source codes and data of this work are available at https://github.com/uctb/One4All-ST.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (55)
  1. F. Calabrese, M. Colonna, P. Lovisolo, D. Parata, and C. Ratti, “Real-time urban monitoring using cell phones: A case study in rome,” IEEE Transactions on Intelligent Transportation Systems, vol. 12, no. 1, pp. 141–151, 2011.
  2. H. Xu, A. Berres, S. B. Yoginath, H. Sorensen, P. J. Nugent, J. Severino, S. A. Tennille, A. Moore, W. Jones, and J. Sanyal, “Smart mobility in the cloud: Enabling real-time situational awareness and cyber-physical control through a digital twin for traffic,” IEEE Transactions on Intelligent Transportation Systems, vol. 24, no. 3, pp. 3145–3156, 2023.
  3. H. Yuan, G. Li, Z. Bao, and L. Feng, “An effective joint prediction model for travel demands and traffic flows,” in 2021 IEEE 37th International Conference on Data Engineering (ICDE), 2021, pp. 348–359.
  4. G. Li, X. Wang, G. S. Njoo, S. Zhong, S.-H. G. Chan, C.-C. Hung, and W.-C. Peng, “A data-driven spatial-temporal graph neural network for docked bike prediction,” in 2022 IEEE 38th International Conference on Data Engineering (ICDE), 2022, pp. 713–726.
  5. S. Ling, Z. Yu, S. Cao, H. Zhang, and S. Hu, “Sthan: Transportation demand forecasting with compound spatio-temporal relationships,” ACM Trans. Knowl. Discov. Data, oct 2022.
  6. Y. Yao, B. Gu, Z. Su, and M. Guizani, “Mvstgn: A multi-view spatial-temporal graph network for cellular traffic prediction,” IEEE Transactions on Mobile Computing, vol. 22, no. 5, pp. 2837–2849, 2023.
  7. R.-G. Cirstea, B. Yang, C. Guo, T. Kieu, and S. Pan, “Towards spatio- temporal aware traffic time series forecasting,” in 2022 IEEE 38th International Conference on Data Engineering (ICDE), 2022, pp. 2900–2913.
  8. Y. Cui, S. Li, W. Deng, Z. Zhang, J. Zhao, K. Zheng, and X. Zhou, “Roi-demand traffic prediction: A pre-train, query and fine-tune framework,” in 2023 IEEE 39th International Conference on Data Engineering (ICDE), 2023, pp. 1340–1352.
  9. S. Guo, Y. Lin, L. Gong, C. Wang, Z. Zhou, Z. Shen, Y. Huang, and H. Wan, “Self-supervised spatial-temporal bottleneck attentive network for efficient long-term traffic forecasting,” in 2023 IEEE 39th International Conference on Data Engineering (ICDE), 2023, pp. 1585–1596.
  10. Z. Wu, S. Pan, G. Long, J. Jiang, and C. Zhang, “Graph wavenet for deep spatial-temporal graph modeling,” in Proceedings of the 28th International Joint Conference on Artificial Intelligence, ser. IJCAI’19.   AAAI Press, 2019, p. 1907–1913.
  11. C. Zheng, X. Fan, C. Wang, and J. Qi, “Gman: A graph multi-attention network for traffic prediction,” Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, no. 01, pp. 1234–1241, 2020.
  12. Z. Wu, S. Pan, G. Long, J. Jiang, X. Chang, and C. Zhang, “Connecting the dots: Multivariate time series forecasting with graph neural networks,” in Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, ser. KDD ’20, 2020, p. 753–763.
  13. Y. Liang, K. Ouyang, J. Sun, Y. Wang, J. Zhang, Y. Zheng, D. Rosenblum, and R. Zimmermann, “Fine-grained urban flow prediction,” in Proceedings of the Web Conference 2021, 2021, p. 1833–1845.
  14. L. Wang, D. Chai, X. Liu, L. Chen, and K. Chen, “Exploring the generalizability of spatio-temporal traffic prediction: Meta-modeling and an analytic framework,” IEEE Transactions on Knowledge and Data Engineering, vol. 35, no. 4, pp. 3870–3884, 2023.
  15. X. Geng, Y. Li, L. Wang, L. Zhang, Q. Yang, J. Ye, and Y. Liu, “Spatiotemporal multi-graph convolution network for ride-hailing demand forecasting,” Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, no. 01, pp. 3656–3663, 2019.
  16. Z. Pan, W. Zhang, Y. Liang, W. Zhang, Y. Yu, J. Zhang, and Y. Zheng, “Spatio-temporal meta learning for urban traffic prediction,” IEEE Transactions on Knowledge and Data Engineering, vol. 34, no. 3, pp. 1462–1476, 2022.
  17. C. Zheng, X. Fan, C. Wen, L. Chen, C. Wang, and J. Li, “Deepstd: Mining spatio-temporal disturbances of multiple context factors for citywide traffic flow prediction,” IEEE Transactions on Intelligent Transportation Systems, vol. 21, no. 9, pp. 3744–3755, 2020.
  18. J. Yuan, Y. Zheng, and X. Xie, “Discovering regions of different functions in a city using human mobility and pois,” in Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2012, p. 186–194.
  19. L. Sun, X. Ling, K. He, and Q. Tan, “Community structure in traffic zones based on travel demand,” Physica A: Statistical Mechanics and its Applications, vol. 457, pp. 356–363, 2016. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0378437116300346
  20. D. W. Wong, “The modifiable areal unit problem (maup),” in WorldMinds: geographical perspectives on 100 problems.   Springer, 2004, pp. 571–575.
  21. S. Openshaw, “The modifiable areal unit problem,” Quantitative geography: A British view, pp. 60–69, 1981.
  22. S. C. de Andrade, C. Restrepo-Estrada, L. H. Nunes, C. A. M. Rodriguez, J. C. Estrella, A. C. B. Delbem, and J. Porto de Albuquerque, “A multicriteria optimization framework for the definition of the spatial granularity of urban social media analytics,” International Journal of Geographical Information Science, vol. 35, no. 1, pp. 43–62, 2021.
  23. J. Jin, P. Cheng, L. Chen, X. Lin, and W. Zhang, “Gridtuner: Reinvestigate grid size selection for spatiotemporal prediction models,” in 2022 IEEE 38th International Conference on Data Engineering (ICDE), 2022, pp. 1193–1205.
  24. L. Chen, J. Fang, Z. Yu, Y. Tong, S. Cao, and L. Wang, “A data-driven region generation framework for spatiotemporal transportation service management,” in Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, ser. KDD ’23, 2023, p. 3842–3854.
  25. J. Li, S. Wang, J. Zhang, H. Miao, J. Zhang, and P. S. Yu, “Fine-grained urban flow inference with incomplete data,” IEEE Transactions on Knowledge and Data Engineering, vol. 35, no. 6, pp. 5851–5864, 2023.
  26. J. Zhang, Y. Zheng, and D. Qi, “Deep spatio-temporal residual networks for citywide crowd flows prediction,” in Thirty-first AAAI conference on artificial intelligence, 2017.
  27. S. Wang, M. Zhang, H. Miao, Z. Peng, and P. S. Yu, “Multivariate correlation-aware spatio-temporal graph convolutional networks for multi-scale traffic prediction,” ACM Trans. Intell. Syst. Technol., vol. 13, no. 3, jan 2022.
  28. F. Wang, J. Xu, C. Liu, R. Zhou, and P. Zhao, “Mtgcn: A multitask deep learning model for traffic flow prediction,” in Database Systems for Advanced Applications: 25th International Conference, DASFAA 2020, Jeju, South Korea, September 24–27, 2020, Proceedings, Part I, 2020, p. 435–451.
  29. S. Wang, J. Cao, and P. S. Yu, “Deep learning for spatio-temporal data mining: A survey,” IEEE Transactions on Knowledge and Data Engineering, vol. 34, no. 8, pp. 3681–3700, 2022.
  30. “Apache hive,” https://hive.apache.org/, accessed: February 23, 2024.
  31. “Apache hbase,” https://hbase.apache.org/, accessed: February 23, 2024.
  32. Y. Ma, P. Gerard, Y. Tian, Z. Guo, and N. V. Chawla, “Hierarchical spatio-temporal graph neural networks for pandemic forecasting,” in Proceedings of the 31st ACM International Conference on Information & Knowledge Management, ser. CIKM ’22, New York, NY, USA, 2022, p. 1481–1490.
  33. J. Zhang, Y. Zheng, D. Qi, R. Li, and X. Yi, “Dnn-based prediction model for spatio-temporal data,” in Proceedings of the 24th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, ser. SIGSPACIAL ’16, 2016.
  34. Z. Liu, Y. Lin, Y. Cao, H. Hu, Y. Wei, Z. Zhang, S. Lin, and B. Guo, “Swin transformer: Hierarchical vision transformer using shifted windows,” in 2021 IEEE/CVF International Conference on Computer Vision (ICCV), oct 2021, pp. 9992–10 002.
  35. K. Bi, L. Xie, H. Zhang, X. Chen, X. Gu, and Q. Tian, “Accurate medium-range global weather forecasting with 3d neural networks,” Nature, vol. 619, no. 7970, pp. 533–538, 2023.
  36. J. Hu, L. Shen, and G. Sun, “Squeeze-and-excitation networks,” in 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2018, pp. 7132–7141.
  37. T.-Y. Lin, P. Dollár, R. Girshick, K. He, B. Hariharan, and S. Belongie, “Feature pyramid networks for object detection,” in 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017, pp. 936–944.
  38. S. Arlinghaus and J. Kerski, “Spatial transformations and visualization: Selected common threads and root concepts linking old to new,” Solstice: An Electronic Journal of Geography and Mathematics, vol. Volume XXV, 06 2015.
  39. “Union (analysis),” https://desktop.arcgis.com/en/arcmap/latest/tools/analysis-toolbox/union.htm, accessed: February 23, 2024.
  40. R. K. V. Kothuri, S. Ravada, and D. Abugov, “Quadtree and r-tree indexes in oracle spatial: A comparison using gis data,” in Proceedings of the 2002 ACM SIGMOD International Conference on Management of Data, ser. SIGMOD ’02, 2002, p. 546–557.
  41. C. Zhang, Y. Zhang, W. Zhang, and X. Lin, “Inverted linear quadtree: Efficient top k spatial keyword search,” in 2013 IEEE 29th International Conference on Data Engineering (ICDE), 2013, pp. 901–912.
  42. H. Yu, X. Xu, T. Zhong, and F. Zhou, “Overcoming forgetting in fine-grained urban flow inference via adaptive knowledge replay,” in Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence and Thirty-Fifth Conference on Innovative Applications of Artificial Intelligence and Thirteenth Symposium on Educational Advances in Artificial Intelligence, ser. AAAI’23/IAAI’23/EAAI’23, 2023.
  43. W. Qian, D. Zhang, Y. Zhao, K. Zheng, and J. Q. Yu, “Uncertainty quantification for traffic forecasting: A unified approach,” in 2023 IEEE 39th International Conference on Data Engineering (ICDE), apr 2023, pp. 992–1004.
  44. Y. Zhao, X. Luo, W. Ju, C. Chen, X.-S. Hua, and M. Zhang, “Dynamic hypergraph structure learning for traffic flow forecasting,” in 2023 IEEE 39th International Conference on Data Engineering (ICDE), 2023, pp. 2303–2316.
  45. K. Wang, L. Liu, Y. Liu, G. Li, F. Zhou, and L. Lin, “Urban regional function guided traffic flow prediction,” Information Sciences, vol. 634, pp. 308–320, 2023. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0020025523004334
  46. J. Sun, J. Zhang, Q. Li, X. Yi, Y. Liang, and Y. Zheng, “Predicting citywide crowd flows in irregular regions using multi-view graph convolutional networks,” IEEE Transactions on Knowledge and Data Engineering, vol. 34, no. 5, pp. 2348–2359, 2022.
  47. X. Wang, Z. Zhou, Y. Zhao, X. Zhang, K. Xing, F. Xiao, Z. Yang, and Y. Liu, “Improving urban crowd flow prediction on flexible region partition,” IEEE Transactions on Mobile Computing, vol. 19, no. 12, pp. 2804–2817, 2020.
  48. X. Tang, Z. T. Qin, F. Zhang, Z. Wang, Z. Xu, Y. Ma, H. Zhu, and J. Ye, “A deep value-network based approach for multi-driver order dispatching,” in Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, KDD 2019, Anchorage, AK, USA, August 4-8, 2019, 2019.
  49. N. J. Yuan, Y. Zheng, and X. Xie, “Segmentation of urban areas using road networks,” Tech. Rep. MSR-TR-2012-65, July 2012.
  50. T. Chen and C. Guestrin, “Xgboost: A scalable tree boosting system,” in Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, ser. KDD ’16, 2016, p. 785–794.
  51. J. Zhang, Y. Zheng, J. Sun, and D. Qi, “Flow prediction in spatio-temporal networks based on multitask deep learning,” IEEE Transactions on Knowledge and Data Engineering, vol. 32, no. 3, pp. 468–478, 2020.
  52. Y. Li, R. Yu, C. Shahabi, and Y. Liu, “Diffusion convolutional recurrent neural network: Data-driven traffic forecasting,” in International Conference on Learning Representations (ICLR ’18), 2018.
  53. D. Chai, L. Wang, and Q. Yang, “Bike flow prediction with multi-graph convolutional networks,” in Proceedings of the 26th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, ser. SIGSPATIAL ’18, 2018, p. 397–400.
  54. C. Song, Y. Lin, S. Guo, and H. Wan, “Spatial-temporal synchronous graph convolutional networks: A new framework for spatial-temporal network data forecasting,” Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, no. 01, pp. 914–921, Apr. 2020.
  55. Q. Wang, B. Guo, Y. Ouyang, K. Shu, Z. Yu, and H. Liu, “Spatial community-informed evolving graphs for demand prediction,” in Machine Learning and Knowledge Discovery in Databases. Applied Data Science and Demo Track: European Conference, ECML PKDD, 2020, p. 440–456.
Citations (2)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com