Disk Harmonics for Analysing Curved and Flat Self-affine Rough Surfaces and the Topological Reconstruction of Open Surfaces (2403.07001v1)
Abstract: When two bodies get into contact, only a small portion of the apparent area is actually involved in producing contact and friction forces, because of the surface roughnesses. It is therefore crucial to accurately describe the morphology of rough surfaces for instance by extracting the fractal dimension and the so-called Hurst exponent which is a typical signature of rough surfaces. This can be done using harmonic decomposition, which is easy for periodic and nominally flat surfaces since Fourier transforms allow fast and reliable decomposition. Yet, it remains a challenging task in the general curved and non-periodic cases, where more appropriate basis functions must be used. In this work, disk harmonics based on Fourier-Bessel basis functions are employed for decomposing open single-edge genus-0 surfaces (no holes) as a practical and fast alternative to characterise self-affine rough surfaces with the power Fourier-Bessel spectral density. An analytical relationship between the power spectrum density decay and the Hurst exponent is derived through an extension of the Wiener-Khinchin theorem, in the special case where surfaces are assumed self-affine and isotropic. Finally, this approach is demonstrated to successfully measure the fractal dimension, and the Hurst exponent, without introducing typical biases coming from basis functions boundary conditions, surface discretisation or curvature of the surface patches. This work opens the path for contact mechanics studies based on the Fourier-Bessel spectral representation of curved and rough surface morphologies. All implementation details for this method are available under GNU LGPLv3 terms and conditions.
- R. Capozza and K.J. Hanley. A hierarchical, spherical harmonic-based approach to simulate abradable, irregularly shaped particles in dem. Powder Technology, 378:528–537, 2021. ISSN 0032-5910. doi: 10.1016/j.powtec.2020.10.015.
- Imaging surface contacts: Power law contact distributions and contact stresses in quartz, calcite, glass and acrylic plastic. Tectonophysics, 256(1–4):219–239, May 1996. ISSN 0040-1951. doi: 10.1016/0040-1951(95)00165-4.
- Molecular probes reveal deviations from Amontons’ law in multi-asperity frictional contacts. Nature Communications, 9(1):888, March 2018. ISSN 2041-1723. doi: 10.1038/s41467-018-02981-y.
- On the nature of surface roughness with application to contact mechanics, sealing, rubber friction and adhesion. Journal of physics. Condensed matter : an Institute of Physics journal, 17(1):R1–R62, 2005.
- B. N. J. Persson. Theory of rubber friction and contact mechanics. The Journal of Chemical Physics, 115(8):3840–3861, August 2001. ISSN 0021-9606, 1089-7690. doi: 10.1063/1.1388626.
- J. R. Barber. Thermal Effects in Friction and Wear. PhD thesis, University of Cambridge, 1969.
- J. R. Barber. Multiscale Surfaces and Amontons’ Law of Friction. Tribology Letters, 49(3):539–543, March 2013. ISSN 1573-2711. doi: 10.1007/s11249-012-0094-6.
- Contact of Nominally Flat Surfaces. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 295(1442):300–319, December 1966. ISSN 1364-5021, 1471-2946. doi: 10.1098/rspa.1966.0242.
- P. Ranganath Nayak. Random Process Model of Rough Surfaces. Journal of Tribology, 93(3):398–407, 1971. ISSN 0742-4787. doi: 10.1115/1.3451608.
- Statistical model of nearly complete elastic rough surface contact. International Journal of Solids and Structures, 51(5):1075–1088, March 2014. ISSN 0020-7683. doi: 10.1016/j.ijsolstr.2013.12.005.
- H. M. Stanley and T. Kato. An FFT-Based Method for Rough Surface Contact. Journal of Tribology, 119(3):481–485, July 1997. ISSN 0742-4787. doi: 10.1115/1.2833523.
- A numerical method for solving rough contact problems based on the multi-level multi-summation and conjugate gradient techniques. Wear, 231(2):206–219, July 1999. ISSN 0043-1648. doi: 10.1016/S0043-1648(99)00113-1.
- Finite Element Modeling of Sliding Contact Between Rough Surfaces. ASMEDC, pages 315–316, January 2005. doi: 10.1115/WTC2005-63567.
- Development of a Three-Dimensional Semi-Analytical Elastic-Plastic Contact Code. Journal of Tribology, 124(4):653–667, September 2002. ISSN 0742-4787. doi: 10.1115/1.1467920.
- Contact Pressure and Residual Strain in 3D Elasto-Plastic Rolling Contact for a Circular or Elliptical Point Contact. Journal of Tribology, 133(4):041402–041402, October 2011. ISSN 0742-4787. doi: 10.1115/1.4004878.
- Elastic contact between rough surfaces: Effect of roughness at large and small wavelengths. Tribology International, 40(10–12):1413–1422, October 2007. ISSN 0301-679X. doi: 10.1016/j.triboint.2007.02.003.
- A Fourier-accelerated volume integral method for elastoplastic contact. Computer Methods in Applied Mechanics and Engineering, 351:951–976, July 2019. ISSN 0045-7825. doi: 10.1016/j.cma.2019.04.006.
- The coefficient of proportionality \kappa between real contact area and load, with new asperity models. Wear, 268(7–8):1020–1029, March 2010. ISSN 0043-1648. doi: 10.1016/j.wear.2009.12.038.
- Contact between representative rough surfaces. Physical Review E, 86(3):035601, September 2012. doi: 10.1103/PhysRevE.86.035601.
- The Contact of Elastic Regular Wavy Surfaces Revisited. Tribology Letters, 56(1):171–183, September 2014. ISSN 1023-8883, 1573-2711. doi: 10.1007/s11249-014-0395-z.
- From infinitesimal to full contact between rough surfaces: Evolution of the contact area. International Journal of Solids and Structures, 52:83–102, January 2015. ISSN 0020-7683. doi: 10.1016/j.ijsolstr.2014.09.019.
- On the accurate computation of the true contact-area in mechanical contact of random rough surfaces. Tribology International, 114:161–171, October 2017. ISSN 0301-679X. doi: 10.1016/j.triboint.2017.04.023.
- Quantitative characterization of surface topography using spectral analysis. Surface Topography: Metrology and Properties, 5(1):013001, January 2017. doi: 10.1088/2051-672x/aa51f8.
- K. M. M. Prabhu. Window Functions and Their Applications in Signal Processing. CRC Press, September 2018. doi: 10.1201/9781315216386.
- Calculation of the power spectral density from surface profile data. Applied Optics, 34(1):201, January 1995. doi: 10.1364/ao.34.000201.
- Spherical cap harmonic analysis (SCHA) for characterising the morphology of rough surface patches. Powder Technology, 393:837–856, 2021. ISSN 0032-5910. doi: 10.1016/j.powtec.2021.07.081.
- Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. Dover, New York, ninth dover printing, tenth gpo printing edition, 1964.
- Hemispherical harmonic surface description and applications to medical image analysis. In Third International Symposium on 3D Data Processing, Visualization, and Transmission (3DPVT’06), pages 381–388. IEEE, 2006.
- Open and closed anatomical surface description via hemispherical area-preserving map. Signal Processing, 180:107867, 2021.
- G. Kirchhoff. über das gleichgewicht und die bewegung einer elastischen scheibe. Journal für die reine und angewandte Mathematik (Crelles Journal), 1850(40):51–88, 1850. doi: doi:10.1515/crll.1850.40.51.
- John William Strutt Rayleigh. The Theory of Sound. Macmillan and Co., 1877.
- S. Timoshenko. Vibration problems in engineering. Zeitschrift für Elektrochemie und angewandte physikalische Chemie, 35(12):939, 1929. doi: 10.1002/bbpc.192900081.
- Thein Wah. Vibration of circular plates. The Journal of the Acoustical Society of America, 34(3):275–281, March 1962. doi: 10.1121/1.1928110.
- Formulation of a galerkin spectral element–fourier method for three-dimensional incompressible flows in cylindrical geometries. Journal of Computational Physics, 197(2):759–778, July 2004. ISSN 0021-9991. doi: 10.1016/j.jcp.2004.02.013. URL http://dx.doi.org/10.1016/j.jcp.2004.02.013.
- Disk-harmonic coefficients for invariant pattern recognition. J. Opt. Soc. Am. A, 15(2):389–401, Feb 1998. doi: 10.1364/JOSAA.15.000389.
- Orthogonal Fourier–Mellin moments for invariant pattern recognition. J. Opt. Soc. Am. A, 11(6):1748–1757, Jun 1994. doi: 10.1364/JOSAA.11.001748.
- Image description with Chebyshev–Fourier moments. J. Opt. Soc. Am. A, 19(9):1748–1754, Sep 2002. doi: 10.1364/JOSAA.19.001748.
- Multidistortion-invariant image recognition with radial harmonic Fourier moments. J. Opt. Soc. Am. A, 20(4):631–637, Apr 2003. doi: 10.1364/JOSAA.20.000631.
- ZerNet: Convolutional neural networks on arbitrary surfaces via zernike local tangent space estimation. Computer Graphics Forum, 39(6):204–216, 2020. doi: 10.1111/cgf.14012.
- Gary P. T. Choi and Chris H. Rycroft. Density-equalizing maps for simply connected open surfaces. SIAM Journal on Imaging Sciences, 11(2):1134–1178, 2018.
- FLASH: Fast landmark aligned spherical harmonic parameterization for genus-0 closed brain surfaces. SIAM Journal on Imaging Sciences, 8(1):67–94, 2015.
- William Thomas Tutte. How to draw a graph. Proceedings of the London Mathematical Society, 3(1):743–767, 1963.
- Michael T Gastner and Mark E J Newman. Diffusion-based method for producing density-equalizing maps. Proceedings of the National Academy of Sciences, 101(20):7499–7504, 2004.
- Area-preserving mapping of 3D carotid ultrasound images using density-equalizing reference map. IEEE Transactions on Biomedical Engineering, 67(9):2507–2517, 2020.
- Quasiconformal mappings in the plane, volume 126. Citeseer, 1973.
- Riemannmapper: A mesh parameterization toolkit, 2022. URL https://www3.cs.stonybrook.edu/~gu/software/RiemannMapper/index.html#Introduction.
- Fourier Series. Dover Books on Mathematics. Dover Publications, 1976. ISBN 9780486633176. URL https://books.google.ch/books?id=XqqNDQeLfAkC.
- Murray R. Spiegel. Fourier Analysis with Applications to Boundary Value Problems. Schaum’s outline series. McGraw-Hill, 1974. ISBN 9780070602199. URL https://books.google.ch/books?id=WoK9OEOynSUC&lpg=PP1&pg=PP1#v=onepage&q&f=false.
- Fourier Series and Boundary Value Problems. Churchill-Brown series. McGraw-Hill, 1993. ISBN 9780070082021. URL https://books.google.ch/books?id=wFHvAAAAMAAJ.
- Kurt Bernardo Wolf. Normal mode expansion and bessel series. In Integral Transforms in Science and Engineering, pages 221–251. Springer US, 1979. doi: 10.1007/978-1-4757-0872-1˙6.
- John P. Boyd and Fu Yu. Comparing seven spectral methods for interpolation and for solving the poisson equation in a disk: Zernike polynomials, Logan–Shepp ridge polynomials, Chebyshev–Fourier series, cylindrical Robert functions, Bessel–Fourier expansions, square-to-disk conformal mapping and radial basis functions. Journal of Computational Physics, 230(4):1408–1438, February 2011. doi: 10.1016/j.jcp.2010.11.011.
- Zeros of first derivatives of Bessel functions of the first kind, J′n(x)superscript𝐽′𝑛𝑥J^{\prime}n(x)italic_J start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT italic_n ( italic_x ), 21≤n≤5121𝑛5121\leq n\leq 5121 ≤ italic_n ≤ 51, 0≤x≤1000𝑥1000\leq x\leq 1000 ≤ italic_x ≤ 100. Journal of Research of the National Bureau of Standards Section B Mathematics and Mathematical Physics, page 181, 1963.
- David E Muller. A method for solving algebraic equations using an automatic computer. Mathematical Tables and Other Aids to Computation, 10(56):208–215, 1956.
- Parametrization of closed surfaces for 3-D shape description. Computer Vision and Image Understanding, 61(2):154–170, 1995.
- David W. Ritchie and Graham J. L. Kemp. Fast computation, rotation, and comparison of low resolution spherical harmonic molecular surfaces. Journal of Computational Chemistry, 20(4):383–395, 1999. doi: 10.1002/(SICI)1096-987X(199903)20:4¡383::AID-JCC1¿3.0.CO;2-M.
- A.K. Fung. A note on the wiener-khintchine theorem for autocorrelation. Proceedings of the IEEE, 55(4):594–595, 1967. doi: 10.1109/PROC.1967.5616.
- Wikipedia contributors. Matterhorn — Wikipedia, the free encyclopedia, 2021. URL https://en.wikipedia.org/w/index.php?title=Matterhorn&oldid=1040178943. [Online; accessed 23-August-2021].
- Federal Office of Topography SwissTopo. 3D printing of the Matterhorn, Aug 2021. URL https://www.swisstopo.admin.ch/en/knowledge-facts/topographic-landscape-model/3d-printout.html.
- Andreas Goedecke. Transient Effects in Friction. Springer Vienna, 2013. doi: 10.1007/978-3-7091-1506-0.
- John C Russ. Fractal surfaces. Springer US, 1994.
- Eugene Hecht. Optics. Fourth edition. Reading, Mass. : Addison-Wesley, [2002] ©2002, 2002. URL https://search.library.wisc.edu/catalog/999919136202121.
- G. N. Watson. A Treatise on the Theory of Bessel Functions. Cambridge University Press, Cambridge, England, 1944.