Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Physics Sensor Based Deep Learning Fall Detection System (2403.06994v1)

Published 29 Feb 2024 in eess.SP, cs.AI, and cs.LG

Abstract: Fall detection based on embedded sensor is a practical and popular research direction in recent years. In terms of a specific application: fall detection methods based upon physics sensors such as [gyroscope and accelerator] have been exploited using traditional hand crafted features and feed them in machine learning models like Markov chain or just threshold based classification methods. In this paper, we build a complete system named TSFallDetect including data receiving device based on embedded sensor, mobile deep-learning model deploying platform, and a simple server, which will be used to gather models and data for future expansion. On the other hand, we exploit the sequential deep-learning methods to address this falling motion prediction problem based on data collected by inertial and film pressure sensors. We make a empirical study based on existing datasets and our datasets collected from our system separately, which shows that the deep-learning model has more potential advantage than other traditional methods, and we proposed a new deep-learning model based on the time series data to predict the fall, and it may be superior to other sequential models in this particular field.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (32)
  1. G. Kour and R. Saabne, “Real-time segmentation of on-line handwritten arabic script,” in Frontiers in Handwriting Recognition (ICFHR), 2014 14th International Conference on.   IEEE, 2014, pp. 417–422.
  2. G. Kour and R. Saabne, “Fast classification of handwritten on-line arabic characters,” in Soft Computing and Pattern Recognition (SoCPaR), 2014 6th International Conference of.   IEEE, 2014, pp. 312–318.
  3. G. Hadash, E. Kermany, B. Carmeli, O. Lavi, G. Kour, and A. Jacovi, “Estimate and replace: A novel approach to integrating deep neural networks with existing applications,” arXiv preprint arXiv:1804.09028, 2018.
  4. E. Casilari, J. A. Santoyo-Ramón, and J. M. Cano-García, “Umafall: A multisensor dataset for the research on automatic fall detection,” Procedia Computer Science, vol. 110, pp. 32–39, 2017.
  5. S. Spinsante, E. Gambi, L. Montanini, D. Perla, and A. Del Campo, “Tst footwear-based dataset for fall detection (tst fb4fd),” 2017. [Online]. Available: https://dx.doi.org/10.21227/H2W01S
  6. S. Gasparrini, E. Cippitelli, S. Spinsante, and E. Gambi, “A depth-based fall detection system using a kinect® sensor,” Sensors, vol. 14, no. 2, pp. 2756–2775, 2014.
  7. E. E. Stone and M. Skubic, “Fall detection in homes of older adults using the microsoft kinect,” IEEE Journal of Biomedical & Health Informatics, vol. 19, no. 1, pp. 290–301, 2017.
  8. N. Fletcher-Lloyd, A. I. Serban, M. Kolanko, D. Wingfield, D. Wilson, R. Nilforooshan, P. Barnaghi, and E. Soreq, “A markov chain model for identifying changes in daily activity patterns of people living with dementia,” IEEE Internet of Things Journal, vol. PP.
  9. S. T. Hsieh and C. L. Lin, “Fall detection algorithm based on mpu6050 and long-term short-term memory network,” in 2020 International Automatic Control Conference (CACS), 2020.
  10. A. V. D. Oord, S. Dieleman, H. Zen, K. Simonyan, and K. Kavukcuoglu, “Wavenet: A generative model for raw audio,” 2016.
  11. T. Vaiyapuri, E. L. Lydia, M. Y. Sikkandar, V. G. Díaz, I. V. Pustokhina, and D. A. Pustokhin, “Internet of things and deep learning enabled elderly fall detection model for smart homecare,” IEEE Access, vol. 9, pp. 113 879–113 888, 2021.
  12. E. Casilari, R. Lora-Rivera, and F. García-Lagos, “A study on the application of convolutional neural networks to fall detection evaluated with multiple public datasets,” Sensors, vol. 20, no. 5, p. 1466, 2020.
  13. K. Adhikari, H. Bouchachia, and H. Nait-Charif, “Activity recognition for indoor fall detection using convolutional neural network,” in 2017 Fifteenth IAPR International Conference on Machine Vision Applications (MVA), 2017, pp. 81–84.
  14. X. Li, T. Pang, W. Liu, and T. Wang, “Fall detection for elderly person care using convolutional neural networks,” in 2017 10th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI), 2017, pp. 1–6.
  15. N. Lu, Y. Wu, L. Feng, and J. Song, “Deep learning for fall detection: 3d-cnn combined with lstm on video kinematic data,” IEEE Journal of Biomedical and Health Informatics, vol. PP, pp. 1–1, 02 2018.
  16. T.-H. Tsai and C.-W. Hsu, “Implementation of fall detection system based on 3d skeleton for deep learning technique,” 2019 IEEE 8th Global Conference on Consumer Electronics (GCCE), pp. 389–390, 2019. [Online]. Available: https://api.semanticscholar.org/CorpusID:211686877
  17. E. Casilari-Pérez, R. Lora-Rivera, and F. García-Lagos, “A study on the application of convolutional neural networks to fall detection evaluated with multiple public datasets,” Sensors (Basel, Switzerland), vol. 20, 2020. [Online]. Available: https://api.semanticscholar.org/CorpusID:212666988
  18. J. Xu, Z. He, and Y. Zhang, “Cnn-lstm combined network for iot enabled fall detection applications,” Journal of Physics: Conference Series, vol. 1267, no. 1, p. 012044, jul 2019. [Online]. Available: https://dx.doi.org/10.1088/1742-6596/1267/1/012044
  19. E. Torti, A. Fontanella, M. Musci, N. Blago, D. P. Pau, F. Leporati, and M. Piastra, “Embedded real-time fall detection with deep learning on wearable devices,” 2018 21st Euromicro Conference on Digital System Design (DSD), pp. 405–412, 2018. [Online]. Available: https://api.semanticscholar.org/CorpusID:52985178
  20. T. Theodoridis, V. Solachidis, N. Vretos, and P. Daras, “Human fall detection from acceleration measurements using a recurrent neural network,” 2018. [Online]. Available: https://api.semanticscholar.org/CorpusID:196017607
  21. Y. Delahoz and M. Labrador, “Survey on fall detection and fall prevention using wearable and external sensors,” Sensors, vol. 14, no. 10, p. 19806, 2014.
  22. Kabalan, Chaccour, Rony, Darazi, Amir, Hajjam, El, Hassani, Emmanuel, and Andrès, “From fall detection to fall prevention: A generic classification of fall-related systems,” IEEE Sensors Journal, 2017.
  23. E. Cippitelli, F. Fioranelli, E. Gambi, and S. Spinsante, “Radar and rgb-depth sensors for fall detection: A review,” IEEE Sensors Journal, pp. 3585–3604, 2017.
  24. M. S. Khan, M. Yu, P. Feng, L. Wang, and J. Chambers, “An unsupervised acoustic fall detection system using source separation for sound interference suppression,” Signal Processing, vol. 110, no. C, pp. 199–210, 2015.
  25. G. Feng, J. Mai, Z. Ban, X. Guo, and G. Wang, “Floor pressure imaging for fall detection with fiber-optic sensors,” IEEE Pervasive Computing, vol. 15, no. 2, pp. 40–47, 2016.
  26. A. G. A. B, “Wearables for independent living in older adults: Gait and falls,” Maturitas, vol. 100, pp. 16–26, 2017.
  27. Mukhopadhyay and S. Chandra, “Wearable sensors for human activity monitoring: A review,” IEEE Sensors Journal, vol. 15, no. 3, pp. 1321–1330, 2014.
  28. A. Özdemir and B. Barshan, “Detecting falls with wearable sensors using machine learning techniques.” Sensors, vol. 14, no. 6, p. 10691, 2014.
  29. P. Ntanasis, E. Pippa, A. T. Zdemir, B. Barshan, and V. Megalooikonomou, “Investigation of sensor placement for accurate fall detection,” in International Conference on Wireless Mobile Communication and Healthcare, 2016.
  30. O. Ahmet, “An analysis on sensor locations of the human body for wearable fall detection devices: Principles and practice,” Sensors (Basel, Switzerland), vol. 16, no. 8, 2016.
  31. N. El-Bendary, Q. Tan, F. C. Pivot, and A. Lam, “Fall detection and prevention for the elderly: A review of trends and challenges,” International Journal on Smart Sensing & Intelligent Systems, vol. 6, no. 3, pp. 1230–1266, 2013.
  32. L. Day, “Falls in older people: Risk factors and strategies for prevention.” age & ageing, 2007.
User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Zeyuan Qu (1 paper)
  2. Tiange Huang (2 papers)
  3. Yuxin Ji (2 papers)
  4. Yongjun Li (25 papers)

Summary

We haven't generated a summary for this paper yet.