Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Human-Exoskeleton Interaction Portrait (2403.06851v1)

Published 11 Mar 2024 in cs.RO

Abstract: Human-robot physical interaction contains crucial information for optimizing user experience, enhancing robot performance, and objectively assessing user adaptation. This study introduces a new method to evaluate human-robot co-adaptation in lower limb exoskeletons by analyzing muscle activity and interaction torque as a two-dimensional random variable. We introduce the Interaction Portrait (IP), which visualizes this variable's distribution in polar coordinates. We applied this metric to compare a recent torque controller (HTC) based on kinematic state feedback and a novel feedforward controller (AMTC) with online learning, proposed herein, against a time-based controller (TBC) during treadmill walking at varying speeds. Compared to TBC, both HTC and AMTC significantly lower users' normalized oxygen uptake, suggesting enhanced user-exoskeleton coordination. IP analysis reveals this improvement stems from two distinct co-adaptation strategies, unidentifiable by traditional muscle activity or interaction torque analyses alone. HTC encourages users to yield control to the exoskeleton, decreasing muscular effort but increasing interaction torque, as the exoskeleton compensates for user dynamics. Conversely, AMTC promotes user engagement through increased muscular effort and reduced interaction torques, aligning it more closely with rehabilitation and gait training applications. IP phase evolution provides insight into each user's interaction strategy development, showcasing IP analysis's potential in comparing and designing novel controllers to optimize human-robot interaction in wearable robots.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (33)
  1. Duschau-Wicke, A., Zitzewitz, J.V., Caprez, A., Lunenburger, L., Riener, R.: Path control: a method for patient-cooperative robot-aided gait rehabilitation. IEEE Transactions on Neural Systems and Rehabilitation Engineering 18, 38–48 (2009) Bryan et al. [2021] Bryan, G.M., Franks, P.W., Song, S., Reyes, R., O’Donovan, M.P., Gregorczyk, K.N., Collins, S.H.: Optimized hip-knee-ankle exoskeleton assistance reduces the metabolic cost of walking with worn loads. Journal of Neuroengineering and Rehabilitation 18, 1–13 (2021) Franks et al. [2021] Franks, P.W., Bryan, G.M., Martin, R.M., Reyes, R., Lakmazaheri, A.C., Collins, S.H.: Comparing optimized exoskeleton assistance of the hip, knee, and ankle in single and multi-joint configurations. Wearable Technologies 2, 16 (2021) Durandau et al. [2022] Durandau, G., Rampeltshammer, W.F., Kooij, H., Sartori, M.: Neuromechanical model-based adaptive control of bilateral ankle exoskeletons: biological joint torque and electromyogram reduction across walking conditions. IEEE Transactions on Robotics 38, 1380–1394 (2022) Poggensee and Collins [2021] Poggensee, K.L., Collins, S.H.: How adaptation, training, and customization contribute to benefits from exoskeleton assistance. Science Robotics 6 (2021) Nuckols et al. [2021] Nuckols, R.W., Lee, S., Swaminathan, K., Orzel, D., Howe, R.D., Walsh, C.J.: Individualization of exosuit assistance based on measured muscle dynamics during versatile walking. Science robotics 6 (2021) Lee et al. [2023] Lee, U.H., Shetty, V.S., Franks, P.W., Tan, J., Evangelopoulos, G., Ha, S., Rouse, E.J.: User preference optimization for control of ankle exoskeletons using sample efficient active learning. Science Robotics 8 (2023) Postol et al. [2020] Postol, N., Lamond, S., Galloway, M., Palazzi, K., Bivard, A., Spratt, N.J., Marquez, J.: The metabolic cost of exercising with a robotic exoskeleton: A comparison of healthy and neurologically impaired people. IEEE Transactions on Neural Systems and Rehabilitation Engineering 28, 3031–3039 (2020) Witte et al. [2020] Witte, K.A., Fiers, P., Sheets-Singer, A.L., Collins, S.H.: Improving the energy economy of human running with powered and unpowered ankle exoskeleton assistance. Science Robotics 5 (2020) Zhu et al. [2021] Zhu, F., Kern, M., Fowkes, E., Afzal, T., Contreras-Vidal, J.-L., Francisco, G.E., Chang, S.-H.: Effects of an exoskeleton-assisted gait training on post-stroke lower-limb muscle coordination. Journal of Neural Engineering 18, 046039 (2021) Küçüktabak et al. [2024] Küçüktabak, E.B., Wen, Y., Kim, S.J., Short, M., Ludvig, D., Hargrove, L., Perreault, E., Lynch, K., Pons, J.: Haptic transparency and interaction force control for a lower-limb exoskeleton. IEEE Transactions on Robotics (2024) Eva and Grizzle [2020] Eva, M.M., Grizzle, J.W.: Feedback control design for robust comfortable sit-to-stand motions of 3d lower-limb exoskeletons. IEEE Access 9, 122–161 (2020) Masengo et al. [2023] Masengo, G., Zhang, X., Dong, R., , A.B.A., Hamza, K., Mudaheranwa, E.: Lower limb exoskeleton robot and its cooperative control: A review, trends, and challenges for future research. Frontiers in Neurorobotics 16, 1–25 (2023) Ingraham et al. [2022] Ingraham, K.A., Remy, C.D., Rouse, E.J.: The role of user preference in the customized control of robotic exoskeletons. Science robotics 7 (2022) Pinto-Fernandez et al. [2020] Pinto-Fernandez, D., Diego, T., Carmen Sanchez-Villamanan, M., Aller, F., Mombaur, K., Conti, R., Vitiello, N., Moreno, J.C., Pons, J.L.: Performance evaluation of lower limb exoskeletons: A systematic review. IEEE Transactions on Neural Systems and Rehabilitation Engineering 28, 1573–1583 (2020) Slade et al. [2022] Slade, P., Kochenderfer, M.J., Delp, S.L., Collins, S.H.: Personalizing exoskeleton assistance while walking in the real world. Nature 610, 277–282 (2022) Medina et al. [2015] Medina, J.R., Lorenz, T., Hirche, S.: Synthesizing anticipatory haptic assistance considering human behavior uncertainty. IEEE Transactions on Robotics 31, 180–190 (2015) Martinez et al. [2018] Martinez, A., Lawson, B., Durrough, C., Goldfarb, M.: A velocity-field-based controller for assisting leg movement during walking with a bilateral hip and knee lower limb exoskeleton. IEEE Transactions on Robotics 35, 307–316 (2018) Shushtari et al. [2021] Shushtari, M., Nasiri, R., Arami, A.: Online reference trajectory adaptation: A personalized control strategy for lower limb exoskeletons. IEEE Robotics and Automation Letters 7, 128–134 (2021) Asl et al. [2020] Asl, H.J., Yamashita, M., Narikiyo, T., Kawanishi, M.: Field-based assist-as-needed control schemes for rehabilitation robots. IEEE/ASME Transactions on Mechatronics 25, 2100–2111 (2020) Dominijanni et al. [2023] Dominijanni, G., Pinheiro, D.L., Pollina, L., Orset, B., Gini, M., Anselmino, E., Pierella, C., Olivier, J., Shokur, S., Micera, S.: Human motor augmentation with an extra robotic arm without functional interference. Science Robotics 8 (2023) Losey et al. [2018] Losey, D.P., Mcdonald, C.G., Battaglia, E., O’Malley, M.: A review of intent detection, arbitration, and communication aspects of shared control for physical human-robot interaction. Applied Mechanics Reviews 70 (2018) https://doi.org/10.1115/1.4039145 Jackson and Collins [2019] Jackson, R.W., Collins, S.H.: Heuristic-based ankle exoskeleton control for co-adaptive assistance of human locomotion. IEEE Transactions on Neural Systems and Rehabilitation Engineering 27, 2059–2069 (2019) Banala et al. [2007] Banala, S.K., Agrawal, S.K., Scholz, J.P.: Active leg exoskeleton (alex) for gait rehabilitation of motor-impaired patients. In: 2007 IEEE 10th International Conference on Rehabilitation Robotics, pp. 401–407 (2007). 2007 IEEE 10th International Conference on Rehabilitation Robotics Dinovitzer et al. [2023a] Dinovitzer, H., Shushtari, M., Arami, A.: Feedforward control of lower limb exoskeletons: which torque profile should we use? IEEE Robotics and Automation Letters (2023) Dinovitzer et al. [2023b] Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Bryan, G.M., Franks, P.W., Song, S., Reyes, R., O’Donovan, M.P., Gregorczyk, K.N., Collins, S.H.: Optimized hip-knee-ankle exoskeleton assistance reduces the metabolic cost of walking with worn loads. Journal of Neuroengineering and Rehabilitation 18, 1–13 (2021) Franks et al. [2021] Franks, P.W., Bryan, G.M., Martin, R.M., Reyes, R., Lakmazaheri, A.C., Collins, S.H.: Comparing optimized exoskeleton assistance of the hip, knee, and ankle in single and multi-joint configurations. Wearable Technologies 2, 16 (2021) Durandau et al. [2022] Durandau, G., Rampeltshammer, W.F., Kooij, H., Sartori, M.: Neuromechanical model-based adaptive control of bilateral ankle exoskeletons: biological joint torque and electromyogram reduction across walking conditions. IEEE Transactions on Robotics 38, 1380–1394 (2022) Poggensee and Collins [2021] Poggensee, K.L., Collins, S.H.: How adaptation, training, and customization contribute to benefits from exoskeleton assistance. Science Robotics 6 (2021) Nuckols et al. [2021] Nuckols, R.W., Lee, S., Swaminathan, K., Orzel, D., Howe, R.D., Walsh, C.J.: Individualization of exosuit assistance based on measured muscle dynamics during versatile walking. Science robotics 6 (2021) Lee et al. [2023] Lee, U.H., Shetty, V.S., Franks, P.W., Tan, J., Evangelopoulos, G., Ha, S., Rouse, E.J.: User preference optimization for control of ankle exoskeletons using sample efficient active learning. Science Robotics 8 (2023) Postol et al. [2020] Postol, N., Lamond, S., Galloway, M., Palazzi, K., Bivard, A., Spratt, N.J., Marquez, J.: The metabolic cost of exercising with a robotic exoskeleton: A comparison of healthy and neurologically impaired people. IEEE Transactions on Neural Systems and Rehabilitation Engineering 28, 3031–3039 (2020) Witte et al. [2020] Witte, K.A., Fiers, P., Sheets-Singer, A.L., Collins, S.H.: Improving the energy economy of human running with powered and unpowered ankle exoskeleton assistance. Science Robotics 5 (2020) Zhu et al. [2021] Zhu, F., Kern, M., Fowkes, E., Afzal, T., Contreras-Vidal, J.-L., Francisco, G.E., Chang, S.-H.: Effects of an exoskeleton-assisted gait training on post-stroke lower-limb muscle coordination. Journal of Neural Engineering 18, 046039 (2021) Küçüktabak et al. [2024] Küçüktabak, E.B., Wen, Y., Kim, S.J., Short, M., Ludvig, D., Hargrove, L., Perreault, E., Lynch, K., Pons, J.: Haptic transparency and interaction force control for a lower-limb exoskeleton. IEEE Transactions on Robotics (2024) Eva and Grizzle [2020] Eva, M.M., Grizzle, J.W.: Feedback control design for robust comfortable sit-to-stand motions of 3d lower-limb exoskeletons. IEEE Access 9, 122–161 (2020) Masengo et al. [2023] Masengo, G., Zhang, X., Dong, R., , A.B.A., Hamza, K., Mudaheranwa, E.: Lower limb exoskeleton robot and its cooperative control: A review, trends, and challenges for future research. Frontiers in Neurorobotics 16, 1–25 (2023) Ingraham et al. [2022] Ingraham, K.A., Remy, C.D., Rouse, E.J.: The role of user preference in the customized control of robotic exoskeletons. Science robotics 7 (2022) Pinto-Fernandez et al. [2020] Pinto-Fernandez, D., Diego, T., Carmen Sanchez-Villamanan, M., Aller, F., Mombaur, K., Conti, R., Vitiello, N., Moreno, J.C., Pons, J.L.: Performance evaluation of lower limb exoskeletons: A systematic review. IEEE Transactions on Neural Systems and Rehabilitation Engineering 28, 1573–1583 (2020) Slade et al. [2022] Slade, P., Kochenderfer, M.J., Delp, S.L., Collins, S.H.: Personalizing exoskeleton assistance while walking in the real world. Nature 610, 277–282 (2022) Medina et al. [2015] Medina, J.R., Lorenz, T., Hirche, S.: Synthesizing anticipatory haptic assistance considering human behavior uncertainty. IEEE Transactions on Robotics 31, 180–190 (2015) Martinez et al. [2018] Martinez, A., Lawson, B., Durrough, C., Goldfarb, M.: A velocity-field-based controller for assisting leg movement during walking with a bilateral hip and knee lower limb exoskeleton. IEEE Transactions on Robotics 35, 307–316 (2018) Shushtari et al. [2021] Shushtari, M., Nasiri, R., Arami, A.: Online reference trajectory adaptation: A personalized control strategy for lower limb exoskeletons. IEEE Robotics and Automation Letters 7, 128–134 (2021) Asl et al. [2020] Asl, H.J., Yamashita, M., Narikiyo, T., Kawanishi, M.: Field-based assist-as-needed control schemes for rehabilitation robots. IEEE/ASME Transactions on Mechatronics 25, 2100–2111 (2020) Dominijanni et al. [2023] Dominijanni, G., Pinheiro, D.L., Pollina, L., Orset, B., Gini, M., Anselmino, E., Pierella, C., Olivier, J., Shokur, S., Micera, S.: Human motor augmentation with an extra robotic arm without functional interference. Science Robotics 8 (2023) Losey et al. [2018] Losey, D.P., Mcdonald, C.G., Battaglia, E., O’Malley, M.: A review of intent detection, arbitration, and communication aspects of shared control for physical human-robot interaction. Applied Mechanics Reviews 70 (2018) https://doi.org/10.1115/1.4039145 Jackson and Collins [2019] Jackson, R.W., Collins, S.H.: Heuristic-based ankle exoskeleton control for co-adaptive assistance of human locomotion. IEEE Transactions on Neural Systems and Rehabilitation Engineering 27, 2059–2069 (2019) Banala et al. [2007] Banala, S.K., Agrawal, S.K., Scholz, J.P.: Active leg exoskeleton (alex) for gait rehabilitation of motor-impaired patients. In: 2007 IEEE 10th International Conference on Rehabilitation Robotics, pp. 401–407 (2007). 2007 IEEE 10th International Conference on Rehabilitation Robotics Dinovitzer et al. [2023a] Dinovitzer, H., Shushtari, M., Arami, A.: Feedforward control of lower limb exoskeletons: which torque profile should we use? IEEE Robotics and Automation Letters (2023) Dinovitzer et al. [2023b] Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Franks, P.W., Bryan, G.M., Martin, R.M., Reyes, R., Lakmazaheri, A.C., Collins, S.H.: Comparing optimized exoskeleton assistance of the hip, knee, and ankle in single and multi-joint configurations. Wearable Technologies 2, 16 (2021) Durandau et al. [2022] Durandau, G., Rampeltshammer, W.F., Kooij, H., Sartori, M.: Neuromechanical model-based adaptive control of bilateral ankle exoskeletons: biological joint torque and electromyogram reduction across walking conditions. IEEE Transactions on Robotics 38, 1380–1394 (2022) Poggensee and Collins [2021] Poggensee, K.L., Collins, S.H.: How adaptation, training, and customization contribute to benefits from exoskeleton assistance. Science Robotics 6 (2021) Nuckols et al. [2021] Nuckols, R.W., Lee, S., Swaminathan, K., Orzel, D., Howe, R.D., Walsh, C.J.: Individualization of exosuit assistance based on measured muscle dynamics during versatile walking. Science robotics 6 (2021) Lee et al. [2023] Lee, U.H., Shetty, V.S., Franks, P.W., Tan, J., Evangelopoulos, G., Ha, S., Rouse, E.J.: User preference optimization for control of ankle exoskeletons using sample efficient active learning. Science Robotics 8 (2023) Postol et al. [2020] Postol, N., Lamond, S., Galloway, M., Palazzi, K., Bivard, A., Spratt, N.J., Marquez, J.: The metabolic cost of exercising with a robotic exoskeleton: A comparison of healthy and neurologically impaired people. IEEE Transactions on Neural Systems and Rehabilitation Engineering 28, 3031–3039 (2020) Witte et al. [2020] Witte, K.A., Fiers, P., Sheets-Singer, A.L., Collins, S.H.: Improving the energy economy of human running with powered and unpowered ankle exoskeleton assistance. Science Robotics 5 (2020) Zhu et al. [2021] Zhu, F., Kern, M., Fowkes, E., Afzal, T., Contreras-Vidal, J.-L., Francisco, G.E., Chang, S.-H.: Effects of an exoskeleton-assisted gait training on post-stroke lower-limb muscle coordination. Journal of Neural Engineering 18, 046039 (2021) Küçüktabak et al. [2024] Küçüktabak, E.B., Wen, Y., Kim, S.J., Short, M., Ludvig, D., Hargrove, L., Perreault, E., Lynch, K., Pons, J.: Haptic transparency and interaction force control for a lower-limb exoskeleton. IEEE Transactions on Robotics (2024) Eva and Grizzle [2020] Eva, M.M., Grizzle, J.W.: Feedback control design for robust comfortable sit-to-stand motions of 3d lower-limb exoskeletons. IEEE Access 9, 122–161 (2020) Masengo et al. [2023] Masengo, G., Zhang, X., Dong, R., , A.B.A., Hamza, K., Mudaheranwa, E.: Lower limb exoskeleton robot and its cooperative control: A review, trends, and challenges for future research. Frontiers in Neurorobotics 16, 1–25 (2023) Ingraham et al. [2022] Ingraham, K.A., Remy, C.D., Rouse, E.J.: The role of user preference in the customized control of robotic exoskeletons. Science robotics 7 (2022) Pinto-Fernandez et al. [2020] Pinto-Fernandez, D., Diego, T., Carmen Sanchez-Villamanan, M., Aller, F., Mombaur, K., Conti, R., Vitiello, N., Moreno, J.C., Pons, J.L.: Performance evaluation of lower limb exoskeletons: A systematic review. IEEE Transactions on Neural Systems and Rehabilitation Engineering 28, 1573–1583 (2020) Slade et al. [2022] Slade, P., Kochenderfer, M.J., Delp, S.L., Collins, S.H.: Personalizing exoskeleton assistance while walking in the real world. Nature 610, 277–282 (2022) Medina et al. [2015] Medina, J.R., Lorenz, T., Hirche, S.: Synthesizing anticipatory haptic assistance considering human behavior uncertainty. IEEE Transactions on Robotics 31, 180–190 (2015) Martinez et al. [2018] Martinez, A., Lawson, B., Durrough, C., Goldfarb, M.: A velocity-field-based controller for assisting leg movement during walking with a bilateral hip and knee lower limb exoskeleton. IEEE Transactions on Robotics 35, 307–316 (2018) Shushtari et al. [2021] Shushtari, M., Nasiri, R., Arami, A.: Online reference trajectory adaptation: A personalized control strategy for lower limb exoskeletons. IEEE Robotics and Automation Letters 7, 128–134 (2021) Asl et al. [2020] Asl, H.J., Yamashita, M., Narikiyo, T., Kawanishi, M.: Field-based assist-as-needed control schemes for rehabilitation robots. IEEE/ASME Transactions on Mechatronics 25, 2100–2111 (2020) Dominijanni et al. [2023] Dominijanni, G., Pinheiro, D.L., Pollina, L., Orset, B., Gini, M., Anselmino, E., Pierella, C., Olivier, J., Shokur, S., Micera, S.: Human motor augmentation with an extra robotic arm without functional interference. Science Robotics 8 (2023) Losey et al. [2018] Losey, D.P., Mcdonald, C.G., Battaglia, E., O’Malley, M.: A review of intent detection, arbitration, and communication aspects of shared control for physical human-robot interaction. Applied Mechanics Reviews 70 (2018) https://doi.org/10.1115/1.4039145 Jackson and Collins [2019] Jackson, R.W., Collins, S.H.: Heuristic-based ankle exoskeleton control for co-adaptive assistance of human locomotion. IEEE Transactions on Neural Systems and Rehabilitation Engineering 27, 2059–2069 (2019) Banala et al. [2007] Banala, S.K., Agrawal, S.K., Scholz, J.P.: Active leg exoskeleton (alex) for gait rehabilitation of motor-impaired patients. In: 2007 IEEE 10th International Conference on Rehabilitation Robotics, pp. 401–407 (2007). 2007 IEEE 10th International Conference on Rehabilitation Robotics Dinovitzer et al. [2023a] Dinovitzer, H., Shushtari, M., Arami, A.: Feedforward control of lower limb exoskeletons: which torque profile should we use? IEEE Robotics and Automation Letters (2023) Dinovitzer et al. [2023b] Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Durandau, G., Rampeltshammer, W.F., Kooij, H., Sartori, M.: Neuromechanical model-based adaptive control of bilateral ankle exoskeletons: biological joint torque and electromyogram reduction across walking conditions. IEEE Transactions on Robotics 38, 1380–1394 (2022) Poggensee and Collins [2021] Poggensee, K.L., Collins, S.H.: How adaptation, training, and customization contribute to benefits from exoskeleton assistance. Science Robotics 6 (2021) Nuckols et al. [2021] Nuckols, R.W., Lee, S., Swaminathan, K., Orzel, D., Howe, R.D., Walsh, C.J.: Individualization of exosuit assistance based on measured muscle dynamics during versatile walking. Science robotics 6 (2021) Lee et al. [2023] Lee, U.H., Shetty, V.S., Franks, P.W., Tan, J., Evangelopoulos, G., Ha, S., Rouse, E.J.: User preference optimization for control of ankle exoskeletons using sample efficient active learning. Science Robotics 8 (2023) Postol et al. [2020] Postol, N., Lamond, S., Galloway, M., Palazzi, K., Bivard, A., Spratt, N.J., Marquez, J.: The metabolic cost of exercising with a robotic exoskeleton: A comparison of healthy and neurologically impaired people. IEEE Transactions on Neural Systems and Rehabilitation Engineering 28, 3031–3039 (2020) Witte et al. [2020] Witte, K.A., Fiers, P., Sheets-Singer, A.L., Collins, S.H.: Improving the energy economy of human running with powered and unpowered ankle exoskeleton assistance. Science Robotics 5 (2020) Zhu et al. [2021] Zhu, F., Kern, M., Fowkes, E., Afzal, T., Contreras-Vidal, J.-L., Francisco, G.E., Chang, S.-H.: Effects of an exoskeleton-assisted gait training on post-stroke lower-limb muscle coordination. Journal of Neural Engineering 18, 046039 (2021) Küçüktabak et al. [2024] Küçüktabak, E.B., Wen, Y., Kim, S.J., Short, M., Ludvig, D., Hargrove, L., Perreault, E., Lynch, K., Pons, J.: Haptic transparency and interaction force control for a lower-limb exoskeleton. IEEE Transactions on Robotics (2024) Eva and Grizzle [2020] Eva, M.M., Grizzle, J.W.: Feedback control design for robust comfortable sit-to-stand motions of 3d lower-limb exoskeletons. IEEE Access 9, 122–161 (2020) Masengo et al. [2023] Masengo, G., Zhang, X., Dong, R., , A.B.A., Hamza, K., Mudaheranwa, E.: Lower limb exoskeleton robot and its cooperative control: A review, trends, and challenges for future research. Frontiers in Neurorobotics 16, 1–25 (2023) Ingraham et al. [2022] Ingraham, K.A., Remy, C.D., Rouse, E.J.: The role of user preference in the customized control of robotic exoskeletons. Science robotics 7 (2022) Pinto-Fernandez et al. [2020] Pinto-Fernandez, D., Diego, T., Carmen Sanchez-Villamanan, M., Aller, F., Mombaur, K., Conti, R., Vitiello, N., Moreno, J.C., Pons, J.L.: Performance evaluation of lower limb exoskeletons: A systematic review. IEEE Transactions on Neural Systems and Rehabilitation Engineering 28, 1573–1583 (2020) Slade et al. [2022] Slade, P., Kochenderfer, M.J., Delp, S.L., Collins, S.H.: Personalizing exoskeleton assistance while walking in the real world. Nature 610, 277–282 (2022) Medina et al. [2015] Medina, J.R., Lorenz, T., Hirche, S.: Synthesizing anticipatory haptic assistance considering human behavior uncertainty. IEEE Transactions on Robotics 31, 180–190 (2015) Martinez et al. [2018] Martinez, A., Lawson, B., Durrough, C., Goldfarb, M.: A velocity-field-based controller for assisting leg movement during walking with a bilateral hip and knee lower limb exoskeleton. IEEE Transactions on Robotics 35, 307–316 (2018) Shushtari et al. [2021] Shushtari, M., Nasiri, R., Arami, A.: Online reference trajectory adaptation: A personalized control strategy for lower limb exoskeletons. IEEE Robotics and Automation Letters 7, 128–134 (2021) Asl et al. [2020] Asl, H.J., Yamashita, M., Narikiyo, T., Kawanishi, M.: Field-based assist-as-needed control schemes for rehabilitation robots. IEEE/ASME Transactions on Mechatronics 25, 2100–2111 (2020) Dominijanni et al. [2023] Dominijanni, G., Pinheiro, D.L., Pollina, L., Orset, B., Gini, M., Anselmino, E., Pierella, C., Olivier, J., Shokur, S., Micera, S.: Human motor augmentation with an extra robotic arm without functional interference. Science Robotics 8 (2023) Losey et al. [2018] Losey, D.P., Mcdonald, C.G., Battaglia, E., O’Malley, M.: A review of intent detection, arbitration, and communication aspects of shared control for physical human-robot interaction. Applied Mechanics Reviews 70 (2018) https://doi.org/10.1115/1.4039145 Jackson and Collins [2019] Jackson, R.W., Collins, S.H.: Heuristic-based ankle exoskeleton control for co-adaptive assistance of human locomotion. IEEE Transactions on Neural Systems and Rehabilitation Engineering 27, 2059–2069 (2019) Banala et al. [2007] Banala, S.K., Agrawal, S.K., Scholz, J.P.: Active leg exoskeleton (alex) for gait rehabilitation of motor-impaired patients. In: 2007 IEEE 10th International Conference on Rehabilitation Robotics, pp. 401–407 (2007). 2007 IEEE 10th International Conference on Rehabilitation Robotics Dinovitzer et al. [2023a] Dinovitzer, H., Shushtari, M., Arami, A.: Feedforward control of lower limb exoskeletons: which torque profile should we use? IEEE Robotics and Automation Letters (2023) Dinovitzer et al. [2023b] Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Poggensee, K.L., Collins, S.H.: How adaptation, training, and customization contribute to benefits from exoskeleton assistance. Science Robotics 6 (2021) Nuckols et al. [2021] Nuckols, R.W., Lee, S., Swaminathan, K., Orzel, D., Howe, R.D., Walsh, C.J.: Individualization of exosuit assistance based on measured muscle dynamics during versatile walking. Science robotics 6 (2021) Lee et al. [2023] Lee, U.H., Shetty, V.S., Franks, P.W., Tan, J., Evangelopoulos, G., Ha, S., Rouse, E.J.: User preference optimization for control of ankle exoskeletons using sample efficient active learning. Science Robotics 8 (2023) Postol et al. [2020] Postol, N., Lamond, S., Galloway, M., Palazzi, K., Bivard, A., Spratt, N.J., Marquez, J.: The metabolic cost of exercising with a robotic exoskeleton: A comparison of healthy and neurologically impaired people. IEEE Transactions on Neural Systems and Rehabilitation Engineering 28, 3031–3039 (2020) Witte et al. [2020] Witte, K.A., Fiers, P., Sheets-Singer, A.L., Collins, S.H.: Improving the energy economy of human running with powered and unpowered ankle exoskeleton assistance. Science Robotics 5 (2020) Zhu et al. [2021] Zhu, F., Kern, M., Fowkes, E., Afzal, T., Contreras-Vidal, J.-L., Francisco, G.E., Chang, S.-H.: Effects of an exoskeleton-assisted gait training on post-stroke lower-limb muscle coordination. Journal of Neural Engineering 18, 046039 (2021) Küçüktabak et al. [2024] Küçüktabak, E.B., Wen, Y., Kim, S.J., Short, M., Ludvig, D., Hargrove, L., Perreault, E., Lynch, K., Pons, J.: Haptic transparency and interaction force control for a lower-limb exoskeleton. IEEE Transactions on Robotics (2024) Eva and Grizzle [2020] Eva, M.M., Grizzle, J.W.: Feedback control design for robust comfortable sit-to-stand motions of 3d lower-limb exoskeletons. IEEE Access 9, 122–161 (2020) Masengo et al. [2023] Masengo, G., Zhang, X., Dong, R., , A.B.A., Hamza, K., Mudaheranwa, E.: Lower limb exoskeleton robot and its cooperative control: A review, trends, and challenges for future research. Frontiers in Neurorobotics 16, 1–25 (2023) Ingraham et al. [2022] Ingraham, K.A., Remy, C.D., Rouse, E.J.: The role of user preference in the customized control of robotic exoskeletons. Science robotics 7 (2022) Pinto-Fernandez et al. [2020] Pinto-Fernandez, D., Diego, T., Carmen Sanchez-Villamanan, M., Aller, F., Mombaur, K., Conti, R., Vitiello, N., Moreno, J.C., Pons, J.L.: Performance evaluation of lower limb exoskeletons: A systematic review. IEEE Transactions on Neural Systems and Rehabilitation Engineering 28, 1573–1583 (2020) Slade et al. [2022] Slade, P., Kochenderfer, M.J., Delp, S.L., Collins, S.H.: Personalizing exoskeleton assistance while walking in the real world. Nature 610, 277–282 (2022) Medina et al. [2015] Medina, J.R., Lorenz, T., Hirche, S.: Synthesizing anticipatory haptic assistance considering human behavior uncertainty. IEEE Transactions on Robotics 31, 180–190 (2015) Martinez et al. [2018] Martinez, A., Lawson, B., Durrough, C., Goldfarb, M.: A velocity-field-based controller for assisting leg movement during walking with a bilateral hip and knee lower limb exoskeleton. IEEE Transactions on Robotics 35, 307–316 (2018) Shushtari et al. [2021] Shushtari, M., Nasiri, R., Arami, A.: Online reference trajectory adaptation: A personalized control strategy for lower limb exoskeletons. IEEE Robotics and Automation Letters 7, 128–134 (2021) Asl et al. [2020] Asl, H.J., Yamashita, M., Narikiyo, T., Kawanishi, M.: Field-based assist-as-needed control schemes for rehabilitation robots. IEEE/ASME Transactions on Mechatronics 25, 2100–2111 (2020) Dominijanni et al. [2023] Dominijanni, G., Pinheiro, D.L., Pollina, L., Orset, B., Gini, M., Anselmino, E., Pierella, C., Olivier, J., Shokur, S., Micera, S.: Human motor augmentation with an extra robotic arm without functional interference. Science Robotics 8 (2023) Losey et al. [2018] Losey, D.P., Mcdonald, C.G., Battaglia, E., O’Malley, M.: A review of intent detection, arbitration, and communication aspects of shared control for physical human-robot interaction. Applied Mechanics Reviews 70 (2018) https://doi.org/10.1115/1.4039145 Jackson and Collins [2019] Jackson, R.W., Collins, S.H.: Heuristic-based ankle exoskeleton control for co-adaptive assistance of human locomotion. IEEE Transactions on Neural Systems and Rehabilitation Engineering 27, 2059–2069 (2019) Banala et al. [2007] Banala, S.K., Agrawal, S.K., Scholz, J.P.: Active leg exoskeleton (alex) for gait rehabilitation of motor-impaired patients. In: 2007 IEEE 10th International Conference on Rehabilitation Robotics, pp. 401–407 (2007). 2007 IEEE 10th International Conference on Rehabilitation Robotics Dinovitzer et al. [2023a] Dinovitzer, H., Shushtari, M., Arami, A.: Feedforward control of lower limb exoskeletons: which torque profile should we use? IEEE Robotics and Automation Letters (2023) Dinovitzer et al. [2023b] Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Nuckols, R.W., Lee, S., Swaminathan, K., Orzel, D., Howe, R.D., Walsh, C.J.: Individualization of exosuit assistance based on measured muscle dynamics during versatile walking. Science robotics 6 (2021) Lee et al. [2023] Lee, U.H., Shetty, V.S., Franks, P.W., Tan, J., Evangelopoulos, G., Ha, S., Rouse, E.J.: User preference optimization for control of ankle exoskeletons using sample efficient active learning. Science Robotics 8 (2023) Postol et al. [2020] Postol, N., Lamond, S., Galloway, M., Palazzi, K., Bivard, A., Spratt, N.J., Marquez, J.: The metabolic cost of exercising with a robotic exoskeleton: A comparison of healthy and neurologically impaired people. IEEE Transactions on Neural Systems and Rehabilitation Engineering 28, 3031–3039 (2020) Witte et al. [2020] Witte, K.A., Fiers, P., Sheets-Singer, A.L., Collins, S.H.: Improving the energy economy of human running with powered and unpowered ankle exoskeleton assistance. Science Robotics 5 (2020) Zhu et al. [2021] Zhu, F., Kern, M., Fowkes, E., Afzal, T., Contreras-Vidal, J.-L., Francisco, G.E., Chang, S.-H.: Effects of an exoskeleton-assisted gait training on post-stroke lower-limb muscle coordination. Journal of Neural Engineering 18, 046039 (2021) Küçüktabak et al. [2024] Küçüktabak, E.B., Wen, Y., Kim, S.J., Short, M., Ludvig, D., Hargrove, L., Perreault, E., Lynch, K., Pons, J.: Haptic transparency and interaction force control for a lower-limb exoskeleton. IEEE Transactions on Robotics (2024) Eva and Grizzle [2020] Eva, M.M., Grizzle, J.W.: Feedback control design for robust comfortable sit-to-stand motions of 3d lower-limb exoskeletons. IEEE Access 9, 122–161 (2020) Masengo et al. [2023] Masengo, G., Zhang, X., Dong, R., , A.B.A., Hamza, K., Mudaheranwa, E.: Lower limb exoskeleton robot and its cooperative control: A review, trends, and challenges for future research. Frontiers in Neurorobotics 16, 1–25 (2023) Ingraham et al. [2022] Ingraham, K.A., Remy, C.D., Rouse, E.J.: The role of user preference in the customized control of robotic exoskeletons. Science robotics 7 (2022) Pinto-Fernandez et al. [2020] Pinto-Fernandez, D., Diego, T., Carmen Sanchez-Villamanan, M., Aller, F., Mombaur, K., Conti, R., Vitiello, N., Moreno, J.C., Pons, J.L.: Performance evaluation of lower limb exoskeletons: A systematic review. IEEE Transactions on Neural Systems and Rehabilitation Engineering 28, 1573–1583 (2020) Slade et al. [2022] Slade, P., Kochenderfer, M.J., Delp, S.L., Collins, S.H.: Personalizing exoskeleton assistance while walking in the real world. Nature 610, 277–282 (2022) Medina et al. [2015] Medina, J.R., Lorenz, T., Hirche, S.: Synthesizing anticipatory haptic assistance considering human behavior uncertainty. IEEE Transactions on Robotics 31, 180–190 (2015) Martinez et al. [2018] Martinez, A., Lawson, B., Durrough, C., Goldfarb, M.: A velocity-field-based controller for assisting leg movement during walking with a bilateral hip and knee lower limb exoskeleton. IEEE Transactions on Robotics 35, 307–316 (2018) Shushtari et al. [2021] Shushtari, M., Nasiri, R., Arami, A.: Online reference trajectory adaptation: A personalized control strategy for lower limb exoskeletons. IEEE Robotics and Automation Letters 7, 128–134 (2021) Asl et al. [2020] Asl, H.J., Yamashita, M., Narikiyo, T., Kawanishi, M.: Field-based assist-as-needed control schemes for rehabilitation robots. IEEE/ASME Transactions on Mechatronics 25, 2100–2111 (2020) Dominijanni et al. [2023] Dominijanni, G., Pinheiro, D.L., Pollina, L., Orset, B., Gini, M., Anselmino, E., Pierella, C., Olivier, J., Shokur, S., Micera, S.: Human motor augmentation with an extra robotic arm without functional interference. Science Robotics 8 (2023) Losey et al. [2018] Losey, D.P., Mcdonald, C.G., Battaglia, E., O’Malley, M.: A review of intent detection, arbitration, and communication aspects of shared control for physical human-robot interaction. Applied Mechanics Reviews 70 (2018) https://doi.org/10.1115/1.4039145 Jackson and Collins [2019] Jackson, R.W., Collins, S.H.: Heuristic-based ankle exoskeleton control for co-adaptive assistance of human locomotion. IEEE Transactions on Neural Systems and Rehabilitation Engineering 27, 2059–2069 (2019) Banala et al. [2007] Banala, S.K., Agrawal, S.K., Scholz, J.P.: Active leg exoskeleton (alex) for gait rehabilitation of motor-impaired patients. In: 2007 IEEE 10th International Conference on Rehabilitation Robotics, pp. 401–407 (2007). 2007 IEEE 10th International Conference on Rehabilitation Robotics Dinovitzer et al. [2023a] Dinovitzer, H., Shushtari, M., Arami, A.: Feedforward control of lower limb exoskeletons: which torque profile should we use? IEEE Robotics and Automation Letters (2023) Dinovitzer et al. [2023b] Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Lee, U.H., Shetty, V.S., Franks, P.W., Tan, J., Evangelopoulos, G., Ha, S., Rouse, E.J.: User preference optimization for control of ankle exoskeletons using sample efficient active learning. Science Robotics 8 (2023) Postol et al. [2020] Postol, N., Lamond, S., Galloway, M., Palazzi, K., Bivard, A., Spratt, N.J., Marquez, J.: The metabolic cost of exercising with a robotic exoskeleton: A comparison of healthy and neurologically impaired people. IEEE Transactions on Neural Systems and Rehabilitation Engineering 28, 3031–3039 (2020) Witte et al. [2020] Witte, K.A., Fiers, P., Sheets-Singer, A.L., Collins, S.H.: Improving the energy economy of human running with powered and unpowered ankle exoskeleton assistance. Science Robotics 5 (2020) Zhu et al. [2021] Zhu, F., Kern, M., Fowkes, E., Afzal, T., Contreras-Vidal, J.-L., Francisco, G.E., Chang, S.-H.: Effects of an exoskeleton-assisted gait training on post-stroke lower-limb muscle coordination. Journal of Neural Engineering 18, 046039 (2021) Küçüktabak et al. [2024] Küçüktabak, E.B., Wen, Y., Kim, S.J., Short, M., Ludvig, D., Hargrove, L., Perreault, E., Lynch, K., Pons, J.: Haptic transparency and interaction force control for a lower-limb exoskeleton. IEEE Transactions on Robotics (2024) Eva and Grizzle [2020] Eva, M.M., Grizzle, J.W.: Feedback control design for robust comfortable sit-to-stand motions of 3d lower-limb exoskeletons. IEEE Access 9, 122–161 (2020) Masengo et al. [2023] Masengo, G., Zhang, X., Dong, R., , A.B.A., Hamza, K., Mudaheranwa, E.: Lower limb exoskeleton robot and its cooperative control: A review, trends, and challenges for future research. Frontiers in Neurorobotics 16, 1–25 (2023) Ingraham et al. [2022] Ingraham, K.A., Remy, C.D., Rouse, E.J.: The role of user preference in the customized control of robotic exoskeletons. Science robotics 7 (2022) Pinto-Fernandez et al. [2020] Pinto-Fernandez, D., Diego, T., Carmen Sanchez-Villamanan, M., Aller, F., Mombaur, K., Conti, R., Vitiello, N., Moreno, J.C., Pons, J.L.: Performance evaluation of lower limb exoskeletons: A systematic review. IEEE Transactions on Neural Systems and Rehabilitation Engineering 28, 1573–1583 (2020) Slade et al. [2022] Slade, P., Kochenderfer, M.J., Delp, S.L., Collins, S.H.: Personalizing exoskeleton assistance while walking in the real world. Nature 610, 277–282 (2022) Medina et al. [2015] Medina, J.R., Lorenz, T., Hirche, S.: Synthesizing anticipatory haptic assistance considering human behavior uncertainty. IEEE Transactions on Robotics 31, 180–190 (2015) Martinez et al. [2018] Martinez, A., Lawson, B., Durrough, C., Goldfarb, M.: A velocity-field-based controller for assisting leg movement during walking with a bilateral hip and knee lower limb exoskeleton. IEEE Transactions on Robotics 35, 307–316 (2018) Shushtari et al. [2021] Shushtari, M., Nasiri, R., Arami, A.: Online reference trajectory adaptation: A personalized control strategy for lower limb exoskeletons. IEEE Robotics and Automation Letters 7, 128–134 (2021) Asl et al. [2020] Asl, H.J., Yamashita, M., Narikiyo, T., Kawanishi, M.: Field-based assist-as-needed control schemes for rehabilitation robots. IEEE/ASME Transactions on Mechatronics 25, 2100–2111 (2020) Dominijanni et al. [2023] Dominijanni, G., Pinheiro, D.L., Pollina, L., Orset, B., Gini, M., Anselmino, E., Pierella, C., Olivier, J., Shokur, S., Micera, S.: Human motor augmentation with an extra robotic arm without functional interference. Science Robotics 8 (2023) Losey et al. [2018] Losey, D.P., Mcdonald, C.G., Battaglia, E., O’Malley, M.: A review of intent detection, arbitration, and communication aspects of shared control for physical human-robot interaction. Applied Mechanics Reviews 70 (2018) https://doi.org/10.1115/1.4039145 Jackson and Collins [2019] Jackson, R.W., Collins, S.H.: Heuristic-based ankle exoskeleton control for co-adaptive assistance of human locomotion. IEEE Transactions on Neural Systems and Rehabilitation Engineering 27, 2059–2069 (2019) Banala et al. [2007] Banala, S.K., Agrawal, S.K., Scholz, J.P.: Active leg exoskeleton (alex) for gait rehabilitation of motor-impaired patients. In: 2007 IEEE 10th International Conference on Rehabilitation Robotics, pp. 401–407 (2007). 2007 IEEE 10th International Conference on Rehabilitation Robotics Dinovitzer et al. [2023a] Dinovitzer, H., Shushtari, M., Arami, A.: Feedforward control of lower limb exoskeletons: which torque profile should we use? IEEE Robotics and Automation Letters (2023) Dinovitzer et al. [2023b] Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Postol, N., Lamond, S., Galloway, M., Palazzi, K., Bivard, A., Spratt, N.J., Marquez, J.: The metabolic cost of exercising with a robotic exoskeleton: A comparison of healthy and neurologically impaired people. IEEE Transactions on Neural Systems and Rehabilitation Engineering 28, 3031–3039 (2020) Witte et al. [2020] Witte, K.A., Fiers, P., Sheets-Singer, A.L., Collins, S.H.: Improving the energy economy of human running with powered and unpowered ankle exoskeleton assistance. Science Robotics 5 (2020) Zhu et al. [2021] Zhu, F., Kern, M., Fowkes, E., Afzal, T., Contreras-Vidal, J.-L., Francisco, G.E., Chang, S.-H.: Effects of an exoskeleton-assisted gait training on post-stroke lower-limb muscle coordination. Journal of Neural Engineering 18, 046039 (2021) Küçüktabak et al. [2024] Küçüktabak, E.B., Wen, Y., Kim, S.J., Short, M., Ludvig, D., Hargrove, L., Perreault, E., Lynch, K., Pons, J.: Haptic transparency and interaction force control for a lower-limb exoskeleton. IEEE Transactions on Robotics (2024) Eva and Grizzle [2020] Eva, M.M., Grizzle, J.W.: Feedback control design for robust comfortable sit-to-stand motions of 3d lower-limb exoskeletons. IEEE Access 9, 122–161 (2020) Masengo et al. [2023] Masengo, G., Zhang, X., Dong, R., , A.B.A., Hamza, K., Mudaheranwa, E.: Lower limb exoskeleton robot and its cooperative control: A review, trends, and challenges for future research. Frontiers in Neurorobotics 16, 1–25 (2023) Ingraham et al. [2022] Ingraham, K.A., Remy, C.D., Rouse, E.J.: The role of user preference in the customized control of robotic exoskeletons. Science robotics 7 (2022) Pinto-Fernandez et al. [2020] Pinto-Fernandez, D., Diego, T., Carmen Sanchez-Villamanan, M., Aller, F., Mombaur, K., Conti, R., Vitiello, N., Moreno, J.C., Pons, J.L.: Performance evaluation of lower limb exoskeletons: A systematic review. IEEE Transactions on Neural Systems and Rehabilitation Engineering 28, 1573–1583 (2020) Slade et al. [2022] Slade, P., Kochenderfer, M.J., Delp, S.L., Collins, S.H.: Personalizing exoskeleton assistance while walking in the real world. Nature 610, 277–282 (2022) Medina et al. [2015] Medina, J.R., Lorenz, T., Hirche, S.: Synthesizing anticipatory haptic assistance considering human behavior uncertainty. IEEE Transactions on Robotics 31, 180–190 (2015) Martinez et al. [2018] Martinez, A., Lawson, B., Durrough, C., Goldfarb, M.: A velocity-field-based controller for assisting leg movement during walking with a bilateral hip and knee lower limb exoskeleton. IEEE Transactions on Robotics 35, 307–316 (2018) Shushtari et al. [2021] Shushtari, M., Nasiri, R., Arami, A.: Online reference trajectory adaptation: A personalized control strategy for lower limb exoskeletons. IEEE Robotics and Automation Letters 7, 128–134 (2021) Asl et al. [2020] Asl, H.J., Yamashita, M., Narikiyo, T., Kawanishi, M.: Field-based assist-as-needed control schemes for rehabilitation robots. IEEE/ASME Transactions on Mechatronics 25, 2100–2111 (2020) Dominijanni et al. [2023] Dominijanni, G., Pinheiro, D.L., Pollina, L., Orset, B., Gini, M., Anselmino, E., Pierella, C., Olivier, J., Shokur, S., Micera, S.: Human motor augmentation with an extra robotic arm without functional interference. Science Robotics 8 (2023) Losey et al. [2018] Losey, D.P., Mcdonald, C.G., Battaglia, E., O’Malley, M.: A review of intent detection, arbitration, and communication aspects of shared control for physical human-robot interaction. Applied Mechanics Reviews 70 (2018) https://doi.org/10.1115/1.4039145 Jackson and Collins [2019] Jackson, R.W., Collins, S.H.: Heuristic-based ankle exoskeleton control for co-adaptive assistance of human locomotion. IEEE Transactions on Neural Systems and Rehabilitation Engineering 27, 2059–2069 (2019) Banala et al. [2007] Banala, S.K., Agrawal, S.K., Scholz, J.P.: Active leg exoskeleton (alex) for gait rehabilitation of motor-impaired patients. In: 2007 IEEE 10th International Conference on Rehabilitation Robotics, pp. 401–407 (2007). 2007 IEEE 10th International Conference on Rehabilitation Robotics Dinovitzer et al. [2023a] Dinovitzer, H., Shushtari, M., Arami, A.: Feedforward control of lower limb exoskeletons: which torque profile should we use? IEEE Robotics and Automation Letters (2023) Dinovitzer et al. [2023b] Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Witte, K.A., Fiers, P., Sheets-Singer, A.L., Collins, S.H.: Improving the energy economy of human running with powered and unpowered ankle exoskeleton assistance. Science Robotics 5 (2020) Zhu et al. [2021] Zhu, F., Kern, M., Fowkes, E., Afzal, T., Contreras-Vidal, J.-L., Francisco, G.E., Chang, S.-H.: Effects of an exoskeleton-assisted gait training on post-stroke lower-limb muscle coordination. Journal of Neural Engineering 18, 046039 (2021) Küçüktabak et al. [2024] Küçüktabak, E.B., Wen, Y., Kim, S.J., Short, M., Ludvig, D., Hargrove, L., Perreault, E., Lynch, K., Pons, J.: Haptic transparency and interaction force control for a lower-limb exoskeleton. IEEE Transactions on Robotics (2024) Eva and Grizzle [2020] Eva, M.M., Grizzle, J.W.: Feedback control design for robust comfortable sit-to-stand motions of 3d lower-limb exoskeletons. IEEE Access 9, 122–161 (2020) Masengo et al. [2023] Masengo, G., Zhang, X., Dong, R., , A.B.A., Hamza, K., Mudaheranwa, E.: Lower limb exoskeleton robot and its cooperative control: A review, trends, and challenges for future research. Frontiers in Neurorobotics 16, 1–25 (2023) Ingraham et al. [2022] Ingraham, K.A., Remy, C.D., Rouse, E.J.: The role of user preference in the customized control of robotic exoskeletons. Science robotics 7 (2022) Pinto-Fernandez et al. [2020] Pinto-Fernandez, D., Diego, T., Carmen Sanchez-Villamanan, M., Aller, F., Mombaur, K., Conti, R., Vitiello, N., Moreno, J.C., Pons, J.L.: Performance evaluation of lower limb exoskeletons: A systematic review. IEEE Transactions on Neural Systems and Rehabilitation Engineering 28, 1573–1583 (2020) Slade et al. [2022] Slade, P., Kochenderfer, M.J., Delp, S.L., Collins, S.H.: Personalizing exoskeleton assistance while walking in the real world. Nature 610, 277–282 (2022) Medina et al. [2015] Medina, J.R., Lorenz, T., Hirche, S.: Synthesizing anticipatory haptic assistance considering human behavior uncertainty. IEEE Transactions on Robotics 31, 180–190 (2015) Martinez et al. [2018] Martinez, A., Lawson, B., Durrough, C., Goldfarb, M.: A velocity-field-based controller for assisting leg movement during walking with a bilateral hip and knee lower limb exoskeleton. IEEE Transactions on Robotics 35, 307–316 (2018) Shushtari et al. [2021] Shushtari, M., Nasiri, R., Arami, A.: Online reference trajectory adaptation: A personalized control strategy for lower limb exoskeletons. IEEE Robotics and Automation Letters 7, 128–134 (2021) Asl et al. [2020] Asl, H.J., Yamashita, M., Narikiyo, T., Kawanishi, M.: Field-based assist-as-needed control schemes for rehabilitation robots. IEEE/ASME Transactions on Mechatronics 25, 2100–2111 (2020) Dominijanni et al. [2023] Dominijanni, G., Pinheiro, D.L., Pollina, L., Orset, B., Gini, M., Anselmino, E., Pierella, C., Olivier, J., Shokur, S., Micera, S.: Human motor augmentation with an extra robotic arm without functional interference. Science Robotics 8 (2023) Losey et al. [2018] Losey, D.P., Mcdonald, C.G., Battaglia, E., O’Malley, M.: A review of intent detection, arbitration, and communication aspects of shared control for physical human-robot interaction. Applied Mechanics Reviews 70 (2018) https://doi.org/10.1115/1.4039145 Jackson and Collins [2019] Jackson, R.W., Collins, S.H.: Heuristic-based ankle exoskeleton control for co-adaptive assistance of human locomotion. IEEE Transactions on Neural Systems and Rehabilitation Engineering 27, 2059–2069 (2019) Banala et al. [2007] Banala, S.K., Agrawal, S.K., Scholz, J.P.: Active leg exoskeleton (alex) for gait rehabilitation of motor-impaired patients. In: 2007 IEEE 10th International Conference on Rehabilitation Robotics, pp. 401–407 (2007). 2007 IEEE 10th International Conference on Rehabilitation Robotics Dinovitzer et al. [2023a] Dinovitzer, H., Shushtari, M., Arami, A.: Feedforward control of lower limb exoskeletons: which torque profile should we use? IEEE Robotics and Automation Letters (2023) Dinovitzer et al. [2023b] Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Zhu, F., Kern, M., Fowkes, E., Afzal, T., Contreras-Vidal, J.-L., Francisco, G.E., Chang, S.-H.: Effects of an exoskeleton-assisted gait training on post-stroke lower-limb muscle coordination. Journal of Neural Engineering 18, 046039 (2021) Küçüktabak et al. [2024] Küçüktabak, E.B., Wen, Y., Kim, S.J., Short, M., Ludvig, D., Hargrove, L., Perreault, E., Lynch, K., Pons, J.: Haptic transparency and interaction force control for a lower-limb exoskeleton. IEEE Transactions on Robotics (2024) Eva and Grizzle [2020] Eva, M.M., Grizzle, J.W.: Feedback control design for robust comfortable sit-to-stand motions of 3d lower-limb exoskeletons. IEEE Access 9, 122–161 (2020) Masengo et al. [2023] Masengo, G., Zhang, X., Dong, R., , A.B.A., Hamza, K., Mudaheranwa, E.: Lower limb exoskeleton robot and its cooperative control: A review, trends, and challenges for future research. Frontiers in Neurorobotics 16, 1–25 (2023) Ingraham et al. [2022] Ingraham, K.A., Remy, C.D., Rouse, E.J.: The role of user preference in the customized control of robotic exoskeletons. Science robotics 7 (2022) Pinto-Fernandez et al. [2020] Pinto-Fernandez, D., Diego, T., Carmen Sanchez-Villamanan, M., Aller, F., Mombaur, K., Conti, R., Vitiello, N., Moreno, J.C., Pons, J.L.: Performance evaluation of lower limb exoskeletons: A systematic review. IEEE Transactions on Neural Systems and Rehabilitation Engineering 28, 1573–1583 (2020) Slade et al. [2022] Slade, P., Kochenderfer, M.J., Delp, S.L., Collins, S.H.: Personalizing exoskeleton assistance while walking in the real world. Nature 610, 277–282 (2022) Medina et al. [2015] Medina, J.R., Lorenz, T., Hirche, S.: Synthesizing anticipatory haptic assistance considering human behavior uncertainty. IEEE Transactions on Robotics 31, 180–190 (2015) Martinez et al. [2018] Martinez, A., Lawson, B., Durrough, C., Goldfarb, M.: A velocity-field-based controller for assisting leg movement during walking with a bilateral hip and knee lower limb exoskeleton. IEEE Transactions on Robotics 35, 307–316 (2018) Shushtari et al. [2021] Shushtari, M., Nasiri, R., Arami, A.: Online reference trajectory adaptation: A personalized control strategy for lower limb exoskeletons. IEEE Robotics and Automation Letters 7, 128–134 (2021) Asl et al. [2020] Asl, H.J., Yamashita, M., Narikiyo, T., Kawanishi, M.: Field-based assist-as-needed control schemes for rehabilitation robots. IEEE/ASME Transactions on Mechatronics 25, 2100–2111 (2020) Dominijanni et al. [2023] Dominijanni, G., Pinheiro, D.L., Pollina, L., Orset, B., Gini, M., Anselmino, E., Pierella, C., Olivier, J., Shokur, S., Micera, S.: Human motor augmentation with an extra robotic arm without functional interference. Science Robotics 8 (2023) Losey et al. [2018] Losey, D.P., Mcdonald, C.G., Battaglia, E., O’Malley, M.: A review of intent detection, arbitration, and communication aspects of shared control for physical human-robot interaction. Applied Mechanics Reviews 70 (2018) https://doi.org/10.1115/1.4039145 Jackson and Collins [2019] Jackson, R.W., Collins, S.H.: Heuristic-based ankle exoskeleton control for co-adaptive assistance of human locomotion. IEEE Transactions on Neural Systems and Rehabilitation Engineering 27, 2059–2069 (2019) Banala et al. [2007] Banala, S.K., Agrawal, S.K., Scholz, J.P.: Active leg exoskeleton (alex) for gait rehabilitation of motor-impaired patients. In: 2007 IEEE 10th International Conference on Rehabilitation Robotics, pp. 401–407 (2007). 2007 IEEE 10th International Conference on Rehabilitation Robotics Dinovitzer et al. [2023a] Dinovitzer, H., Shushtari, M., Arami, A.: Feedforward control of lower limb exoskeletons: which torque profile should we use? IEEE Robotics and Automation Letters (2023) Dinovitzer et al. [2023b] Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Küçüktabak, E.B., Wen, Y., Kim, S.J., Short, M., Ludvig, D., Hargrove, L., Perreault, E., Lynch, K., Pons, J.: Haptic transparency and interaction force control for a lower-limb exoskeleton. IEEE Transactions on Robotics (2024) Eva and Grizzle [2020] Eva, M.M., Grizzle, J.W.: Feedback control design for robust comfortable sit-to-stand motions of 3d lower-limb exoskeletons. IEEE Access 9, 122–161 (2020) Masengo et al. [2023] Masengo, G., Zhang, X., Dong, R., , A.B.A., Hamza, K., Mudaheranwa, E.: Lower limb exoskeleton robot and its cooperative control: A review, trends, and challenges for future research. Frontiers in Neurorobotics 16, 1–25 (2023) Ingraham et al. [2022] Ingraham, K.A., Remy, C.D., Rouse, E.J.: The role of user preference in the customized control of robotic exoskeletons. Science robotics 7 (2022) Pinto-Fernandez et al. [2020] Pinto-Fernandez, D., Diego, T., Carmen Sanchez-Villamanan, M., Aller, F., Mombaur, K., Conti, R., Vitiello, N., Moreno, J.C., Pons, J.L.: Performance evaluation of lower limb exoskeletons: A systematic review. IEEE Transactions on Neural Systems and Rehabilitation Engineering 28, 1573–1583 (2020) Slade et al. [2022] Slade, P., Kochenderfer, M.J., Delp, S.L., Collins, S.H.: Personalizing exoskeleton assistance while walking in the real world. Nature 610, 277–282 (2022) Medina et al. [2015] Medina, J.R., Lorenz, T., Hirche, S.: Synthesizing anticipatory haptic assistance considering human behavior uncertainty. IEEE Transactions on Robotics 31, 180–190 (2015) Martinez et al. [2018] Martinez, A., Lawson, B., Durrough, C., Goldfarb, M.: A velocity-field-based controller for assisting leg movement during walking with a bilateral hip and knee lower limb exoskeleton. IEEE Transactions on Robotics 35, 307–316 (2018) Shushtari et al. [2021] Shushtari, M., Nasiri, R., Arami, A.: Online reference trajectory adaptation: A personalized control strategy for lower limb exoskeletons. IEEE Robotics and Automation Letters 7, 128–134 (2021) Asl et al. [2020] Asl, H.J., Yamashita, M., Narikiyo, T., Kawanishi, M.: Field-based assist-as-needed control schemes for rehabilitation robots. IEEE/ASME Transactions on Mechatronics 25, 2100–2111 (2020) Dominijanni et al. [2023] Dominijanni, G., Pinheiro, D.L., Pollina, L., Orset, B., Gini, M., Anselmino, E., Pierella, C., Olivier, J., Shokur, S., Micera, S.: Human motor augmentation with an extra robotic arm without functional interference. Science Robotics 8 (2023) Losey et al. [2018] Losey, D.P., Mcdonald, C.G., Battaglia, E., O’Malley, M.: A review of intent detection, arbitration, and communication aspects of shared control for physical human-robot interaction. Applied Mechanics Reviews 70 (2018) https://doi.org/10.1115/1.4039145 Jackson and Collins [2019] Jackson, R.W., Collins, S.H.: Heuristic-based ankle exoskeleton control for co-adaptive assistance of human locomotion. IEEE Transactions on Neural Systems and Rehabilitation Engineering 27, 2059–2069 (2019) Banala et al. [2007] Banala, S.K., Agrawal, S.K., Scholz, J.P.: Active leg exoskeleton (alex) for gait rehabilitation of motor-impaired patients. In: 2007 IEEE 10th International Conference on Rehabilitation Robotics, pp. 401–407 (2007). 2007 IEEE 10th International Conference on Rehabilitation Robotics Dinovitzer et al. [2023a] Dinovitzer, H., Shushtari, M., Arami, A.: Feedforward control of lower limb exoskeletons: which torque profile should we use? IEEE Robotics and Automation Letters (2023) Dinovitzer et al. [2023b] Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Eva, M.M., Grizzle, J.W.: Feedback control design for robust comfortable sit-to-stand motions of 3d lower-limb exoskeletons. IEEE Access 9, 122–161 (2020) Masengo et al. [2023] Masengo, G., Zhang, X., Dong, R., , A.B.A., Hamza, K., Mudaheranwa, E.: Lower limb exoskeleton robot and its cooperative control: A review, trends, and challenges for future research. Frontiers in Neurorobotics 16, 1–25 (2023) Ingraham et al. [2022] Ingraham, K.A., Remy, C.D., Rouse, E.J.: The role of user preference in the customized control of robotic exoskeletons. Science robotics 7 (2022) Pinto-Fernandez et al. [2020] Pinto-Fernandez, D., Diego, T., Carmen Sanchez-Villamanan, M., Aller, F., Mombaur, K., Conti, R., Vitiello, N., Moreno, J.C., Pons, J.L.: Performance evaluation of lower limb exoskeletons: A systematic review. IEEE Transactions on Neural Systems and Rehabilitation Engineering 28, 1573–1583 (2020) Slade et al. [2022] Slade, P., Kochenderfer, M.J., Delp, S.L., Collins, S.H.: Personalizing exoskeleton assistance while walking in the real world. Nature 610, 277–282 (2022) Medina et al. [2015] Medina, J.R., Lorenz, T., Hirche, S.: Synthesizing anticipatory haptic assistance considering human behavior uncertainty. IEEE Transactions on Robotics 31, 180–190 (2015) Martinez et al. [2018] Martinez, A., Lawson, B., Durrough, C., Goldfarb, M.: A velocity-field-based controller for assisting leg movement during walking with a bilateral hip and knee lower limb exoskeleton. IEEE Transactions on Robotics 35, 307–316 (2018) Shushtari et al. [2021] Shushtari, M., Nasiri, R., Arami, A.: Online reference trajectory adaptation: A personalized control strategy for lower limb exoskeletons. IEEE Robotics and Automation Letters 7, 128–134 (2021) Asl et al. [2020] Asl, H.J., Yamashita, M., Narikiyo, T., Kawanishi, M.: Field-based assist-as-needed control schemes for rehabilitation robots. IEEE/ASME Transactions on Mechatronics 25, 2100–2111 (2020) Dominijanni et al. [2023] Dominijanni, G., Pinheiro, D.L., Pollina, L., Orset, B., Gini, M., Anselmino, E., Pierella, C., Olivier, J., Shokur, S., Micera, S.: Human motor augmentation with an extra robotic arm without functional interference. Science Robotics 8 (2023) Losey et al. [2018] Losey, D.P., Mcdonald, C.G., Battaglia, E., O’Malley, M.: A review of intent detection, arbitration, and communication aspects of shared control for physical human-robot interaction. Applied Mechanics Reviews 70 (2018) https://doi.org/10.1115/1.4039145 Jackson and Collins [2019] Jackson, R.W., Collins, S.H.: Heuristic-based ankle exoskeleton control for co-adaptive assistance of human locomotion. IEEE Transactions on Neural Systems and Rehabilitation Engineering 27, 2059–2069 (2019) Banala et al. [2007] Banala, S.K., Agrawal, S.K., Scholz, J.P.: Active leg exoskeleton (alex) for gait rehabilitation of motor-impaired patients. In: 2007 IEEE 10th International Conference on Rehabilitation Robotics, pp. 401–407 (2007). 2007 IEEE 10th International Conference on Rehabilitation Robotics Dinovitzer et al. [2023a] Dinovitzer, H., Shushtari, M., Arami, A.: Feedforward control of lower limb exoskeletons: which torque profile should we use? IEEE Robotics and Automation Letters (2023) Dinovitzer et al. [2023b] Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Masengo, G., Zhang, X., Dong, R., , A.B.A., Hamza, K., Mudaheranwa, E.: Lower limb exoskeleton robot and its cooperative control: A review, trends, and challenges for future research. Frontiers in Neurorobotics 16, 1–25 (2023) Ingraham et al. [2022] Ingraham, K.A., Remy, C.D., Rouse, E.J.: The role of user preference in the customized control of robotic exoskeletons. Science robotics 7 (2022) Pinto-Fernandez et al. [2020] Pinto-Fernandez, D., Diego, T., Carmen Sanchez-Villamanan, M., Aller, F., Mombaur, K., Conti, R., Vitiello, N., Moreno, J.C., Pons, J.L.: Performance evaluation of lower limb exoskeletons: A systematic review. IEEE Transactions on Neural Systems and Rehabilitation Engineering 28, 1573–1583 (2020) Slade et al. [2022] Slade, P., Kochenderfer, M.J., Delp, S.L., Collins, S.H.: Personalizing exoskeleton assistance while walking in the real world. Nature 610, 277–282 (2022) Medina et al. [2015] Medina, J.R., Lorenz, T., Hirche, S.: Synthesizing anticipatory haptic assistance considering human behavior uncertainty. IEEE Transactions on Robotics 31, 180–190 (2015) Martinez et al. [2018] Martinez, A., Lawson, B., Durrough, C., Goldfarb, M.: A velocity-field-based controller for assisting leg movement during walking with a bilateral hip and knee lower limb exoskeleton. IEEE Transactions on Robotics 35, 307–316 (2018) Shushtari et al. [2021] Shushtari, M., Nasiri, R., Arami, A.: Online reference trajectory adaptation: A personalized control strategy for lower limb exoskeletons. IEEE Robotics and Automation Letters 7, 128–134 (2021) Asl et al. [2020] Asl, H.J., Yamashita, M., Narikiyo, T., Kawanishi, M.: Field-based assist-as-needed control schemes for rehabilitation robots. IEEE/ASME Transactions on Mechatronics 25, 2100–2111 (2020) Dominijanni et al. [2023] Dominijanni, G., Pinheiro, D.L., Pollina, L., Orset, B., Gini, M., Anselmino, E., Pierella, C., Olivier, J., Shokur, S., Micera, S.: Human motor augmentation with an extra robotic arm without functional interference. Science Robotics 8 (2023) Losey et al. [2018] Losey, D.P., Mcdonald, C.G., Battaglia, E., O’Malley, M.: A review of intent detection, arbitration, and communication aspects of shared control for physical human-robot interaction. Applied Mechanics Reviews 70 (2018) https://doi.org/10.1115/1.4039145 Jackson and Collins [2019] Jackson, R.W., Collins, S.H.: Heuristic-based ankle exoskeleton control for co-adaptive assistance of human locomotion. IEEE Transactions on Neural Systems and Rehabilitation Engineering 27, 2059–2069 (2019) Banala et al. [2007] Banala, S.K., Agrawal, S.K., Scholz, J.P.: Active leg exoskeleton (alex) for gait rehabilitation of motor-impaired patients. In: 2007 IEEE 10th International Conference on Rehabilitation Robotics, pp. 401–407 (2007). 2007 IEEE 10th International Conference on Rehabilitation Robotics Dinovitzer et al. [2023a] Dinovitzer, H., Shushtari, M., Arami, A.: Feedforward control of lower limb exoskeletons: which torque profile should we use? IEEE Robotics and Automation Letters (2023) Dinovitzer et al. [2023b] Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Ingraham, K.A., Remy, C.D., Rouse, E.J.: The role of user preference in the customized control of robotic exoskeletons. Science robotics 7 (2022) Pinto-Fernandez et al. [2020] Pinto-Fernandez, D., Diego, T., Carmen Sanchez-Villamanan, M., Aller, F., Mombaur, K., Conti, R., Vitiello, N., Moreno, J.C., Pons, J.L.: Performance evaluation of lower limb exoskeletons: A systematic review. IEEE Transactions on Neural Systems and Rehabilitation Engineering 28, 1573–1583 (2020) Slade et al. [2022] Slade, P., Kochenderfer, M.J., Delp, S.L., Collins, S.H.: Personalizing exoskeleton assistance while walking in the real world. Nature 610, 277–282 (2022) Medina et al. [2015] Medina, J.R., Lorenz, T., Hirche, S.: Synthesizing anticipatory haptic assistance considering human behavior uncertainty. IEEE Transactions on Robotics 31, 180–190 (2015) Martinez et al. [2018] Martinez, A., Lawson, B., Durrough, C., Goldfarb, M.: A velocity-field-based controller for assisting leg movement during walking with a bilateral hip and knee lower limb exoskeleton. IEEE Transactions on Robotics 35, 307–316 (2018) Shushtari et al. [2021] Shushtari, M., Nasiri, R., Arami, A.: Online reference trajectory adaptation: A personalized control strategy for lower limb exoskeletons. IEEE Robotics and Automation Letters 7, 128–134 (2021) Asl et al. [2020] Asl, H.J., Yamashita, M., Narikiyo, T., Kawanishi, M.: Field-based assist-as-needed control schemes for rehabilitation robots. IEEE/ASME Transactions on Mechatronics 25, 2100–2111 (2020) Dominijanni et al. [2023] Dominijanni, G., Pinheiro, D.L., Pollina, L., Orset, B., Gini, M., Anselmino, E., Pierella, C., Olivier, J., Shokur, S., Micera, S.: Human motor augmentation with an extra robotic arm without functional interference. Science Robotics 8 (2023) Losey et al. [2018] Losey, D.P., Mcdonald, C.G., Battaglia, E., O’Malley, M.: A review of intent detection, arbitration, and communication aspects of shared control for physical human-robot interaction. Applied Mechanics Reviews 70 (2018) https://doi.org/10.1115/1.4039145 Jackson and Collins [2019] Jackson, R.W., Collins, S.H.: Heuristic-based ankle exoskeleton control for co-adaptive assistance of human locomotion. IEEE Transactions on Neural Systems and Rehabilitation Engineering 27, 2059–2069 (2019) Banala et al. [2007] Banala, S.K., Agrawal, S.K., Scholz, J.P.: Active leg exoskeleton (alex) for gait rehabilitation of motor-impaired patients. In: 2007 IEEE 10th International Conference on Rehabilitation Robotics, pp. 401–407 (2007). 2007 IEEE 10th International Conference on Rehabilitation Robotics Dinovitzer et al. [2023a] Dinovitzer, H., Shushtari, M., Arami, A.: Feedforward control of lower limb exoskeletons: which torque profile should we use? IEEE Robotics and Automation Letters (2023) Dinovitzer et al. [2023b] Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Pinto-Fernandez, D., Diego, T., Carmen Sanchez-Villamanan, M., Aller, F., Mombaur, K., Conti, R., Vitiello, N., Moreno, J.C., Pons, J.L.: Performance evaluation of lower limb exoskeletons: A systematic review. IEEE Transactions on Neural Systems and Rehabilitation Engineering 28, 1573–1583 (2020) Slade et al. [2022] Slade, P., Kochenderfer, M.J., Delp, S.L., Collins, S.H.: Personalizing exoskeleton assistance while walking in the real world. Nature 610, 277–282 (2022) Medina et al. [2015] Medina, J.R., Lorenz, T., Hirche, S.: Synthesizing anticipatory haptic assistance considering human behavior uncertainty. IEEE Transactions on Robotics 31, 180–190 (2015) Martinez et al. [2018] Martinez, A., Lawson, B., Durrough, C., Goldfarb, M.: A velocity-field-based controller for assisting leg movement during walking with a bilateral hip and knee lower limb exoskeleton. IEEE Transactions on Robotics 35, 307–316 (2018) Shushtari et al. [2021] Shushtari, M., Nasiri, R., Arami, A.: Online reference trajectory adaptation: A personalized control strategy for lower limb exoskeletons. IEEE Robotics and Automation Letters 7, 128–134 (2021) Asl et al. [2020] Asl, H.J., Yamashita, M., Narikiyo, T., Kawanishi, M.: Field-based assist-as-needed control schemes for rehabilitation robots. IEEE/ASME Transactions on Mechatronics 25, 2100–2111 (2020) Dominijanni et al. [2023] Dominijanni, G., Pinheiro, D.L., Pollina, L., Orset, B., Gini, M., Anselmino, E., Pierella, C., Olivier, J., Shokur, S., Micera, S.: Human motor augmentation with an extra robotic arm without functional interference. Science Robotics 8 (2023) Losey et al. [2018] Losey, D.P., Mcdonald, C.G., Battaglia, E., O’Malley, M.: A review of intent detection, arbitration, and communication aspects of shared control for physical human-robot interaction. Applied Mechanics Reviews 70 (2018) https://doi.org/10.1115/1.4039145 Jackson and Collins [2019] Jackson, R.W., Collins, S.H.: Heuristic-based ankle exoskeleton control for co-adaptive assistance of human locomotion. IEEE Transactions on Neural Systems and Rehabilitation Engineering 27, 2059–2069 (2019) Banala et al. [2007] Banala, S.K., Agrawal, S.K., Scholz, J.P.: Active leg exoskeleton (alex) for gait rehabilitation of motor-impaired patients. In: 2007 IEEE 10th International Conference on Rehabilitation Robotics, pp. 401–407 (2007). 2007 IEEE 10th International Conference on Rehabilitation Robotics Dinovitzer et al. [2023a] Dinovitzer, H., Shushtari, M., Arami, A.: Feedforward control of lower limb exoskeletons: which torque profile should we use? IEEE Robotics and Automation Letters (2023) Dinovitzer et al. [2023b] Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Slade, P., Kochenderfer, M.J., Delp, S.L., Collins, S.H.: Personalizing exoskeleton assistance while walking in the real world. Nature 610, 277–282 (2022) Medina et al. [2015] Medina, J.R., Lorenz, T., Hirche, S.: Synthesizing anticipatory haptic assistance considering human behavior uncertainty. IEEE Transactions on Robotics 31, 180–190 (2015) Martinez et al. [2018] Martinez, A., Lawson, B., Durrough, C., Goldfarb, M.: A velocity-field-based controller for assisting leg movement during walking with a bilateral hip and knee lower limb exoskeleton. IEEE Transactions on Robotics 35, 307–316 (2018) Shushtari et al. [2021] Shushtari, M., Nasiri, R., Arami, A.: Online reference trajectory adaptation: A personalized control strategy for lower limb exoskeletons. IEEE Robotics and Automation Letters 7, 128–134 (2021) Asl et al. [2020] Asl, H.J., Yamashita, M., Narikiyo, T., Kawanishi, M.: Field-based assist-as-needed control schemes for rehabilitation robots. IEEE/ASME Transactions on Mechatronics 25, 2100–2111 (2020) Dominijanni et al. [2023] Dominijanni, G., Pinheiro, D.L., Pollina, L., Orset, B., Gini, M., Anselmino, E., Pierella, C., Olivier, J., Shokur, S., Micera, S.: Human motor augmentation with an extra robotic arm without functional interference. Science Robotics 8 (2023) Losey et al. [2018] Losey, D.P., Mcdonald, C.G., Battaglia, E., O’Malley, M.: A review of intent detection, arbitration, and communication aspects of shared control for physical human-robot interaction. Applied Mechanics Reviews 70 (2018) https://doi.org/10.1115/1.4039145 Jackson and Collins [2019] Jackson, R.W., Collins, S.H.: Heuristic-based ankle exoskeleton control for co-adaptive assistance of human locomotion. IEEE Transactions on Neural Systems and Rehabilitation Engineering 27, 2059–2069 (2019) Banala et al. [2007] Banala, S.K., Agrawal, S.K., Scholz, J.P.: Active leg exoskeleton (alex) for gait rehabilitation of motor-impaired patients. In: 2007 IEEE 10th International Conference on Rehabilitation Robotics, pp. 401–407 (2007). 2007 IEEE 10th International Conference on Rehabilitation Robotics Dinovitzer et al. [2023a] Dinovitzer, H., Shushtari, M., Arami, A.: Feedforward control of lower limb exoskeletons: which torque profile should we use? IEEE Robotics and Automation Letters (2023) Dinovitzer et al. [2023b] Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Medina, J.R., Lorenz, T., Hirche, S.: Synthesizing anticipatory haptic assistance considering human behavior uncertainty. IEEE Transactions on Robotics 31, 180–190 (2015) Martinez et al. [2018] Martinez, A., Lawson, B., Durrough, C., Goldfarb, M.: A velocity-field-based controller for assisting leg movement during walking with a bilateral hip and knee lower limb exoskeleton. IEEE Transactions on Robotics 35, 307–316 (2018) Shushtari et al. [2021] Shushtari, M., Nasiri, R., Arami, A.: Online reference trajectory adaptation: A personalized control strategy for lower limb exoskeletons. IEEE Robotics and Automation Letters 7, 128–134 (2021) Asl et al. [2020] Asl, H.J., Yamashita, M., Narikiyo, T., Kawanishi, M.: Field-based assist-as-needed control schemes for rehabilitation robots. IEEE/ASME Transactions on Mechatronics 25, 2100–2111 (2020) Dominijanni et al. [2023] Dominijanni, G., Pinheiro, D.L., Pollina, L., Orset, B., Gini, M., Anselmino, E., Pierella, C., Olivier, J., Shokur, S., Micera, S.: Human motor augmentation with an extra robotic arm without functional interference. Science Robotics 8 (2023) Losey et al. [2018] Losey, D.P., Mcdonald, C.G., Battaglia, E., O’Malley, M.: A review of intent detection, arbitration, and communication aspects of shared control for physical human-robot interaction. Applied Mechanics Reviews 70 (2018) https://doi.org/10.1115/1.4039145 Jackson and Collins [2019] Jackson, R.W., Collins, S.H.: Heuristic-based ankle exoskeleton control for co-adaptive assistance of human locomotion. IEEE Transactions on Neural Systems and Rehabilitation Engineering 27, 2059–2069 (2019) Banala et al. [2007] Banala, S.K., Agrawal, S.K., Scholz, J.P.: Active leg exoskeleton (alex) for gait rehabilitation of motor-impaired patients. In: 2007 IEEE 10th International Conference on Rehabilitation Robotics, pp. 401–407 (2007). 2007 IEEE 10th International Conference on Rehabilitation Robotics Dinovitzer et al. [2023a] Dinovitzer, H., Shushtari, M., Arami, A.: Feedforward control of lower limb exoskeletons: which torque profile should we use? IEEE Robotics and Automation Letters (2023) Dinovitzer et al. [2023b] Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Martinez, A., Lawson, B., Durrough, C., Goldfarb, M.: A velocity-field-based controller for assisting leg movement during walking with a bilateral hip and knee lower limb exoskeleton. IEEE Transactions on Robotics 35, 307–316 (2018) Shushtari et al. [2021] Shushtari, M., Nasiri, R., Arami, A.: Online reference trajectory adaptation: A personalized control strategy for lower limb exoskeletons. IEEE Robotics and Automation Letters 7, 128–134 (2021) Asl et al. [2020] Asl, H.J., Yamashita, M., Narikiyo, T., Kawanishi, M.: Field-based assist-as-needed control schemes for rehabilitation robots. IEEE/ASME Transactions on Mechatronics 25, 2100–2111 (2020) Dominijanni et al. [2023] Dominijanni, G., Pinheiro, D.L., Pollina, L., Orset, B., Gini, M., Anselmino, E., Pierella, C., Olivier, J., Shokur, S., Micera, S.: Human motor augmentation with an extra robotic arm without functional interference. Science Robotics 8 (2023) Losey et al. [2018] Losey, D.P., Mcdonald, C.G., Battaglia, E., O’Malley, M.: A review of intent detection, arbitration, and communication aspects of shared control for physical human-robot interaction. Applied Mechanics Reviews 70 (2018) https://doi.org/10.1115/1.4039145 Jackson and Collins [2019] Jackson, R.W., Collins, S.H.: Heuristic-based ankle exoskeleton control for co-adaptive assistance of human locomotion. IEEE Transactions on Neural Systems and Rehabilitation Engineering 27, 2059–2069 (2019) Banala et al. [2007] Banala, S.K., Agrawal, S.K., Scholz, J.P.: Active leg exoskeleton (alex) for gait rehabilitation of motor-impaired patients. In: 2007 IEEE 10th International Conference on Rehabilitation Robotics, pp. 401–407 (2007). 2007 IEEE 10th International Conference on Rehabilitation Robotics Dinovitzer et al. [2023a] Dinovitzer, H., Shushtari, M., Arami, A.: Feedforward control of lower limb exoskeletons: which torque profile should we use? IEEE Robotics and Automation Letters (2023) Dinovitzer et al. [2023b] Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Shushtari, M., Nasiri, R., Arami, A.: Online reference trajectory adaptation: A personalized control strategy for lower limb exoskeletons. IEEE Robotics and Automation Letters 7, 128–134 (2021) Asl et al. [2020] Asl, H.J., Yamashita, M., Narikiyo, T., Kawanishi, M.: Field-based assist-as-needed control schemes for rehabilitation robots. IEEE/ASME Transactions on Mechatronics 25, 2100–2111 (2020) Dominijanni et al. [2023] Dominijanni, G., Pinheiro, D.L., Pollina, L., Orset, B., Gini, M., Anselmino, E., Pierella, C., Olivier, J., Shokur, S., Micera, S.: Human motor augmentation with an extra robotic arm without functional interference. Science Robotics 8 (2023) Losey et al. [2018] Losey, D.P., Mcdonald, C.G., Battaglia, E., O’Malley, M.: A review of intent detection, arbitration, and communication aspects of shared control for physical human-robot interaction. Applied Mechanics Reviews 70 (2018) https://doi.org/10.1115/1.4039145 Jackson and Collins [2019] Jackson, R.W., Collins, S.H.: Heuristic-based ankle exoskeleton control for co-adaptive assistance of human locomotion. IEEE Transactions on Neural Systems and Rehabilitation Engineering 27, 2059–2069 (2019) Banala et al. [2007] Banala, S.K., Agrawal, S.K., Scholz, J.P.: Active leg exoskeleton (alex) for gait rehabilitation of motor-impaired patients. In: 2007 IEEE 10th International Conference on Rehabilitation Robotics, pp. 401–407 (2007). 2007 IEEE 10th International Conference on Rehabilitation Robotics Dinovitzer et al. [2023a] Dinovitzer, H., Shushtari, M., Arami, A.: Feedforward control of lower limb exoskeletons: which torque profile should we use? IEEE Robotics and Automation Letters (2023) Dinovitzer et al. [2023b] Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Asl, H.J., Yamashita, M., Narikiyo, T., Kawanishi, M.: Field-based assist-as-needed control schemes for rehabilitation robots. IEEE/ASME Transactions on Mechatronics 25, 2100–2111 (2020) Dominijanni et al. [2023] Dominijanni, G., Pinheiro, D.L., Pollina, L., Orset, B., Gini, M., Anselmino, E., Pierella, C., Olivier, J., Shokur, S., Micera, S.: Human motor augmentation with an extra robotic arm without functional interference. Science Robotics 8 (2023) Losey et al. [2018] Losey, D.P., Mcdonald, C.G., Battaglia, E., O’Malley, M.: A review of intent detection, arbitration, and communication aspects of shared control for physical human-robot interaction. Applied Mechanics Reviews 70 (2018) https://doi.org/10.1115/1.4039145 Jackson and Collins [2019] Jackson, R.W., Collins, S.H.: Heuristic-based ankle exoskeleton control for co-adaptive assistance of human locomotion. IEEE Transactions on Neural Systems and Rehabilitation Engineering 27, 2059–2069 (2019) Banala et al. [2007] Banala, S.K., Agrawal, S.K., Scholz, J.P.: Active leg exoskeleton (alex) for gait rehabilitation of motor-impaired patients. In: 2007 IEEE 10th International Conference on Rehabilitation Robotics, pp. 401–407 (2007). 2007 IEEE 10th International Conference on Rehabilitation Robotics Dinovitzer et al. [2023a] Dinovitzer, H., Shushtari, M., Arami, A.: Feedforward control of lower limb exoskeletons: which torque profile should we use? IEEE Robotics and Automation Letters (2023) Dinovitzer et al. [2023b] Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Dominijanni, G., Pinheiro, D.L., Pollina, L., Orset, B., Gini, M., Anselmino, E., Pierella, C., Olivier, J., Shokur, S., Micera, S.: Human motor augmentation with an extra robotic arm without functional interference. Science Robotics 8 (2023) Losey et al. [2018] Losey, D.P., Mcdonald, C.G., Battaglia, E., O’Malley, M.: A review of intent detection, arbitration, and communication aspects of shared control for physical human-robot interaction. Applied Mechanics Reviews 70 (2018) https://doi.org/10.1115/1.4039145 Jackson and Collins [2019] Jackson, R.W., Collins, S.H.: Heuristic-based ankle exoskeleton control for co-adaptive assistance of human locomotion. IEEE Transactions on Neural Systems and Rehabilitation Engineering 27, 2059–2069 (2019) Banala et al. [2007] Banala, S.K., Agrawal, S.K., Scholz, J.P.: Active leg exoskeleton (alex) for gait rehabilitation of motor-impaired patients. In: 2007 IEEE 10th International Conference on Rehabilitation Robotics, pp. 401–407 (2007). 2007 IEEE 10th International Conference on Rehabilitation Robotics Dinovitzer et al. [2023a] Dinovitzer, H., Shushtari, M., Arami, A.: Feedforward control of lower limb exoskeletons: which torque profile should we use? IEEE Robotics and Automation Letters (2023) Dinovitzer et al. [2023b] Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Losey, D.P., Mcdonald, C.G., Battaglia, E., O’Malley, M.: A review of intent detection, arbitration, and communication aspects of shared control for physical human-robot interaction. Applied Mechanics Reviews 70 (2018) https://doi.org/10.1115/1.4039145 Jackson and Collins [2019] Jackson, R.W., Collins, S.H.: Heuristic-based ankle exoskeleton control for co-adaptive assistance of human locomotion. IEEE Transactions on Neural Systems and Rehabilitation Engineering 27, 2059–2069 (2019) Banala et al. [2007] Banala, S.K., Agrawal, S.K., Scholz, J.P.: Active leg exoskeleton (alex) for gait rehabilitation of motor-impaired patients. In: 2007 IEEE 10th International Conference on Rehabilitation Robotics, pp. 401–407 (2007). 2007 IEEE 10th International Conference on Rehabilitation Robotics Dinovitzer et al. [2023a] Dinovitzer, H., Shushtari, M., Arami, A.: Feedforward control of lower limb exoskeletons: which torque profile should we use? IEEE Robotics and Automation Letters (2023) Dinovitzer et al. [2023b] Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Jackson, R.W., Collins, S.H.: Heuristic-based ankle exoskeleton control for co-adaptive assistance of human locomotion. IEEE Transactions on Neural Systems and Rehabilitation Engineering 27, 2059–2069 (2019) Banala et al. [2007] Banala, S.K., Agrawal, S.K., Scholz, J.P.: Active leg exoskeleton (alex) for gait rehabilitation of motor-impaired patients. In: 2007 IEEE 10th International Conference on Rehabilitation Robotics, pp. 401–407 (2007). 2007 IEEE 10th International Conference on Rehabilitation Robotics Dinovitzer et al. [2023a] Dinovitzer, H., Shushtari, M., Arami, A.: Feedforward control of lower limb exoskeletons: which torque profile should we use? IEEE Robotics and Automation Letters (2023) Dinovitzer et al. [2023b] Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Banala, S.K., Agrawal, S.K., Scholz, J.P.: Active leg exoskeleton (alex) for gait rehabilitation of motor-impaired patients. In: 2007 IEEE 10th International Conference on Rehabilitation Robotics, pp. 401–407 (2007). 2007 IEEE 10th International Conference on Rehabilitation Robotics Dinovitzer et al. [2023a] Dinovitzer, H., Shushtari, M., Arami, A.: Feedforward control of lower limb exoskeletons: which torque profile should we use? IEEE Robotics and Automation Letters (2023) Dinovitzer et al. [2023b] Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Dinovitzer, H., Shushtari, M., Arami, A.: Feedforward control of lower limb exoskeletons: which torque profile should we use? IEEE Robotics and Automation Letters (2023) Dinovitzer et al. [2023b] Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017)
  2. Bryan, G.M., Franks, P.W., Song, S., Reyes, R., O’Donovan, M.P., Gregorczyk, K.N., Collins, S.H.: Optimized hip-knee-ankle exoskeleton assistance reduces the metabolic cost of walking with worn loads. Journal of Neuroengineering and Rehabilitation 18, 1–13 (2021) Franks et al. [2021] Franks, P.W., Bryan, G.M., Martin, R.M., Reyes, R., Lakmazaheri, A.C., Collins, S.H.: Comparing optimized exoskeleton assistance of the hip, knee, and ankle in single and multi-joint configurations. Wearable Technologies 2, 16 (2021) Durandau et al. [2022] Durandau, G., Rampeltshammer, W.F., Kooij, H., Sartori, M.: Neuromechanical model-based adaptive control of bilateral ankle exoskeletons: biological joint torque and electromyogram reduction across walking conditions. IEEE Transactions on Robotics 38, 1380–1394 (2022) Poggensee and Collins [2021] Poggensee, K.L., Collins, S.H.: How adaptation, training, and customization contribute to benefits from exoskeleton assistance. Science Robotics 6 (2021) Nuckols et al. [2021] Nuckols, R.W., Lee, S., Swaminathan, K., Orzel, D., Howe, R.D., Walsh, C.J.: Individualization of exosuit assistance based on measured muscle dynamics during versatile walking. Science robotics 6 (2021) Lee et al. [2023] Lee, U.H., Shetty, V.S., Franks, P.W., Tan, J., Evangelopoulos, G., Ha, S., Rouse, E.J.: User preference optimization for control of ankle exoskeletons using sample efficient active learning. Science Robotics 8 (2023) Postol et al. [2020] Postol, N., Lamond, S., Galloway, M., Palazzi, K., Bivard, A., Spratt, N.J., Marquez, J.: The metabolic cost of exercising with a robotic exoskeleton: A comparison of healthy and neurologically impaired people. IEEE Transactions on Neural Systems and Rehabilitation Engineering 28, 3031–3039 (2020) Witte et al. [2020] Witte, K.A., Fiers, P., Sheets-Singer, A.L., Collins, S.H.: Improving the energy economy of human running with powered and unpowered ankle exoskeleton assistance. Science Robotics 5 (2020) Zhu et al. [2021] Zhu, F., Kern, M., Fowkes, E., Afzal, T., Contreras-Vidal, J.-L., Francisco, G.E., Chang, S.-H.: Effects of an exoskeleton-assisted gait training on post-stroke lower-limb muscle coordination. Journal of Neural Engineering 18, 046039 (2021) Küçüktabak et al. [2024] Küçüktabak, E.B., Wen, Y., Kim, S.J., Short, M., Ludvig, D., Hargrove, L., Perreault, E., Lynch, K., Pons, J.: Haptic transparency and interaction force control for a lower-limb exoskeleton. IEEE Transactions on Robotics (2024) Eva and Grizzle [2020] Eva, M.M., Grizzle, J.W.: Feedback control design for robust comfortable sit-to-stand motions of 3d lower-limb exoskeletons. IEEE Access 9, 122–161 (2020) Masengo et al. [2023] Masengo, G., Zhang, X., Dong, R., , A.B.A., Hamza, K., Mudaheranwa, E.: Lower limb exoskeleton robot and its cooperative control: A review, trends, and challenges for future research. Frontiers in Neurorobotics 16, 1–25 (2023) Ingraham et al. [2022] Ingraham, K.A., Remy, C.D., Rouse, E.J.: The role of user preference in the customized control of robotic exoskeletons. Science robotics 7 (2022) Pinto-Fernandez et al. [2020] Pinto-Fernandez, D., Diego, T., Carmen Sanchez-Villamanan, M., Aller, F., Mombaur, K., Conti, R., Vitiello, N., Moreno, J.C., Pons, J.L.: Performance evaluation of lower limb exoskeletons: A systematic review. IEEE Transactions on Neural Systems and Rehabilitation Engineering 28, 1573–1583 (2020) Slade et al. [2022] Slade, P., Kochenderfer, M.J., Delp, S.L., Collins, S.H.: Personalizing exoskeleton assistance while walking in the real world. Nature 610, 277–282 (2022) Medina et al. [2015] Medina, J.R., Lorenz, T., Hirche, S.: Synthesizing anticipatory haptic assistance considering human behavior uncertainty. IEEE Transactions on Robotics 31, 180–190 (2015) Martinez et al. [2018] Martinez, A., Lawson, B., Durrough, C., Goldfarb, M.: A velocity-field-based controller for assisting leg movement during walking with a bilateral hip and knee lower limb exoskeleton. IEEE Transactions on Robotics 35, 307–316 (2018) Shushtari et al. [2021] Shushtari, M., Nasiri, R., Arami, A.: Online reference trajectory adaptation: A personalized control strategy for lower limb exoskeletons. IEEE Robotics and Automation Letters 7, 128–134 (2021) Asl et al. [2020] Asl, H.J., Yamashita, M., Narikiyo, T., Kawanishi, M.: Field-based assist-as-needed control schemes for rehabilitation robots. IEEE/ASME Transactions on Mechatronics 25, 2100–2111 (2020) Dominijanni et al. [2023] Dominijanni, G., Pinheiro, D.L., Pollina, L., Orset, B., Gini, M., Anselmino, E., Pierella, C., Olivier, J., Shokur, S., Micera, S.: Human motor augmentation with an extra robotic arm without functional interference. Science Robotics 8 (2023) Losey et al. [2018] Losey, D.P., Mcdonald, C.G., Battaglia, E., O’Malley, M.: A review of intent detection, arbitration, and communication aspects of shared control for physical human-robot interaction. Applied Mechanics Reviews 70 (2018) https://doi.org/10.1115/1.4039145 Jackson and Collins [2019] Jackson, R.W., Collins, S.H.: Heuristic-based ankle exoskeleton control for co-adaptive assistance of human locomotion. IEEE Transactions on Neural Systems and Rehabilitation Engineering 27, 2059–2069 (2019) Banala et al. [2007] Banala, S.K., Agrawal, S.K., Scholz, J.P.: Active leg exoskeleton (alex) for gait rehabilitation of motor-impaired patients. In: 2007 IEEE 10th International Conference on Rehabilitation Robotics, pp. 401–407 (2007). 2007 IEEE 10th International Conference on Rehabilitation Robotics Dinovitzer et al. [2023a] Dinovitzer, H., Shushtari, M., Arami, A.: Feedforward control of lower limb exoskeletons: which torque profile should we use? IEEE Robotics and Automation Letters (2023) Dinovitzer et al. [2023b] Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Franks, P.W., Bryan, G.M., Martin, R.M., Reyes, R., Lakmazaheri, A.C., Collins, S.H.: Comparing optimized exoskeleton assistance of the hip, knee, and ankle in single and multi-joint configurations. Wearable Technologies 2, 16 (2021) Durandau et al. [2022] Durandau, G., Rampeltshammer, W.F., Kooij, H., Sartori, M.: Neuromechanical model-based adaptive control of bilateral ankle exoskeletons: biological joint torque and electromyogram reduction across walking conditions. IEEE Transactions on Robotics 38, 1380–1394 (2022) Poggensee and Collins [2021] Poggensee, K.L., Collins, S.H.: How adaptation, training, and customization contribute to benefits from exoskeleton assistance. Science Robotics 6 (2021) Nuckols et al. [2021] Nuckols, R.W., Lee, S., Swaminathan, K., Orzel, D., Howe, R.D., Walsh, C.J.: Individualization of exosuit assistance based on measured muscle dynamics during versatile walking. Science robotics 6 (2021) Lee et al. [2023] Lee, U.H., Shetty, V.S., Franks, P.W., Tan, J., Evangelopoulos, G., Ha, S., Rouse, E.J.: User preference optimization for control of ankle exoskeletons using sample efficient active learning. Science Robotics 8 (2023) Postol et al. [2020] Postol, N., Lamond, S., Galloway, M., Palazzi, K., Bivard, A., Spratt, N.J., Marquez, J.: The metabolic cost of exercising with a robotic exoskeleton: A comparison of healthy and neurologically impaired people. IEEE Transactions on Neural Systems and Rehabilitation Engineering 28, 3031–3039 (2020) Witte et al. [2020] Witte, K.A., Fiers, P., Sheets-Singer, A.L., Collins, S.H.: Improving the energy economy of human running with powered and unpowered ankle exoskeleton assistance. Science Robotics 5 (2020) Zhu et al. [2021] Zhu, F., Kern, M., Fowkes, E., Afzal, T., Contreras-Vidal, J.-L., Francisco, G.E., Chang, S.-H.: Effects of an exoskeleton-assisted gait training on post-stroke lower-limb muscle coordination. Journal of Neural Engineering 18, 046039 (2021) Küçüktabak et al. [2024] Küçüktabak, E.B., Wen, Y., Kim, S.J., Short, M., Ludvig, D., Hargrove, L., Perreault, E., Lynch, K., Pons, J.: Haptic transparency and interaction force control for a lower-limb exoskeleton. IEEE Transactions on Robotics (2024) Eva and Grizzle [2020] Eva, M.M., Grizzle, J.W.: Feedback control design for robust comfortable sit-to-stand motions of 3d lower-limb exoskeletons. IEEE Access 9, 122–161 (2020) Masengo et al. [2023] Masengo, G., Zhang, X., Dong, R., , A.B.A., Hamza, K., Mudaheranwa, E.: Lower limb exoskeleton robot and its cooperative control: A review, trends, and challenges for future research. Frontiers in Neurorobotics 16, 1–25 (2023) Ingraham et al. [2022] Ingraham, K.A., Remy, C.D., Rouse, E.J.: The role of user preference in the customized control of robotic exoskeletons. Science robotics 7 (2022) Pinto-Fernandez et al. [2020] Pinto-Fernandez, D., Diego, T., Carmen Sanchez-Villamanan, M., Aller, F., Mombaur, K., Conti, R., Vitiello, N., Moreno, J.C., Pons, J.L.: Performance evaluation of lower limb exoskeletons: A systematic review. IEEE Transactions on Neural Systems and Rehabilitation Engineering 28, 1573–1583 (2020) Slade et al. [2022] Slade, P., Kochenderfer, M.J., Delp, S.L., Collins, S.H.: Personalizing exoskeleton assistance while walking in the real world. Nature 610, 277–282 (2022) Medina et al. [2015] Medina, J.R., Lorenz, T., Hirche, S.: Synthesizing anticipatory haptic assistance considering human behavior uncertainty. IEEE Transactions on Robotics 31, 180–190 (2015) Martinez et al. [2018] Martinez, A., Lawson, B., Durrough, C., Goldfarb, M.: A velocity-field-based controller for assisting leg movement during walking with a bilateral hip and knee lower limb exoskeleton. IEEE Transactions on Robotics 35, 307–316 (2018) Shushtari et al. [2021] Shushtari, M., Nasiri, R., Arami, A.: Online reference trajectory adaptation: A personalized control strategy for lower limb exoskeletons. IEEE Robotics and Automation Letters 7, 128–134 (2021) Asl et al. [2020] Asl, H.J., Yamashita, M., Narikiyo, T., Kawanishi, M.: Field-based assist-as-needed control schemes for rehabilitation robots. IEEE/ASME Transactions on Mechatronics 25, 2100–2111 (2020) Dominijanni et al. [2023] Dominijanni, G., Pinheiro, D.L., Pollina, L., Orset, B., Gini, M., Anselmino, E., Pierella, C., Olivier, J., Shokur, S., Micera, S.: Human motor augmentation with an extra robotic arm without functional interference. Science Robotics 8 (2023) Losey et al. [2018] Losey, D.P., Mcdonald, C.G., Battaglia, E., O’Malley, M.: A review of intent detection, arbitration, and communication aspects of shared control for physical human-robot interaction. Applied Mechanics Reviews 70 (2018) https://doi.org/10.1115/1.4039145 Jackson and Collins [2019] Jackson, R.W., Collins, S.H.: Heuristic-based ankle exoskeleton control for co-adaptive assistance of human locomotion. IEEE Transactions on Neural Systems and Rehabilitation Engineering 27, 2059–2069 (2019) Banala et al. [2007] Banala, S.K., Agrawal, S.K., Scholz, J.P.: Active leg exoskeleton (alex) for gait rehabilitation of motor-impaired patients. In: 2007 IEEE 10th International Conference on Rehabilitation Robotics, pp. 401–407 (2007). 2007 IEEE 10th International Conference on Rehabilitation Robotics Dinovitzer et al. [2023a] Dinovitzer, H., Shushtari, M., Arami, A.: Feedforward control of lower limb exoskeletons: which torque profile should we use? IEEE Robotics and Automation Letters (2023) Dinovitzer et al. [2023b] Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Durandau, G., Rampeltshammer, W.F., Kooij, H., Sartori, M.: Neuromechanical model-based adaptive control of bilateral ankle exoskeletons: biological joint torque and electromyogram reduction across walking conditions. IEEE Transactions on Robotics 38, 1380–1394 (2022) Poggensee and Collins [2021] Poggensee, K.L., Collins, S.H.: How adaptation, training, and customization contribute to benefits from exoskeleton assistance. Science Robotics 6 (2021) Nuckols et al. [2021] Nuckols, R.W., Lee, S., Swaminathan, K., Orzel, D., Howe, R.D., Walsh, C.J.: Individualization of exosuit assistance based on measured muscle dynamics during versatile walking. Science robotics 6 (2021) Lee et al. [2023] Lee, U.H., Shetty, V.S., Franks, P.W., Tan, J., Evangelopoulos, G., Ha, S., Rouse, E.J.: User preference optimization for control of ankle exoskeletons using sample efficient active learning. Science Robotics 8 (2023) Postol et al. [2020] Postol, N., Lamond, S., Galloway, M., Palazzi, K., Bivard, A., Spratt, N.J., Marquez, J.: The metabolic cost of exercising with a robotic exoskeleton: A comparison of healthy and neurologically impaired people. IEEE Transactions on Neural Systems and Rehabilitation Engineering 28, 3031–3039 (2020) Witte et al. [2020] Witte, K.A., Fiers, P., Sheets-Singer, A.L., Collins, S.H.: Improving the energy economy of human running with powered and unpowered ankle exoskeleton assistance. Science Robotics 5 (2020) Zhu et al. [2021] Zhu, F., Kern, M., Fowkes, E., Afzal, T., Contreras-Vidal, J.-L., Francisco, G.E., Chang, S.-H.: Effects of an exoskeleton-assisted gait training on post-stroke lower-limb muscle coordination. Journal of Neural Engineering 18, 046039 (2021) Küçüktabak et al. [2024] Küçüktabak, E.B., Wen, Y., Kim, S.J., Short, M., Ludvig, D., Hargrove, L., Perreault, E., Lynch, K., Pons, J.: Haptic transparency and interaction force control for a lower-limb exoskeleton. IEEE Transactions on Robotics (2024) Eva and Grizzle [2020] Eva, M.M., Grizzle, J.W.: Feedback control design for robust comfortable sit-to-stand motions of 3d lower-limb exoskeletons. IEEE Access 9, 122–161 (2020) Masengo et al. [2023] Masengo, G., Zhang, X., Dong, R., , A.B.A., Hamza, K., Mudaheranwa, E.: Lower limb exoskeleton robot and its cooperative control: A review, trends, and challenges for future research. Frontiers in Neurorobotics 16, 1–25 (2023) Ingraham et al. [2022] Ingraham, K.A., Remy, C.D., Rouse, E.J.: The role of user preference in the customized control of robotic exoskeletons. Science robotics 7 (2022) Pinto-Fernandez et al. [2020] Pinto-Fernandez, D., Diego, T., Carmen Sanchez-Villamanan, M., Aller, F., Mombaur, K., Conti, R., Vitiello, N., Moreno, J.C., Pons, J.L.: Performance evaluation of lower limb exoskeletons: A systematic review. IEEE Transactions on Neural Systems and Rehabilitation Engineering 28, 1573–1583 (2020) Slade et al. [2022] Slade, P., Kochenderfer, M.J., Delp, S.L., Collins, S.H.: Personalizing exoskeleton assistance while walking in the real world. Nature 610, 277–282 (2022) Medina et al. [2015] Medina, J.R., Lorenz, T., Hirche, S.: Synthesizing anticipatory haptic assistance considering human behavior uncertainty. IEEE Transactions on Robotics 31, 180–190 (2015) Martinez et al. [2018] Martinez, A., Lawson, B., Durrough, C., Goldfarb, M.: A velocity-field-based controller for assisting leg movement during walking with a bilateral hip and knee lower limb exoskeleton. IEEE Transactions on Robotics 35, 307–316 (2018) Shushtari et al. [2021] Shushtari, M., Nasiri, R., Arami, A.: Online reference trajectory adaptation: A personalized control strategy for lower limb exoskeletons. IEEE Robotics and Automation Letters 7, 128–134 (2021) Asl et al. [2020] Asl, H.J., Yamashita, M., Narikiyo, T., Kawanishi, M.: Field-based assist-as-needed control schemes for rehabilitation robots. IEEE/ASME Transactions on Mechatronics 25, 2100–2111 (2020) Dominijanni et al. [2023] Dominijanni, G., Pinheiro, D.L., Pollina, L., Orset, B., Gini, M., Anselmino, E., Pierella, C., Olivier, J., Shokur, S., Micera, S.: Human motor augmentation with an extra robotic arm without functional interference. Science Robotics 8 (2023) Losey et al. [2018] Losey, D.P., Mcdonald, C.G., Battaglia, E., O’Malley, M.: A review of intent detection, arbitration, and communication aspects of shared control for physical human-robot interaction. Applied Mechanics Reviews 70 (2018) https://doi.org/10.1115/1.4039145 Jackson and Collins [2019] Jackson, R.W., Collins, S.H.: Heuristic-based ankle exoskeleton control for co-adaptive assistance of human locomotion. IEEE Transactions on Neural Systems and Rehabilitation Engineering 27, 2059–2069 (2019) Banala et al. [2007] Banala, S.K., Agrawal, S.K., Scholz, J.P.: Active leg exoskeleton (alex) for gait rehabilitation of motor-impaired patients. In: 2007 IEEE 10th International Conference on Rehabilitation Robotics, pp. 401–407 (2007). 2007 IEEE 10th International Conference on Rehabilitation Robotics Dinovitzer et al. [2023a] Dinovitzer, H., Shushtari, M., Arami, A.: Feedforward control of lower limb exoskeletons: which torque profile should we use? IEEE Robotics and Automation Letters (2023) Dinovitzer et al. [2023b] Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Poggensee, K.L., Collins, S.H.: How adaptation, training, and customization contribute to benefits from exoskeleton assistance. Science Robotics 6 (2021) Nuckols et al. [2021] Nuckols, R.W., Lee, S., Swaminathan, K., Orzel, D., Howe, R.D., Walsh, C.J.: Individualization of exosuit assistance based on measured muscle dynamics during versatile walking. Science robotics 6 (2021) Lee et al. [2023] Lee, U.H., Shetty, V.S., Franks, P.W., Tan, J., Evangelopoulos, G., Ha, S., Rouse, E.J.: User preference optimization for control of ankle exoskeletons using sample efficient active learning. Science Robotics 8 (2023) Postol et al. [2020] Postol, N., Lamond, S., Galloway, M., Palazzi, K., Bivard, A., Spratt, N.J., Marquez, J.: The metabolic cost of exercising with a robotic exoskeleton: A comparison of healthy and neurologically impaired people. IEEE Transactions on Neural Systems and Rehabilitation Engineering 28, 3031–3039 (2020) Witte et al. [2020] Witte, K.A., Fiers, P., Sheets-Singer, A.L., Collins, S.H.: Improving the energy economy of human running with powered and unpowered ankle exoskeleton assistance. Science Robotics 5 (2020) Zhu et al. [2021] Zhu, F., Kern, M., Fowkes, E., Afzal, T., Contreras-Vidal, J.-L., Francisco, G.E., Chang, S.-H.: Effects of an exoskeleton-assisted gait training on post-stroke lower-limb muscle coordination. Journal of Neural Engineering 18, 046039 (2021) Küçüktabak et al. [2024] Küçüktabak, E.B., Wen, Y., Kim, S.J., Short, M., Ludvig, D., Hargrove, L., Perreault, E., Lynch, K., Pons, J.: Haptic transparency and interaction force control for a lower-limb exoskeleton. IEEE Transactions on Robotics (2024) Eva and Grizzle [2020] Eva, M.M., Grizzle, J.W.: Feedback control design for robust comfortable sit-to-stand motions of 3d lower-limb exoskeletons. IEEE Access 9, 122–161 (2020) Masengo et al. [2023] Masengo, G., Zhang, X., Dong, R., , A.B.A., Hamza, K., Mudaheranwa, E.: Lower limb exoskeleton robot and its cooperative control: A review, trends, and challenges for future research. Frontiers in Neurorobotics 16, 1–25 (2023) Ingraham et al. [2022] Ingraham, K.A., Remy, C.D., Rouse, E.J.: The role of user preference in the customized control of robotic exoskeletons. Science robotics 7 (2022) Pinto-Fernandez et al. [2020] Pinto-Fernandez, D., Diego, T., Carmen Sanchez-Villamanan, M., Aller, F., Mombaur, K., Conti, R., Vitiello, N., Moreno, J.C., Pons, J.L.: Performance evaluation of lower limb exoskeletons: A systematic review. IEEE Transactions on Neural Systems and Rehabilitation Engineering 28, 1573–1583 (2020) Slade et al. [2022] Slade, P., Kochenderfer, M.J., Delp, S.L., Collins, S.H.: Personalizing exoskeleton assistance while walking in the real world. Nature 610, 277–282 (2022) Medina et al. [2015] Medina, J.R., Lorenz, T., Hirche, S.: Synthesizing anticipatory haptic assistance considering human behavior uncertainty. IEEE Transactions on Robotics 31, 180–190 (2015) Martinez et al. [2018] Martinez, A., Lawson, B., Durrough, C., Goldfarb, M.: A velocity-field-based controller for assisting leg movement during walking with a bilateral hip and knee lower limb exoskeleton. IEEE Transactions on Robotics 35, 307–316 (2018) Shushtari et al. [2021] Shushtari, M., Nasiri, R., Arami, A.: Online reference trajectory adaptation: A personalized control strategy for lower limb exoskeletons. IEEE Robotics and Automation Letters 7, 128–134 (2021) Asl et al. [2020] Asl, H.J., Yamashita, M., Narikiyo, T., Kawanishi, M.: Field-based assist-as-needed control schemes for rehabilitation robots. IEEE/ASME Transactions on Mechatronics 25, 2100–2111 (2020) Dominijanni et al. [2023] Dominijanni, G., Pinheiro, D.L., Pollina, L., Orset, B., Gini, M., Anselmino, E., Pierella, C., Olivier, J., Shokur, S., Micera, S.: Human motor augmentation with an extra robotic arm without functional interference. Science Robotics 8 (2023) Losey et al. [2018] Losey, D.P., Mcdonald, C.G., Battaglia, E., O’Malley, M.: A review of intent detection, arbitration, and communication aspects of shared control for physical human-robot interaction. Applied Mechanics Reviews 70 (2018) https://doi.org/10.1115/1.4039145 Jackson and Collins [2019] Jackson, R.W., Collins, S.H.: Heuristic-based ankle exoskeleton control for co-adaptive assistance of human locomotion. IEEE Transactions on Neural Systems and Rehabilitation Engineering 27, 2059–2069 (2019) Banala et al. [2007] Banala, S.K., Agrawal, S.K., Scholz, J.P.: Active leg exoskeleton (alex) for gait rehabilitation of motor-impaired patients. In: 2007 IEEE 10th International Conference on Rehabilitation Robotics, pp. 401–407 (2007). 2007 IEEE 10th International Conference on Rehabilitation Robotics Dinovitzer et al. [2023a] Dinovitzer, H., Shushtari, M., Arami, A.: Feedforward control of lower limb exoskeletons: which torque profile should we use? IEEE Robotics and Automation Letters (2023) Dinovitzer et al. [2023b] Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Nuckols, R.W., Lee, S., Swaminathan, K., Orzel, D., Howe, R.D., Walsh, C.J.: Individualization of exosuit assistance based on measured muscle dynamics during versatile walking. Science robotics 6 (2021) Lee et al. [2023] Lee, U.H., Shetty, V.S., Franks, P.W., Tan, J., Evangelopoulos, G., Ha, S., Rouse, E.J.: User preference optimization for control of ankle exoskeletons using sample efficient active learning. Science Robotics 8 (2023) Postol et al. [2020] Postol, N., Lamond, S., Galloway, M., Palazzi, K., Bivard, A., Spratt, N.J., Marquez, J.: The metabolic cost of exercising with a robotic exoskeleton: A comparison of healthy and neurologically impaired people. IEEE Transactions on Neural Systems and Rehabilitation Engineering 28, 3031–3039 (2020) Witte et al. [2020] Witte, K.A., Fiers, P., Sheets-Singer, A.L., Collins, S.H.: Improving the energy economy of human running with powered and unpowered ankle exoskeleton assistance. Science Robotics 5 (2020) Zhu et al. [2021] Zhu, F., Kern, M., Fowkes, E., Afzal, T., Contreras-Vidal, J.-L., Francisco, G.E., Chang, S.-H.: Effects of an exoskeleton-assisted gait training on post-stroke lower-limb muscle coordination. Journal of Neural Engineering 18, 046039 (2021) Küçüktabak et al. [2024] Küçüktabak, E.B., Wen, Y., Kim, S.J., Short, M., Ludvig, D., Hargrove, L., Perreault, E., Lynch, K., Pons, J.: Haptic transparency and interaction force control for a lower-limb exoskeleton. IEEE Transactions on Robotics (2024) Eva and Grizzle [2020] Eva, M.M., Grizzle, J.W.: Feedback control design for robust comfortable sit-to-stand motions of 3d lower-limb exoskeletons. IEEE Access 9, 122–161 (2020) Masengo et al. [2023] Masengo, G., Zhang, X., Dong, R., , A.B.A., Hamza, K., Mudaheranwa, E.: Lower limb exoskeleton robot and its cooperative control: A review, trends, and challenges for future research. Frontiers in Neurorobotics 16, 1–25 (2023) Ingraham et al. [2022] Ingraham, K.A., Remy, C.D., Rouse, E.J.: The role of user preference in the customized control of robotic exoskeletons. Science robotics 7 (2022) Pinto-Fernandez et al. [2020] Pinto-Fernandez, D., Diego, T., Carmen Sanchez-Villamanan, M., Aller, F., Mombaur, K., Conti, R., Vitiello, N., Moreno, J.C., Pons, J.L.: Performance evaluation of lower limb exoskeletons: A systematic review. IEEE Transactions on Neural Systems and Rehabilitation Engineering 28, 1573–1583 (2020) Slade et al. [2022] Slade, P., Kochenderfer, M.J., Delp, S.L., Collins, S.H.: Personalizing exoskeleton assistance while walking in the real world. Nature 610, 277–282 (2022) Medina et al. [2015] Medina, J.R., Lorenz, T., Hirche, S.: Synthesizing anticipatory haptic assistance considering human behavior uncertainty. IEEE Transactions on Robotics 31, 180–190 (2015) Martinez et al. [2018] Martinez, A., Lawson, B., Durrough, C., Goldfarb, M.: A velocity-field-based controller for assisting leg movement during walking with a bilateral hip and knee lower limb exoskeleton. IEEE Transactions on Robotics 35, 307–316 (2018) Shushtari et al. [2021] Shushtari, M., Nasiri, R., Arami, A.: Online reference trajectory adaptation: A personalized control strategy for lower limb exoskeletons. IEEE Robotics and Automation Letters 7, 128–134 (2021) Asl et al. [2020] Asl, H.J., Yamashita, M., Narikiyo, T., Kawanishi, M.: Field-based assist-as-needed control schemes for rehabilitation robots. IEEE/ASME Transactions on Mechatronics 25, 2100–2111 (2020) Dominijanni et al. [2023] Dominijanni, G., Pinheiro, D.L., Pollina, L., Orset, B., Gini, M., Anselmino, E., Pierella, C., Olivier, J., Shokur, S., Micera, S.: Human motor augmentation with an extra robotic arm without functional interference. Science Robotics 8 (2023) Losey et al. [2018] Losey, D.P., Mcdonald, C.G., Battaglia, E., O’Malley, M.: A review of intent detection, arbitration, and communication aspects of shared control for physical human-robot interaction. Applied Mechanics Reviews 70 (2018) https://doi.org/10.1115/1.4039145 Jackson and Collins [2019] Jackson, R.W., Collins, S.H.: Heuristic-based ankle exoskeleton control for co-adaptive assistance of human locomotion. IEEE Transactions on Neural Systems and Rehabilitation Engineering 27, 2059–2069 (2019) Banala et al. [2007] Banala, S.K., Agrawal, S.K., Scholz, J.P.: Active leg exoskeleton (alex) for gait rehabilitation of motor-impaired patients. In: 2007 IEEE 10th International Conference on Rehabilitation Robotics, pp. 401–407 (2007). 2007 IEEE 10th International Conference on Rehabilitation Robotics Dinovitzer et al. [2023a] Dinovitzer, H., Shushtari, M., Arami, A.: Feedforward control of lower limb exoskeletons: which torque profile should we use? IEEE Robotics and Automation Letters (2023) Dinovitzer et al. [2023b] Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Lee, U.H., Shetty, V.S., Franks, P.W., Tan, J., Evangelopoulos, G., Ha, S., Rouse, E.J.: User preference optimization for control of ankle exoskeletons using sample efficient active learning. Science Robotics 8 (2023) Postol et al. [2020] Postol, N., Lamond, S., Galloway, M., Palazzi, K., Bivard, A., Spratt, N.J., Marquez, J.: The metabolic cost of exercising with a robotic exoskeleton: A comparison of healthy and neurologically impaired people. IEEE Transactions on Neural Systems and Rehabilitation Engineering 28, 3031–3039 (2020) Witte et al. [2020] Witte, K.A., Fiers, P., Sheets-Singer, A.L., Collins, S.H.: Improving the energy economy of human running with powered and unpowered ankle exoskeleton assistance. Science Robotics 5 (2020) Zhu et al. [2021] Zhu, F., Kern, M., Fowkes, E., Afzal, T., Contreras-Vidal, J.-L., Francisco, G.E., Chang, S.-H.: Effects of an exoskeleton-assisted gait training on post-stroke lower-limb muscle coordination. Journal of Neural Engineering 18, 046039 (2021) Küçüktabak et al. [2024] Küçüktabak, E.B., Wen, Y., Kim, S.J., Short, M., Ludvig, D., Hargrove, L., Perreault, E., Lynch, K., Pons, J.: Haptic transparency and interaction force control for a lower-limb exoskeleton. IEEE Transactions on Robotics (2024) Eva and Grizzle [2020] Eva, M.M., Grizzle, J.W.: Feedback control design for robust comfortable sit-to-stand motions of 3d lower-limb exoskeletons. IEEE Access 9, 122–161 (2020) Masengo et al. [2023] Masengo, G., Zhang, X., Dong, R., , A.B.A., Hamza, K., Mudaheranwa, E.: Lower limb exoskeleton robot and its cooperative control: A review, trends, and challenges for future research. Frontiers in Neurorobotics 16, 1–25 (2023) Ingraham et al. [2022] Ingraham, K.A., Remy, C.D., Rouse, E.J.: The role of user preference in the customized control of robotic exoskeletons. Science robotics 7 (2022) Pinto-Fernandez et al. [2020] Pinto-Fernandez, D., Diego, T., Carmen Sanchez-Villamanan, M., Aller, F., Mombaur, K., Conti, R., Vitiello, N., Moreno, J.C., Pons, J.L.: Performance evaluation of lower limb exoskeletons: A systematic review. IEEE Transactions on Neural Systems and Rehabilitation Engineering 28, 1573–1583 (2020) Slade et al. [2022] Slade, P., Kochenderfer, M.J., Delp, S.L., Collins, S.H.: Personalizing exoskeleton assistance while walking in the real world. Nature 610, 277–282 (2022) Medina et al. [2015] Medina, J.R., Lorenz, T., Hirche, S.: Synthesizing anticipatory haptic assistance considering human behavior uncertainty. IEEE Transactions on Robotics 31, 180–190 (2015) Martinez et al. [2018] Martinez, A., Lawson, B., Durrough, C., Goldfarb, M.: A velocity-field-based controller for assisting leg movement during walking with a bilateral hip and knee lower limb exoskeleton. IEEE Transactions on Robotics 35, 307–316 (2018) Shushtari et al. [2021] Shushtari, M., Nasiri, R., Arami, A.: Online reference trajectory adaptation: A personalized control strategy for lower limb exoskeletons. IEEE Robotics and Automation Letters 7, 128–134 (2021) Asl et al. [2020] Asl, H.J., Yamashita, M., Narikiyo, T., Kawanishi, M.: Field-based assist-as-needed control schemes for rehabilitation robots. IEEE/ASME Transactions on Mechatronics 25, 2100–2111 (2020) Dominijanni et al. [2023] Dominijanni, G., Pinheiro, D.L., Pollina, L., Orset, B., Gini, M., Anselmino, E., Pierella, C., Olivier, J., Shokur, S., Micera, S.: Human motor augmentation with an extra robotic arm without functional interference. Science Robotics 8 (2023) Losey et al. [2018] Losey, D.P., Mcdonald, C.G., Battaglia, E., O’Malley, M.: A review of intent detection, arbitration, and communication aspects of shared control for physical human-robot interaction. Applied Mechanics Reviews 70 (2018) https://doi.org/10.1115/1.4039145 Jackson and Collins [2019] Jackson, R.W., Collins, S.H.: Heuristic-based ankle exoskeleton control for co-adaptive assistance of human locomotion. IEEE Transactions on Neural Systems and Rehabilitation Engineering 27, 2059–2069 (2019) Banala et al. [2007] Banala, S.K., Agrawal, S.K., Scholz, J.P.: Active leg exoskeleton (alex) for gait rehabilitation of motor-impaired patients. In: 2007 IEEE 10th International Conference on Rehabilitation Robotics, pp. 401–407 (2007). 2007 IEEE 10th International Conference on Rehabilitation Robotics Dinovitzer et al. [2023a] Dinovitzer, H., Shushtari, M., Arami, A.: Feedforward control of lower limb exoskeletons: which torque profile should we use? IEEE Robotics and Automation Letters (2023) Dinovitzer et al. [2023b] Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Postol, N., Lamond, S., Galloway, M., Palazzi, K., Bivard, A., Spratt, N.J., Marquez, J.: The metabolic cost of exercising with a robotic exoskeleton: A comparison of healthy and neurologically impaired people. IEEE Transactions on Neural Systems and Rehabilitation Engineering 28, 3031–3039 (2020) Witte et al. [2020] Witte, K.A., Fiers, P., Sheets-Singer, A.L., Collins, S.H.: Improving the energy economy of human running with powered and unpowered ankle exoskeleton assistance. Science Robotics 5 (2020) Zhu et al. [2021] Zhu, F., Kern, M., Fowkes, E., Afzal, T., Contreras-Vidal, J.-L., Francisco, G.E., Chang, S.-H.: Effects of an exoskeleton-assisted gait training on post-stroke lower-limb muscle coordination. Journal of Neural Engineering 18, 046039 (2021) Küçüktabak et al. [2024] Küçüktabak, E.B., Wen, Y., Kim, S.J., Short, M., Ludvig, D., Hargrove, L., Perreault, E., Lynch, K., Pons, J.: Haptic transparency and interaction force control for a lower-limb exoskeleton. IEEE Transactions on Robotics (2024) Eva and Grizzle [2020] Eva, M.M., Grizzle, J.W.: Feedback control design for robust comfortable sit-to-stand motions of 3d lower-limb exoskeletons. IEEE Access 9, 122–161 (2020) Masengo et al. [2023] Masengo, G., Zhang, X., Dong, R., , A.B.A., Hamza, K., Mudaheranwa, E.: Lower limb exoskeleton robot and its cooperative control: A review, trends, and challenges for future research. Frontiers in Neurorobotics 16, 1–25 (2023) Ingraham et al. [2022] Ingraham, K.A., Remy, C.D., Rouse, E.J.: The role of user preference in the customized control of robotic exoskeletons. Science robotics 7 (2022) Pinto-Fernandez et al. [2020] Pinto-Fernandez, D., Diego, T., Carmen Sanchez-Villamanan, M., Aller, F., Mombaur, K., Conti, R., Vitiello, N., Moreno, J.C., Pons, J.L.: Performance evaluation of lower limb exoskeletons: A systematic review. IEEE Transactions on Neural Systems and Rehabilitation Engineering 28, 1573–1583 (2020) Slade et al. [2022] Slade, P., Kochenderfer, M.J., Delp, S.L., Collins, S.H.: Personalizing exoskeleton assistance while walking in the real world. Nature 610, 277–282 (2022) Medina et al. [2015] Medina, J.R., Lorenz, T., Hirche, S.: Synthesizing anticipatory haptic assistance considering human behavior uncertainty. IEEE Transactions on Robotics 31, 180–190 (2015) Martinez et al. [2018] Martinez, A., Lawson, B., Durrough, C., Goldfarb, M.: A velocity-field-based controller for assisting leg movement during walking with a bilateral hip and knee lower limb exoskeleton. IEEE Transactions on Robotics 35, 307–316 (2018) Shushtari et al. [2021] Shushtari, M., Nasiri, R., Arami, A.: Online reference trajectory adaptation: A personalized control strategy for lower limb exoskeletons. IEEE Robotics and Automation Letters 7, 128–134 (2021) Asl et al. [2020] Asl, H.J., Yamashita, M., Narikiyo, T., Kawanishi, M.: Field-based assist-as-needed control schemes for rehabilitation robots. IEEE/ASME Transactions on Mechatronics 25, 2100–2111 (2020) Dominijanni et al. [2023] Dominijanni, G., Pinheiro, D.L., Pollina, L., Orset, B., Gini, M., Anselmino, E., Pierella, C., Olivier, J., Shokur, S., Micera, S.: Human motor augmentation with an extra robotic arm without functional interference. Science Robotics 8 (2023) Losey et al. [2018] Losey, D.P., Mcdonald, C.G., Battaglia, E., O’Malley, M.: A review of intent detection, arbitration, and communication aspects of shared control for physical human-robot interaction. Applied Mechanics Reviews 70 (2018) https://doi.org/10.1115/1.4039145 Jackson and Collins [2019] Jackson, R.W., Collins, S.H.: Heuristic-based ankle exoskeleton control for co-adaptive assistance of human locomotion. IEEE Transactions on Neural Systems and Rehabilitation Engineering 27, 2059–2069 (2019) Banala et al. [2007] Banala, S.K., Agrawal, S.K., Scholz, J.P.: Active leg exoskeleton (alex) for gait rehabilitation of motor-impaired patients. In: 2007 IEEE 10th International Conference on Rehabilitation Robotics, pp. 401–407 (2007). 2007 IEEE 10th International Conference on Rehabilitation Robotics Dinovitzer et al. [2023a] Dinovitzer, H., Shushtari, M., Arami, A.: Feedforward control of lower limb exoskeletons: which torque profile should we use? IEEE Robotics and Automation Letters (2023) Dinovitzer et al. [2023b] Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Witte, K.A., Fiers, P., Sheets-Singer, A.L., Collins, S.H.: Improving the energy economy of human running with powered and unpowered ankle exoskeleton assistance. Science Robotics 5 (2020) Zhu et al. [2021] Zhu, F., Kern, M., Fowkes, E., Afzal, T., Contreras-Vidal, J.-L., Francisco, G.E., Chang, S.-H.: Effects of an exoskeleton-assisted gait training on post-stroke lower-limb muscle coordination. Journal of Neural Engineering 18, 046039 (2021) Küçüktabak et al. [2024] Küçüktabak, E.B., Wen, Y., Kim, S.J., Short, M., Ludvig, D., Hargrove, L., Perreault, E., Lynch, K., Pons, J.: Haptic transparency and interaction force control for a lower-limb exoskeleton. IEEE Transactions on Robotics (2024) Eva and Grizzle [2020] Eva, M.M., Grizzle, J.W.: Feedback control design for robust comfortable sit-to-stand motions of 3d lower-limb exoskeletons. IEEE Access 9, 122–161 (2020) Masengo et al. [2023] Masengo, G., Zhang, X., Dong, R., , A.B.A., Hamza, K., Mudaheranwa, E.: Lower limb exoskeleton robot and its cooperative control: A review, trends, and challenges for future research. Frontiers in Neurorobotics 16, 1–25 (2023) Ingraham et al. [2022] Ingraham, K.A., Remy, C.D., Rouse, E.J.: The role of user preference in the customized control of robotic exoskeletons. Science robotics 7 (2022) Pinto-Fernandez et al. [2020] Pinto-Fernandez, D., Diego, T., Carmen Sanchez-Villamanan, M., Aller, F., Mombaur, K., Conti, R., Vitiello, N., Moreno, J.C., Pons, J.L.: Performance evaluation of lower limb exoskeletons: A systematic review. IEEE Transactions on Neural Systems and Rehabilitation Engineering 28, 1573–1583 (2020) Slade et al. [2022] Slade, P., Kochenderfer, M.J., Delp, S.L., Collins, S.H.: Personalizing exoskeleton assistance while walking in the real world. Nature 610, 277–282 (2022) Medina et al. [2015] Medina, J.R., Lorenz, T., Hirche, S.: Synthesizing anticipatory haptic assistance considering human behavior uncertainty. IEEE Transactions on Robotics 31, 180–190 (2015) Martinez et al. [2018] Martinez, A., Lawson, B., Durrough, C., Goldfarb, M.: A velocity-field-based controller for assisting leg movement during walking with a bilateral hip and knee lower limb exoskeleton. IEEE Transactions on Robotics 35, 307–316 (2018) Shushtari et al. [2021] Shushtari, M., Nasiri, R., Arami, A.: Online reference trajectory adaptation: A personalized control strategy for lower limb exoskeletons. IEEE Robotics and Automation Letters 7, 128–134 (2021) Asl et al. [2020] Asl, H.J., Yamashita, M., Narikiyo, T., Kawanishi, M.: Field-based assist-as-needed control schemes for rehabilitation robots. IEEE/ASME Transactions on Mechatronics 25, 2100–2111 (2020) Dominijanni et al. [2023] Dominijanni, G., Pinheiro, D.L., Pollina, L., Orset, B., Gini, M., Anselmino, E., Pierella, C., Olivier, J., Shokur, S., Micera, S.: Human motor augmentation with an extra robotic arm without functional interference. Science Robotics 8 (2023) Losey et al. [2018] Losey, D.P., Mcdonald, C.G., Battaglia, E., O’Malley, M.: A review of intent detection, arbitration, and communication aspects of shared control for physical human-robot interaction. Applied Mechanics Reviews 70 (2018) https://doi.org/10.1115/1.4039145 Jackson and Collins [2019] Jackson, R.W., Collins, S.H.: Heuristic-based ankle exoskeleton control for co-adaptive assistance of human locomotion. IEEE Transactions on Neural Systems and Rehabilitation Engineering 27, 2059–2069 (2019) Banala et al. [2007] Banala, S.K., Agrawal, S.K., Scholz, J.P.: Active leg exoskeleton (alex) for gait rehabilitation of motor-impaired patients. In: 2007 IEEE 10th International Conference on Rehabilitation Robotics, pp. 401–407 (2007). 2007 IEEE 10th International Conference on Rehabilitation Robotics Dinovitzer et al. [2023a] Dinovitzer, H., Shushtari, M., Arami, A.: Feedforward control of lower limb exoskeletons: which torque profile should we use? IEEE Robotics and Automation Letters (2023) Dinovitzer et al. [2023b] Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Zhu, F., Kern, M., Fowkes, E., Afzal, T., Contreras-Vidal, J.-L., Francisco, G.E., Chang, S.-H.: Effects of an exoskeleton-assisted gait training on post-stroke lower-limb muscle coordination. Journal of Neural Engineering 18, 046039 (2021) Küçüktabak et al. [2024] Küçüktabak, E.B., Wen, Y., Kim, S.J., Short, M., Ludvig, D., Hargrove, L., Perreault, E., Lynch, K., Pons, J.: Haptic transparency and interaction force control for a lower-limb exoskeleton. IEEE Transactions on Robotics (2024) Eva and Grizzle [2020] Eva, M.M., Grizzle, J.W.: Feedback control design for robust comfortable sit-to-stand motions of 3d lower-limb exoskeletons. IEEE Access 9, 122–161 (2020) Masengo et al. [2023] Masengo, G., Zhang, X., Dong, R., , A.B.A., Hamza, K., Mudaheranwa, E.: Lower limb exoskeleton robot and its cooperative control: A review, trends, and challenges for future research. Frontiers in Neurorobotics 16, 1–25 (2023) Ingraham et al. [2022] Ingraham, K.A., Remy, C.D., Rouse, E.J.: The role of user preference in the customized control of robotic exoskeletons. Science robotics 7 (2022) Pinto-Fernandez et al. [2020] Pinto-Fernandez, D., Diego, T., Carmen Sanchez-Villamanan, M., Aller, F., Mombaur, K., Conti, R., Vitiello, N., Moreno, J.C., Pons, J.L.: Performance evaluation of lower limb exoskeletons: A systematic review. IEEE Transactions on Neural Systems and Rehabilitation Engineering 28, 1573–1583 (2020) Slade et al. [2022] Slade, P., Kochenderfer, M.J., Delp, S.L., Collins, S.H.: Personalizing exoskeleton assistance while walking in the real world. Nature 610, 277–282 (2022) Medina et al. [2015] Medina, J.R., Lorenz, T., Hirche, S.: Synthesizing anticipatory haptic assistance considering human behavior uncertainty. IEEE Transactions on Robotics 31, 180–190 (2015) Martinez et al. [2018] Martinez, A., Lawson, B., Durrough, C., Goldfarb, M.: A velocity-field-based controller for assisting leg movement during walking with a bilateral hip and knee lower limb exoskeleton. IEEE Transactions on Robotics 35, 307–316 (2018) Shushtari et al. [2021] Shushtari, M., Nasiri, R., Arami, A.: Online reference trajectory adaptation: A personalized control strategy for lower limb exoskeletons. IEEE Robotics and Automation Letters 7, 128–134 (2021) Asl et al. [2020] Asl, H.J., Yamashita, M., Narikiyo, T., Kawanishi, M.: Field-based assist-as-needed control schemes for rehabilitation robots. IEEE/ASME Transactions on Mechatronics 25, 2100–2111 (2020) Dominijanni et al. [2023] Dominijanni, G., Pinheiro, D.L., Pollina, L., Orset, B., Gini, M., Anselmino, E., Pierella, C., Olivier, J., Shokur, S., Micera, S.: Human motor augmentation with an extra robotic arm without functional interference. Science Robotics 8 (2023) Losey et al. [2018] Losey, D.P., Mcdonald, C.G., Battaglia, E., O’Malley, M.: A review of intent detection, arbitration, and communication aspects of shared control for physical human-robot interaction. Applied Mechanics Reviews 70 (2018) https://doi.org/10.1115/1.4039145 Jackson and Collins [2019] Jackson, R.W., Collins, S.H.: Heuristic-based ankle exoskeleton control for co-adaptive assistance of human locomotion. IEEE Transactions on Neural Systems and Rehabilitation Engineering 27, 2059–2069 (2019) Banala et al. [2007] Banala, S.K., Agrawal, S.K., Scholz, J.P.: Active leg exoskeleton (alex) for gait rehabilitation of motor-impaired patients. In: 2007 IEEE 10th International Conference on Rehabilitation Robotics, pp. 401–407 (2007). 2007 IEEE 10th International Conference on Rehabilitation Robotics Dinovitzer et al. [2023a] Dinovitzer, H., Shushtari, M., Arami, A.: Feedforward control of lower limb exoskeletons: which torque profile should we use? IEEE Robotics and Automation Letters (2023) Dinovitzer et al. [2023b] Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Küçüktabak, E.B., Wen, Y., Kim, S.J., Short, M., Ludvig, D., Hargrove, L., Perreault, E., Lynch, K., Pons, J.: Haptic transparency and interaction force control for a lower-limb exoskeleton. IEEE Transactions on Robotics (2024) Eva and Grizzle [2020] Eva, M.M., Grizzle, J.W.: Feedback control design for robust comfortable sit-to-stand motions of 3d lower-limb exoskeletons. IEEE Access 9, 122–161 (2020) Masengo et al. [2023] Masengo, G., Zhang, X., Dong, R., , A.B.A., Hamza, K., Mudaheranwa, E.: Lower limb exoskeleton robot and its cooperative control: A review, trends, and challenges for future research. Frontiers in Neurorobotics 16, 1–25 (2023) Ingraham et al. [2022] Ingraham, K.A., Remy, C.D., Rouse, E.J.: The role of user preference in the customized control of robotic exoskeletons. Science robotics 7 (2022) Pinto-Fernandez et al. [2020] Pinto-Fernandez, D., Diego, T., Carmen Sanchez-Villamanan, M., Aller, F., Mombaur, K., Conti, R., Vitiello, N., Moreno, J.C., Pons, J.L.: Performance evaluation of lower limb exoskeletons: A systematic review. IEEE Transactions on Neural Systems and Rehabilitation Engineering 28, 1573–1583 (2020) Slade et al. [2022] Slade, P., Kochenderfer, M.J., Delp, S.L., Collins, S.H.: Personalizing exoskeleton assistance while walking in the real world. Nature 610, 277–282 (2022) Medina et al. [2015] Medina, J.R., Lorenz, T., Hirche, S.: Synthesizing anticipatory haptic assistance considering human behavior uncertainty. IEEE Transactions on Robotics 31, 180–190 (2015) Martinez et al. [2018] Martinez, A., Lawson, B., Durrough, C., Goldfarb, M.: A velocity-field-based controller for assisting leg movement during walking with a bilateral hip and knee lower limb exoskeleton. IEEE Transactions on Robotics 35, 307–316 (2018) Shushtari et al. [2021] Shushtari, M., Nasiri, R., Arami, A.: Online reference trajectory adaptation: A personalized control strategy for lower limb exoskeletons. IEEE Robotics and Automation Letters 7, 128–134 (2021) Asl et al. [2020] Asl, H.J., Yamashita, M., Narikiyo, T., Kawanishi, M.: Field-based assist-as-needed control schemes for rehabilitation robots. IEEE/ASME Transactions on Mechatronics 25, 2100–2111 (2020) Dominijanni et al. [2023] Dominijanni, G., Pinheiro, D.L., Pollina, L., Orset, B., Gini, M., Anselmino, E., Pierella, C., Olivier, J., Shokur, S., Micera, S.: Human motor augmentation with an extra robotic arm without functional interference. Science Robotics 8 (2023) Losey et al. [2018] Losey, D.P., Mcdonald, C.G., Battaglia, E., O’Malley, M.: A review of intent detection, arbitration, and communication aspects of shared control for physical human-robot interaction. Applied Mechanics Reviews 70 (2018) https://doi.org/10.1115/1.4039145 Jackson and Collins [2019] Jackson, R.W., Collins, S.H.: Heuristic-based ankle exoskeleton control for co-adaptive assistance of human locomotion. IEEE Transactions on Neural Systems and Rehabilitation Engineering 27, 2059–2069 (2019) Banala et al. [2007] Banala, S.K., Agrawal, S.K., Scholz, J.P.: Active leg exoskeleton (alex) for gait rehabilitation of motor-impaired patients. In: 2007 IEEE 10th International Conference on Rehabilitation Robotics, pp. 401–407 (2007). 2007 IEEE 10th International Conference on Rehabilitation Robotics Dinovitzer et al. [2023a] Dinovitzer, H., Shushtari, M., Arami, A.: Feedforward control of lower limb exoskeletons: which torque profile should we use? IEEE Robotics and Automation Letters (2023) Dinovitzer et al. [2023b] Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Eva, M.M., Grizzle, J.W.: Feedback control design for robust comfortable sit-to-stand motions of 3d lower-limb exoskeletons. IEEE Access 9, 122–161 (2020) Masengo et al. [2023] Masengo, G., Zhang, X., Dong, R., , A.B.A., Hamza, K., Mudaheranwa, E.: Lower limb exoskeleton robot and its cooperative control: A review, trends, and challenges for future research. Frontiers in Neurorobotics 16, 1–25 (2023) Ingraham et al. [2022] Ingraham, K.A., Remy, C.D., Rouse, E.J.: The role of user preference in the customized control of robotic exoskeletons. Science robotics 7 (2022) Pinto-Fernandez et al. [2020] Pinto-Fernandez, D., Diego, T., Carmen Sanchez-Villamanan, M., Aller, F., Mombaur, K., Conti, R., Vitiello, N., Moreno, J.C., Pons, J.L.: Performance evaluation of lower limb exoskeletons: A systematic review. IEEE Transactions on Neural Systems and Rehabilitation Engineering 28, 1573–1583 (2020) Slade et al. [2022] Slade, P., Kochenderfer, M.J., Delp, S.L., Collins, S.H.: Personalizing exoskeleton assistance while walking in the real world. Nature 610, 277–282 (2022) Medina et al. [2015] Medina, J.R., Lorenz, T., Hirche, S.: Synthesizing anticipatory haptic assistance considering human behavior uncertainty. IEEE Transactions on Robotics 31, 180–190 (2015) Martinez et al. [2018] Martinez, A., Lawson, B., Durrough, C., Goldfarb, M.: A velocity-field-based controller for assisting leg movement during walking with a bilateral hip and knee lower limb exoskeleton. IEEE Transactions on Robotics 35, 307–316 (2018) Shushtari et al. [2021] Shushtari, M., Nasiri, R., Arami, A.: Online reference trajectory adaptation: A personalized control strategy for lower limb exoskeletons. IEEE Robotics and Automation Letters 7, 128–134 (2021) Asl et al. [2020] Asl, H.J., Yamashita, M., Narikiyo, T., Kawanishi, M.: Field-based assist-as-needed control schemes for rehabilitation robots. IEEE/ASME Transactions on Mechatronics 25, 2100–2111 (2020) Dominijanni et al. [2023] Dominijanni, G., Pinheiro, D.L., Pollina, L., Orset, B., Gini, M., Anselmino, E., Pierella, C., Olivier, J., Shokur, S., Micera, S.: Human motor augmentation with an extra robotic arm without functional interference. Science Robotics 8 (2023) Losey et al. [2018] Losey, D.P., Mcdonald, C.G., Battaglia, E., O’Malley, M.: A review of intent detection, arbitration, and communication aspects of shared control for physical human-robot interaction. Applied Mechanics Reviews 70 (2018) https://doi.org/10.1115/1.4039145 Jackson and Collins [2019] Jackson, R.W., Collins, S.H.: Heuristic-based ankle exoskeleton control for co-adaptive assistance of human locomotion. IEEE Transactions on Neural Systems and Rehabilitation Engineering 27, 2059–2069 (2019) Banala et al. [2007] Banala, S.K., Agrawal, S.K., Scholz, J.P.: Active leg exoskeleton (alex) for gait rehabilitation of motor-impaired patients. In: 2007 IEEE 10th International Conference on Rehabilitation Robotics, pp. 401–407 (2007). 2007 IEEE 10th International Conference on Rehabilitation Robotics Dinovitzer et al. [2023a] Dinovitzer, H., Shushtari, M., Arami, A.: Feedforward control of lower limb exoskeletons: which torque profile should we use? IEEE Robotics and Automation Letters (2023) Dinovitzer et al. [2023b] Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Masengo, G., Zhang, X., Dong, R., , A.B.A., Hamza, K., Mudaheranwa, E.: Lower limb exoskeleton robot and its cooperative control: A review, trends, and challenges for future research. Frontiers in Neurorobotics 16, 1–25 (2023) Ingraham et al. [2022] Ingraham, K.A., Remy, C.D., Rouse, E.J.: The role of user preference in the customized control of robotic exoskeletons. Science robotics 7 (2022) Pinto-Fernandez et al. [2020] Pinto-Fernandez, D., Diego, T., Carmen Sanchez-Villamanan, M., Aller, F., Mombaur, K., Conti, R., Vitiello, N., Moreno, J.C., Pons, J.L.: Performance evaluation of lower limb exoskeletons: A systematic review. IEEE Transactions on Neural Systems and Rehabilitation Engineering 28, 1573–1583 (2020) Slade et al. [2022] Slade, P., Kochenderfer, M.J., Delp, S.L., Collins, S.H.: Personalizing exoskeleton assistance while walking in the real world. Nature 610, 277–282 (2022) Medina et al. [2015] Medina, J.R., Lorenz, T., Hirche, S.: Synthesizing anticipatory haptic assistance considering human behavior uncertainty. IEEE Transactions on Robotics 31, 180–190 (2015) Martinez et al. [2018] Martinez, A., Lawson, B., Durrough, C., Goldfarb, M.: A velocity-field-based controller for assisting leg movement during walking with a bilateral hip and knee lower limb exoskeleton. IEEE Transactions on Robotics 35, 307–316 (2018) Shushtari et al. [2021] Shushtari, M., Nasiri, R., Arami, A.: Online reference trajectory adaptation: A personalized control strategy for lower limb exoskeletons. IEEE Robotics and Automation Letters 7, 128–134 (2021) Asl et al. [2020] Asl, H.J., Yamashita, M., Narikiyo, T., Kawanishi, M.: Field-based assist-as-needed control schemes for rehabilitation robots. IEEE/ASME Transactions on Mechatronics 25, 2100–2111 (2020) Dominijanni et al. [2023] Dominijanni, G., Pinheiro, D.L., Pollina, L., Orset, B., Gini, M., Anselmino, E., Pierella, C., Olivier, J., Shokur, S., Micera, S.: Human motor augmentation with an extra robotic arm without functional interference. Science Robotics 8 (2023) Losey et al. [2018] Losey, D.P., Mcdonald, C.G., Battaglia, E., O’Malley, M.: A review of intent detection, arbitration, and communication aspects of shared control for physical human-robot interaction. Applied Mechanics Reviews 70 (2018) https://doi.org/10.1115/1.4039145 Jackson and Collins [2019] Jackson, R.W., Collins, S.H.: Heuristic-based ankle exoskeleton control for co-adaptive assistance of human locomotion. IEEE Transactions on Neural Systems and Rehabilitation Engineering 27, 2059–2069 (2019) Banala et al. [2007] Banala, S.K., Agrawal, S.K., Scholz, J.P.: Active leg exoskeleton (alex) for gait rehabilitation of motor-impaired patients. In: 2007 IEEE 10th International Conference on Rehabilitation Robotics, pp. 401–407 (2007). 2007 IEEE 10th International Conference on Rehabilitation Robotics Dinovitzer et al. [2023a] Dinovitzer, H., Shushtari, M., Arami, A.: Feedforward control of lower limb exoskeletons: which torque profile should we use? IEEE Robotics and Automation Letters (2023) Dinovitzer et al. [2023b] Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Ingraham, K.A., Remy, C.D., Rouse, E.J.: The role of user preference in the customized control of robotic exoskeletons. Science robotics 7 (2022) Pinto-Fernandez et al. [2020] Pinto-Fernandez, D., Diego, T., Carmen Sanchez-Villamanan, M., Aller, F., Mombaur, K., Conti, R., Vitiello, N., Moreno, J.C., Pons, J.L.: Performance evaluation of lower limb exoskeletons: A systematic review. IEEE Transactions on Neural Systems and Rehabilitation Engineering 28, 1573–1583 (2020) Slade et al. [2022] Slade, P., Kochenderfer, M.J., Delp, S.L., Collins, S.H.: Personalizing exoskeleton assistance while walking in the real world. Nature 610, 277–282 (2022) Medina et al. [2015] Medina, J.R., Lorenz, T., Hirche, S.: Synthesizing anticipatory haptic assistance considering human behavior uncertainty. IEEE Transactions on Robotics 31, 180–190 (2015) Martinez et al. [2018] Martinez, A., Lawson, B., Durrough, C., Goldfarb, M.: A velocity-field-based controller for assisting leg movement during walking with a bilateral hip and knee lower limb exoskeleton. IEEE Transactions on Robotics 35, 307–316 (2018) Shushtari et al. [2021] Shushtari, M., Nasiri, R., Arami, A.: Online reference trajectory adaptation: A personalized control strategy for lower limb exoskeletons. IEEE Robotics and Automation Letters 7, 128–134 (2021) Asl et al. [2020] Asl, H.J., Yamashita, M., Narikiyo, T., Kawanishi, M.: Field-based assist-as-needed control schemes for rehabilitation robots. IEEE/ASME Transactions on Mechatronics 25, 2100–2111 (2020) Dominijanni et al. [2023] Dominijanni, G., Pinheiro, D.L., Pollina, L., Orset, B., Gini, M., Anselmino, E., Pierella, C., Olivier, J., Shokur, S., Micera, S.: Human motor augmentation with an extra robotic arm without functional interference. Science Robotics 8 (2023) Losey et al. [2018] Losey, D.P., Mcdonald, C.G., Battaglia, E., O’Malley, M.: A review of intent detection, arbitration, and communication aspects of shared control for physical human-robot interaction. Applied Mechanics Reviews 70 (2018) https://doi.org/10.1115/1.4039145 Jackson and Collins [2019] Jackson, R.W., Collins, S.H.: Heuristic-based ankle exoskeleton control for co-adaptive assistance of human locomotion. IEEE Transactions on Neural Systems and Rehabilitation Engineering 27, 2059–2069 (2019) Banala et al. [2007] Banala, S.K., Agrawal, S.K., Scholz, J.P.: Active leg exoskeleton (alex) for gait rehabilitation of motor-impaired patients. In: 2007 IEEE 10th International Conference on Rehabilitation Robotics, pp. 401–407 (2007). 2007 IEEE 10th International Conference on Rehabilitation Robotics Dinovitzer et al. [2023a] Dinovitzer, H., Shushtari, M., Arami, A.: Feedforward control of lower limb exoskeletons: which torque profile should we use? IEEE Robotics and Automation Letters (2023) Dinovitzer et al. [2023b] Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Pinto-Fernandez, D., Diego, T., Carmen Sanchez-Villamanan, M., Aller, F., Mombaur, K., Conti, R., Vitiello, N., Moreno, J.C., Pons, J.L.: Performance evaluation of lower limb exoskeletons: A systematic review. IEEE Transactions on Neural Systems and Rehabilitation Engineering 28, 1573–1583 (2020) Slade et al. [2022] Slade, P., Kochenderfer, M.J., Delp, S.L., Collins, S.H.: Personalizing exoskeleton assistance while walking in the real world. Nature 610, 277–282 (2022) Medina et al. [2015] Medina, J.R., Lorenz, T., Hirche, S.: Synthesizing anticipatory haptic assistance considering human behavior uncertainty. IEEE Transactions on Robotics 31, 180–190 (2015) Martinez et al. [2018] Martinez, A., Lawson, B., Durrough, C., Goldfarb, M.: A velocity-field-based controller for assisting leg movement during walking with a bilateral hip and knee lower limb exoskeleton. IEEE Transactions on Robotics 35, 307–316 (2018) Shushtari et al. [2021] Shushtari, M., Nasiri, R., Arami, A.: Online reference trajectory adaptation: A personalized control strategy for lower limb exoskeletons. IEEE Robotics and Automation Letters 7, 128–134 (2021) Asl et al. [2020] Asl, H.J., Yamashita, M., Narikiyo, T., Kawanishi, M.: Field-based assist-as-needed control schemes for rehabilitation robots. IEEE/ASME Transactions on Mechatronics 25, 2100–2111 (2020) Dominijanni et al. [2023] Dominijanni, G., Pinheiro, D.L., Pollina, L., Orset, B., Gini, M., Anselmino, E., Pierella, C., Olivier, J., Shokur, S., Micera, S.: Human motor augmentation with an extra robotic arm without functional interference. Science Robotics 8 (2023) Losey et al. [2018] Losey, D.P., Mcdonald, C.G., Battaglia, E., O’Malley, M.: A review of intent detection, arbitration, and communication aspects of shared control for physical human-robot interaction. Applied Mechanics Reviews 70 (2018) https://doi.org/10.1115/1.4039145 Jackson and Collins [2019] Jackson, R.W., Collins, S.H.: Heuristic-based ankle exoskeleton control for co-adaptive assistance of human locomotion. IEEE Transactions on Neural Systems and Rehabilitation Engineering 27, 2059–2069 (2019) Banala et al. [2007] Banala, S.K., Agrawal, S.K., Scholz, J.P.: Active leg exoskeleton (alex) for gait rehabilitation of motor-impaired patients. In: 2007 IEEE 10th International Conference on Rehabilitation Robotics, pp. 401–407 (2007). 2007 IEEE 10th International Conference on Rehabilitation Robotics Dinovitzer et al. [2023a] Dinovitzer, H., Shushtari, M., Arami, A.: Feedforward control of lower limb exoskeletons: which torque profile should we use? IEEE Robotics and Automation Letters (2023) Dinovitzer et al. [2023b] Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Slade, P., Kochenderfer, M.J., Delp, S.L., Collins, S.H.: Personalizing exoskeleton assistance while walking in the real world. Nature 610, 277–282 (2022) Medina et al. [2015] Medina, J.R., Lorenz, T., Hirche, S.: Synthesizing anticipatory haptic assistance considering human behavior uncertainty. IEEE Transactions on Robotics 31, 180–190 (2015) Martinez et al. [2018] Martinez, A., Lawson, B., Durrough, C., Goldfarb, M.: A velocity-field-based controller for assisting leg movement during walking with a bilateral hip and knee lower limb exoskeleton. IEEE Transactions on Robotics 35, 307–316 (2018) Shushtari et al. [2021] Shushtari, M., Nasiri, R., Arami, A.: Online reference trajectory adaptation: A personalized control strategy for lower limb exoskeletons. IEEE Robotics and Automation Letters 7, 128–134 (2021) Asl et al. [2020] Asl, H.J., Yamashita, M., Narikiyo, T., Kawanishi, M.: Field-based assist-as-needed control schemes for rehabilitation robots. IEEE/ASME Transactions on Mechatronics 25, 2100–2111 (2020) Dominijanni et al. [2023] Dominijanni, G., Pinheiro, D.L., Pollina, L., Orset, B., Gini, M., Anselmino, E., Pierella, C., Olivier, J., Shokur, S., Micera, S.: Human motor augmentation with an extra robotic arm without functional interference. Science Robotics 8 (2023) Losey et al. [2018] Losey, D.P., Mcdonald, C.G., Battaglia, E., O’Malley, M.: A review of intent detection, arbitration, and communication aspects of shared control for physical human-robot interaction. Applied Mechanics Reviews 70 (2018) https://doi.org/10.1115/1.4039145 Jackson and Collins [2019] Jackson, R.W., Collins, S.H.: Heuristic-based ankle exoskeleton control for co-adaptive assistance of human locomotion. IEEE Transactions on Neural Systems and Rehabilitation Engineering 27, 2059–2069 (2019) Banala et al. [2007] Banala, S.K., Agrawal, S.K., Scholz, J.P.: Active leg exoskeleton (alex) for gait rehabilitation of motor-impaired patients. In: 2007 IEEE 10th International Conference on Rehabilitation Robotics, pp. 401–407 (2007). 2007 IEEE 10th International Conference on Rehabilitation Robotics Dinovitzer et al. [2023a] Dinovitzer, H., Shushtari, M., Arami, A.: Feedforward control of lower limb exoskeletons: which torque profile should we use? IEEE Robotics and Automation Letters (2023) Dinovitzer et al. [2023b] Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Medina, J.R., Lorenz, T., Hirche, S.: Synthesizing anticipatory haptic assistance considering human behavior uncertainty. IEEE Transactions on Robotics 31, 180–190 (2015) Martinez et al. [2018] Martinez, A., Lawson, B., Durrough, C., Goldfarb, M.: A velocity-field-based controller for assisting leg movement during walking with a bilateral hip and knee lower limb exoskeleton. IEEE Transactions on Robotics 35, 307–316 (2018) Shushtari et al. [2021] Shushtari, M., Nasiri, R., Arami, A.: Online reference trajectory adaptation: A personalized control strategy for lower limb exoskeletons. IEEE Robotics and Automation Letters 7, 128–134 (2021) Asl et al. [2020] Asl, H.J., Yamashita, M., Narikiyo, T., Kawanishi, M.: Field-based assist-as-needed control schemes for rehabilitation robots. IEEE/ASME Transactions on Mechatronics 25, 2100–2111 (2020) Dominijanni et al. [2023] Dominijanni, G., Pinheiro, D.L., Pollina, L., Orset, B., Gini, M., Anselmino, E., Pierella, C., Olivier, J., Shokur, S., Micera, S.: Human motor augmentation with an extra robotic arm without functional interference. Science Robotics 8 (2023) Losey et al. [2018] Losey, D.P., Mcdonald, C.G., Battaglia, E., O’Malley, M.: A review of intent detection, arbitration, and communication aspects of shared control for physical human-robot interaction. Applied Mechanics Reviews 70 (2018) https://doi.org/10.1115/1.4039145 Jackson and Collins [2019] Jackson, R.W., Collins, S.H.: Heuristic-based ankle exoskeleton control for co-adaptive assistance of human locomotion. IEEE Transactions on Neural Systems and Rehabilitation Engineering 27, 2059–2069 (2019) Banala et al. [2007] Banala, S.K., Agrawal, S.K., Scholz, J.P.: Active leg exoskeleton (alex) for gait rehabilitation of motor-impaired patients. In: 2007 IEEE 10th International Conference on Rehabilitation Robotics, pp. 401–407 (2007). 2007 IEEE 10th International Conference on Rehabilitation Robotics Dinovitzer et al. [2023a] Dinovitzer, H., Shushtari, M., Arami, A.: Feedforward control of lower limb exoskeletons: which torque profile should we use? IEEE Robotics and Automation Letters (2023) Dinovitzer et al. [2023b] Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Martinez, A., Lawson, B., Durrough, C., Goldfarb, M.: A velocity-field-based controller for assisting leg movement during walking with a bilateral hip and knee lower limb exoskeleton. IEEE Transactions on Robotics 35, 307–316 (2018) Shushtari et al. [2021] Shushtari, M., Nasiri, R., Arami, A.: Online reference trajectory adaptation: A personalized control strategy for lower limb exoskeletons. IEEE Robotics and Automation Letters 7, 128–134 (2021) Asl et al. [2020] Asl, H.J., Yamashita, M., Narikiyo, T., Kawanishi, M.: Field-based assist-as-needed control schemes for rehabilitation robots. IEEE/ASME Transactions on Mechatronics 25, 2100–2111 (2020) Dominijanni et al. [2023] Dominijanni, G., Pinheiro, D.L., Pollina, L., Orset, B., Gini, M., Anselmino, E., Pierella, C., Olivier, J., Shokur, S., Micera, S.: Human motor augmentation with an extra robotic arm without functional interference. Science Robotics 8 (2023) Losey et al. [2018] Losey, D.P., Mcdonald, C.G., Battaglia, E., O’Malley, M.: A review of intent detection, arbitration, and communication aspects of shared control for physical human-robot interaction. Applied Mechanics Reviews 70 (2018) https://doi.org/10.1115/1.4039145 Jackson and Collins [2019] Jackson, R.W., Collins, S.H.: Heuristic-based ankle exoskeleton control for co-adaptive assistance of human locomotion. IEEE Transactions on Neural Systems and Rehabilitation Engineering 27, 2059–2069 (2019) Banala et al. [2007] Banala, S.K., Agrawal, S.K., Scholz, J.P.: Active leg exoskeleton (alex) for gait rehabilitation of motor-impaired patients. In: 2007 IEEE 10th International Conference on Rehabilitation Robotics, pp. 401–407 (2007). 2007 IEEE 10th International Conference on Rehabilitation Robotics Dinovitzer et al. [2023a] Dinovitzer, H., Shushtari, M., Arami, A.: Feedforward control of lower limb exoskeletons: which torque profile should we use? IEEE Robotics and Automation Letters (2023) Dinovitzer et al. [2023b] Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Shushtari, M., Nasiri, R., Arami, A.: Online reference trajectory adaptation: A personalized control strategy for lower limb exoskeletons. IEEE Robotics and Automation Letters 7, 128–134 (2021) Asl et al. [2020] Asl, H.J., Yamashita, M., Narikiyo, T., Kawanishi, M.: Field-based assist-as-needed control schemes for rehabilitation robots. IEEE/ASME Transactions on Mechatronics 25, 2100–2111 (2020) Dominijanni et al. [2023] Dominijanni, G., Pinheiro, D.L., Pollina, L., Orset, B., Gini, M., Anselmino, E., Pierella, C., Olivier, J., Shokur, S., Micera, S.: Human motor augmentation with an extra robotic arm without functional interference. Science Robotics 8 (2023) Losey et al. [2018] Losey, D.P., Mcdonald, C.G., Battaglia, E., O’Malley, M.: A review of intent detection, arbitration, and communication aspects of shared control for physical human-robot interaction. Applied Mechanics Reviews 70 (2018) https://doi.org/10.1115/1.4039145 Jackson and Collins [2019] Jackson, R.W., Collins, S.H.: Heuristic-based ankle exoskeleton control for co-adaptive assistance of human locomotion. IEEE Transactions on Neural Systems and Rehabilitation Engineering 27, 2059–2069 (2019) Banala et al. [2007] Banala, S.K., Agrawal, S.K., Scholz, J.P.: Active leg exoskeleton (alex) for gait rehabilitation of motor-impaired patients. In: 2007 IEEE 10th International Conference on Rehabilitation Robotics, pp. 401–407 (2007). 2007 IEEE 10th International Conference on Rehabilitation Robotics Dinovitzer et al. [2023a] Dinovitzer, H., Shushtari, M., Arami, A.: Feedforward control of lower limb exoskeletons: which torque profile should we use? IEEE Robotics and Automation Letters (2023) Dinovitzer et al. [2023b] Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Asl, H.J., Yamashita, M., Narikiyo, T., Kawanishi, M.: Field-based assist-as-needed control schemes for rehabilitation robots. IEEE/ASME Transactions on Mechatronics 25, 2100–2111 (2020) Dominijanni et al. [2023] Dominijanni, G., Pinheiro, D.L., Pollina, L., Orset, B., Gini, M., Anselmino, E., Pierella, C., Olivier, J., Shokur, S., Micera, S.: Human motor augmentation with an extra robotic arm without functional interference. Science Robotics 8 (2023) Losey et al. [2018] Losey, D.P., Mcdonald, C.G., Battaglia, E., O’Malley, M.: A review of intent detection, arbitration, and communication aspects of shared control for physical human-robot interaction. Applied Mechanics Reviews 70 (2018) https://doi.org/10.1115/1.4039145 Jackson and Collins [2019] Jackson, R.W., Collins, S.H.: Heuristic-based ankle exoskeleton control for co-adaptive assistance of human locomotion. IEEE Transactions on Neural Systems and Rehabilitation Engineering 27, 2059–2069 (2019) Banala et al. [2007] Banala, S.K., Agrawal, S.K., Scholz, J.P.: Active leg exoskeleton (alex) for gait rehabilitation of motor-impaired patients. In: 2007 IEEE 10th International Conference on Rehabilitation Robotics, pp. 401–407 (2007). 2007 IEEE 10th International Conference on Rehabilitation Robotics Dinovitzer et al. [2023a] Dinovitzer, H., Shushtari, M., Arami, A.: Feedforward control of lower limb exoskeletons: which torque profile should we use? IEEE Robotics and Automation Letters (2023) Dinovitzer et al. [2023b] Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Dominijanni, G., Pinheiro, D.L., Pollina, L., Orset, B., Gini, M., Anselmino, E., Pierella, C., Olivier, J., Shokur, S., Micera, S.: Human motor augmentation with an extra robotic arm without functional interference. Science Robotics 8 (2023) Losey et al. [2018] Losey, D.P., Mcdonald, C.G., Battaglia, E., O’Malley, M.: A review of intent detection, arbitration, and communication aspects of shared control for physical human-robot interaction. Applied Mechanics Reviews 70 (2018) https://doi.org/10.1115/1.4039145 Jackson and Collins [2019] Jackson, R.W., Collins, S.H.: Heuristic-based ankle exoskeleton control for co-adaptive assistance of human locomotion. IEEE Transactions on Neural Systems and Rehabilitation Engineering 27, 2059–2069 (2019) Banala et al. [2007] Banala, S.K., Agrawal, S.K., Scholz, J.P.: Active leg exoskeleton (alex) for gait rehabilitation of motor-impaired patients. In: 2007 IEEE 10th International Conference on Rehabilitation Robotics, pp. 401–407 (2007). 2007 IEEE 10th International Conference on Rehabilitation Robotics Dinovitzer et al. [2023a] Dinovitzer, H., Shushtari, M., Arami, A.: Feedforward control of lower limb exoskeletons: which torque profile should we use? IEEE Robotics and Automation Letters (2023) Dinovitzer et al. [2023b] Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Losey, D.P., Mcdonald, C.G., Battaglia, E., O’Malley, M.: A review of intent detection, arbitration, and communication aspects of shared control for physical human-robot interaction. Applied Mechanics Reviews 70 (2018) https://doi.org/10.1115/1.4039145 Jackson and Collins [2019] Jackson, R.W., Collins, S.H.: Heuristic-based ankle exoskeleton control for co-adaptive assistance of human locomotion. IEEE Transactions on Neural Systems and Rehabilitation Engineering 27, 2059–2069 (2019) Banala et al. [2007] Banala, S.K., Agrawal, S.K., Scholz, J.P.: Active leg exoskeleton (alex) for gait rehabilitation of motor-impaired patients. In: 2007 IEEE 10th International Conference on Rehabilitation Robotics, pp. 401–407 (2007). 2007 IEEE 10th International Conference on Rehabilitation Robotics Dinovitzer et al. [2023a] Dinovitzer, H., Shushtari, M., Arami, A.: Feedforward control of lower limb exoskeletons: which torque profile should we use? IEEE Robotics and Automation Letters (2023) Dinovitzer et al. [2023b] Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Jackson, R.W., Collins, S.H.: Heuristic-based ankle exoskeleton control for co-adaptive assistance of human locomotion. IEEE Transactions on Neural Systems and Rehabilitation Engineering 27, 2059–2069 (2019) Banala et al. [2007] Banala, S.K., Agrawal, S.K., Scholz, J.P.: Active leg exoskeleton (alex) for gait rehabilitation of motor-impaired patients. In: 2007 IEEE 10th International Conference on Rehabilitation Robotics, pp. 401–407 (2007). 2007 IEEE 10th International Conference on Rehabilitation Robotics Dinovitzer et al. [2023a] Dinovitzer, H., Shushtari, M., Arami, A.: Feedforward control of lower limb exoskeletons: which torque profile should we use? IEEE Robotics and Automation Letters (2023) Dinovitzer et al. [2023b] Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Banala, S.K., Agrawal, S.K., Scholz, J.P.: Active leg exoskeleton (alex) for gait rehabilitation of motor-impaired patients. In: 2007 IEEE 10th International Conference on Rehabilitation Robotics, pp. 401–407 (2007). 2007 IEEE 10th International Conference on Rehabilitation Robotics Dinovitzer et al. [2023a] Dinovitzer, H., Shushtari, M., Arami, A.: Feedforward control of lower limb exoskeletons: which torque profile should we use? IEEE Robotics and Automation Letters (2023) Dinovitzer et al. [2023b] Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Dinovitzer, H., Shushtari, M., Arami, A.: Feedforward control of lower limb exoskeletons: which torque profile should we use? IEEE Robotics and Automation Letters (2023) Dinovitzer et al. [2023b] Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017)
  3. Franks, P.W., Bryan, G.M., Martin, R.M., Reyes, R., Lakmazaheri, A.C., Collins, S.H.: Comparing optimized exoskeleton assistance of the hip, knee, and ankle in single and multi-joint configurations. Wearable Technologies 2, 16 (2021) Durandau et al. [2022] Durandau, G., Rampeltshammer, W.F., Kooij, H., Sartori, M.: Neuromechanical model-based adaptive control of bilateral ankle exoskeletons: biological joint torque and electromyogram reduction across walking conditions. IEEE Transactions on Robotics 38, 1380–1394 (2022) Poggensee and Collins [2021] Poggensee, K.L., Collins, S.H.: How adaptation, training, and customization contribute to benefits from exoskeleton assistance. Science Robotics 6 (2021) Nuckols et al. [2021] Nuckols, R.W., Lee, S., Swaminathan, K., Orzel, D., Howe, R.D., Walsh, C.J.: Individualization of exosuit assistance based on measured muscle dynamics during versatile walking. Science robotics 6 (2021) Lee et al. [2023] Lee, U.H., Shetty, V.S., Franks, P.W., Tan, J., Evangelopoulos, G., Ha, S., Rouse, E.J.: User preference optimization for control of ankle exoskeletons using sample efficient active learning. Science Robotics 8 (2023) Postol et al. [2020] Postol, N., Lamond, S., Galloway, M., Palazzi, K., Bivard, A., Spratt, N.J., Marquez, J.: The metabolic cost of exercising with a robotic exoskeleton: A comparison of healthy and neurologically impaired people. IEEE Transactions on Neural Systems and Rehabilitation Engineering 28, 3031–3039 (2020) Witte et al. [2020] Witte, K.A., Fiers, P., Sheets-Singer, A.L., Collins, S.H.: Improving the energy economy of human running with powered and unpowered ankle exoskeleton assistance. Science Robotics 5 (2020) Zhu et al. [2021] Zhu, F., Kern, M., Fowkes, E., Afzal, T., Contreras-Vidal, J.-L., Francisco, G.E., Chang, S.-H.: Effects of an exoskeleton-assisted gait training on post-stroke lower-limb muscle coordination. Journal of Neural Engineering 18, 046039 (2021) Küçüktabak et al. [2024] Küçüktabak, E.B., Wen, Y., Kim, S.J., Short, M., Ludvig, D., Hargrove, L., Perreault, E., Lynch, K., Pons, J.: Haptic transparency and interaction force control for a lower-limb exoskeleton. IEEE Transactions on Robotics (2024) Eva and Grizzle [2020] Eva, M.M., Grizzle, J.W.: Feedback control design for robust comfortable sit-to-stand motions of 3d lower-limb exoskeletons. IEEE Access 9, 122–161 (2020) Masengo et al. [2023] Masengo, G., Zhang, X., Dong, R., , A.B.A., Hamza, K., Mudaheranwa, E.: Lower limb exoskeleton robot and its cooperative control: A review, trends, and challenges for future research. Frontiers in Neurorobotics 16, 1–25 (2023) Ingraham et al. [2022] Ingraham, K.A., Remy, C.D., Rouse, E.J.: The role of user preference in the customized control of robotic exoskeletons. Science robotics 7 (2022) Pinto-Fernandez et al. [2020] Pinto-Fernandez, D., Diego, T., Carmen Sanchez-Villamanan, M., Aller, F., Mombaur, K., Conti, R., Vitiello, N., Moreno, J.C., Pons, J.L.: Performance evaluation of lower limb exoskeletons: A systematic review. IEEE Transactions on Neural Systems and Rehabilitation Engineering 28, 1573–1583 (2020) Slade et al. [2022] Slade, P., Kochenderfer, M.J., Delp, S.L., Collins, S.H.: Personalizing exoskeleton assistance while walking in the real world. Nature 610, 277–282 (2022) Medina et al. [2015] Medina, J.R., Lorenz, T., Hirche, S.: Synthesizing anticipatory haptic assistance considering human behavior uncertainty. IEEE Transactions on Robotics 31, 180–190 (2015) Martinez et al. [2018] Martinez, A., Lawson, B., Durrough, C., Goldfarb, M.: A velocity-field-based controller for assisting leg movement during walking with a bilateral hip and knee lower limb exoskeleton. IEEE Transactions on Robotics 35, 307–316 (2018) Shushtari et al. [2021] Shushtari, M., Nasiri, R., Arami, A.: Online reference trajectory adaptation: A personalized control strategy for lower limb exoskeletons. IEEE Robotics and Automation Letters 7, 128–134 (2021) Asl et al. [2020] Asl, H.J., Yamashita, M., Narikiyo, T., Kawanishi, M.: Field-based assist-as-needed control schemes for rehabilitation robots. IEEE/ASME Transactions on Mechatronics 25, 2100–2111 (2020) Dominijanni et al. [2023] Dominijanni, G., Pinheiro, D.L., Pollina, L., Orset, B., Gini, M., Anselmino, E., Pierella, C., Olivier, J., Shokur, S., Micera, S.: Human motor augmentation with an extra robotic arm without functional interference. Science Robotics 8 (2023) Losey et al. [2018] Losey, D.P., Mcdonald, C.G., Battaglia, E., O’Malley, M.: A review of intent detection, arbitration, and communication aspects of shared control for physical human-robot interaction. Applied Mechanics Reviews 70 (2018) https://doi.org/10.1115/1.4039145 Jackson and Collins [2019] Jackson, R.W., Collins, S.H.: Heuristic-based ankle exoskeleton control for co-adaptive assistance of human locomotion. IEEE Transactions on Neural Systems and Rehabilitation Engineering 27, 2059–2069 (2019) Banala et al. [2007] Banala, S.K., Agrawal, S.K., Scholz, J.P.: Active leg exoskeleton (alex) for gait rehabilitation of motor-impaired patients. In: 2007 IEEE 10th International Conference on Rehabilitation Robotics, pp. 401–407 (2007). 2007 IEEE 10th International Conference on Rehabilitation Robotics Dinovitzer et al. [2023a] Dinovitzer, H., Shushtari, M., Arami, A.: Feedforward control of lower limb exoskeletons: which torque profile should we use? IEEE Robotics and Automation Letters (2023) Dinovitzer et al. [2023b] Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Durandau, G., Rampeltshammer, W.F., Kooij, H., Sartori, M.: Neuromechanical model-based adaptive control of bilateral ankle exoskeletons: biological joint torque and electromyogram reduction across walking conditions. IEEE Transactions on Robotics 38, 1380–1394 (2022) Poggensee and Collins [2021] Poggensee, K.L., Collins, S.H.: How adaptation, training, and customization contribute to benefits from exoskeleton assistance. Science Robotics 6 (2021) Nuckols et al. [2021] Nuckols, R.W., Lee, S., Swaminathan, K., Orzel, D., Howe, R.D., Walsh, C.J.: Individualization of exosuit assistance based on measured muscle dynamics during versatile walking. Science robotics 6 (2021) Lee et al. [2023] Lee, U.H., Shetty, V.S., Franks, P.W., Tan, J., Evangelopoulos, G., Ha, S., Rouse, E.J.: User preference optimization for control of ankle exoskeletons using sample efficient active learning. Science Robotics 8 (2023) Postol et al. [2020] Postol, N., Lamond, S., Galloway, M., Palazzi, K., Bivard, A., Spratt, N.J., Marquez, J.: The metabolic cost of exercising with a robotic exoskeleton: A comparison of healthy and neurologically impaired people. IEEE Transactions on Neural Systems and Rehabilitation Engineering 28, 3031–3039 (2020) Witte et al. [2020] Witte, K.A., Fiers, P., Sheets-Singer, A.L., Collins, S.H.: Improving the energy economy of human running with powered and unpowered ankle exoskeleton assistance. Science Robotics 5 (2020) Zhu et al. [2021] Zhu, F., Kern, M., Fowkes, E., Afzal, T., Contreras-Vidal, J.-L., Francisco, G.E., Chang, S.-H.: Effects of an exoskeleton-assisted gait training on post-stroke lower-limb muscle coordination. Journal of Neural Engineering 18, 046039 (2021) Küçüktabak et al. [2024] Küçüktabak, E.B., Wen, Y., Kim, S.J., Short, M., Ludvig, D., Hargrove, L., Perreault, E., Lynch, K., Pons, J.: Haptic transparency and interaction force control for a lower-limb exoskeleton. IEEE Transactions on Robotics (2024) Eva and Grizzle [2020] Eva, M.M., Grizzle, J.W.: Feedback control design for robust comfortable sit-to-stand motions of 3d lower-limb exoskeletons. IEEE Access 9, 122–161 (2020) Masengo et al. [2023] Masengo, G., Zhang, X., Dong, R., , A.B.A., Hamza, K., Mudaheranwa, E.: Lower limb exoskeleton robot and its cooperative control: A review, trends, and challenges for future research. Frontiers in Neurorobotics 16, 1–25 (2023) Ingraham et al. [2022] Ingraham, K.A., Remy, C.D., Rouse, E.J.: The role of user preference in the customized control of robotic exoskeletons. Science robotics 7 (2022) Pinto-Fernandez et al. [2020] Pinto-Fernandez, D., Diego, T., Carmen Sanchez-Villamanan, M., Aller, F., Mombaur, K., Conti, R., Vitiello, N., Moreno, J.C., Pons, J.L.: Performance evaluation of lower limb exoskeletons: A systematic review. IEEE Transactions on Neural Systems and Rehabilitation Engineering 28, 1573–1583 (2020) Slade et al. [2022] Slade, P., Kochenderfer, M.J., Delp, S.L., Collins, S.H.: Personalizing exoskeleton assistance while walking in the real world. Nature 610, 277–282 (2022) Medina et al. [2015] Medina, J.R., Lorenz, T., Hirche, S.: Synthesizing anticipatory haptic assistance considering human behavior uncertainty. IEEE Transactions on Robotics 31, 180–190 (2015) Martinez et al. [2018] Martinez, A., Lawson, B., Durrough, C., Goldfarb, M.: A velocity-field-based controller for assisting leg movement during walking with a bilateral hip and knee lower limb exoskeleton. IEEE Transactions on Robotics 35, 307–316 (2018) Shushtari et al. [2021] Shushtari, M., Nasiri, R., Arami, A.: Online reference trajectory adaptation: A personalized control strategy for lower limb exoskeletons. IEEE Robotics and Automation Letters 7, 128–134 (2021) Asl et al. [2020] Asl, H.J., Yamashita, M., Narikiyo, T., Kawanishi, M.: Field-based assist-as-needed control schemes for rehabilitation robots. IEEE/ASME Transactions on Mechatronics 25, 2100–2111 (2020) Dominijanni et al. [2023] Dominijanni, G., Pinheiro, D.L., Pollina, L., Orset, B., Gini, M., Anselmino, E., Pierella, C., Olivier, J., Shokur, S., Micera, S.: Human motor augmentation with an extra robotic arm without functional interference. Science Robotics 8 (2023) Losey et al. [2018] Losey, D.P., Mcdonald, C.G., Battaglia, E., O’Malley, M.: A review of intent detection, arbitration, and communication aspects of shared control for physical human-robot interaction. Applied Mechanics Reviews 70 (2018) https://doi.org/10.1115/1.4039145 Jackson and Collins [2019] Jackson, R.W., Collins, S.H.: Heuristic-based ankle exoskeleton control for co-adaptive assistance of human locomotion. IEEE Transactions on Neural Systems and Rehabilitation Engineering 27, 2059–2069 (2019) Banala et al. [2007] Banala, S.K., Agrawal, S.K., Scholz, J.P.: Active leg exoskeleton (alex) for gait rehabilitation of motor-impaired patients. In: 2007 IEEE 10th International Conference on Rehabilitation Robotics, pp. 401–407 (2007). 2007 IEEE 10th International Conference on Rehabilitation Robotics Dinovitzer et al. [2023a] Dinovitzer, H., Shushtari, M., Arami, A.: Feedforward control of lower limb exoskeletons: which torque profile should we use? IEEE Robotics and Automation Letters (2023) Dinovitzer et al. [2023b] Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Poggensee, K.L., Collins, S.H.: How adaptation, training, and customization contribute to benefits from exoskeleton assistance. Science Robotics 6 (2021) Nuckols et al. [2021] Nuckols, R.W., Lee, S., Swaminathan, K., Orzel, D., Howe, R.D., Walsh, C.J.: Individualization of exosuit assistance based on measured muscle dynamics during versatile walking. Science robotics 6 (2021) Lee et al. [2023] Lee, U.H., Shetty, V.S., Franks, P.W., Tan, J., Evangelopoulos, G., Ha, S., Rouse, E.J.: User preference optimization for control of ankle exoskeletons using sample efficient active learning. Science Robotics 8 (2023) Postol et al. [2020] Postol, N., Lamond, S., Galloway, M., Palazzi, K., Bivard, A., Spratt, N.J., Marquez, J.: The metabolic cost of exercising with a robotic exoskeleton: A comparison of healthy and neurologically impaired people. IEEE Transactions on Neural Systems and Rehabilitation Engineering 28, 3031–3039 (2020) Witte et al. [2020] Witte, K.A., Fiers, P., Sheets-Singer, A.L., Collins, S.H.: Improving the energy economy of human running with powered and unpowered ankle exoskeleton assistance. Science Robotics 5 (2020) Zhu et al. [2021] Zhu, F., Kern, M., Fowkes, E., Afzal, T., Contreras-Vidal, J.-L., Francisco, G.E., Chang, S.-H.: Effects of an exoskeleton-assisted gait training on post-stroke lower-limb muscle coordination. Journal of Neural Engineering 18, 046039 (2021) Küçüktabak et al. [2024] Küçüktabak, E.B., Wen, Y., Kim, S.J., Short, M., Ludvig, D., Hargrove, L., Perreault, E., Lynch, K., Pons, J.: Haptic transparency and interaction force control for a lower-limb exoskeleton. IEEE Transactions on Robotics (2024) Eva and Grizzle [2020] Eva, M.M., Grizzle, J.W.: Feedback control design for robust comfortable sit-to-stand motions of 3d lower-limb exoskeletons. IEEE Access 9, 122–161 (2020) Masengo et al. [2023] Masengo, G., Zhang, X., Dong, R., , A.B.A., Hamza, K., Mudaheranwa, E.: Lower limb exoskeleton robot and its cooperative control: A review, trends, and challenges for future research. Frontiers in Neurorobotics 16, 1–25 (2023) Ingraham et al. [2022] Ingraham, K.A., Remy, C.D., Rouse, E.J.: The role of user preference in the customized control of robotic exoskeletons. Science robotics 7 (2022) Pinto-Fernandez et al. [2020] Pinto-Fernandez, D., Diego, T., Carmen Sanchez-Villamanan, M., Aller, F., Mombaur, K., Conti, R., Vitiello, N., Moreno, J.C., Pons, J.L.: Performance evaluation of lower limb exoskeletons: A systematic review. IEEE Transactions on Neural Systems and Rehabilitation Engineering 28, 1573–1583 (2020) Slade et al. [2022] Slade, P., Kochenderfer, M.J., Delp, S.L., Collins, S.H.: Personalizing exoskeleton assistance while walking in the real world. Nature 610, 277–282 (2022) Medina et al. [2015] Medina, J.R., Lorenz, T., Hirche, S.: Synthesizing anticipatory haptic assistance considering human behavior uncertainty. IEEE Transactions on Robotics 31, 180–190 (2015) Martinez et al. [2018] Martinez, A., Lawson, B., Durrough, C., Goldfarb, M.: A velocity-field-based controller for assisting leg movement during walking with a bilateral hip and knee lower limb exoskeleton. IEEE Transactions on Robotics 35, 307–316 (2018) Shushtari et al. [2021] Shushtari, M., Nasiri, R., Arami, A.: Online reference trajectory adaptation: A personalized control strategy for lower limb exoskeletons. IEEE Robotics and Automation Letters 7, 128–134 (2021) Asl et al. [2020] Asl, H.J., Yamashita, M., Narikiyo, T., Kawanishi, M.: Field-based assist-as-needed control schemes for rehabilitation robots. IEEE/ASME Transactions on Mechatronics 25, 2100–2111 (2020) Dominijanni et al. [2023] Dominijanni, G., Pinheiro, D.L., Pollina, L., Orset, B., Gini, M., Anselmino, E., Pierella, C., Olivier, J., Shokur, S., Micera, S.: Human motor augmentation with an extra robotic arm without functional interference. Science Robotics 8 (2023) Losey et al. [2018] Losey, D.P., Mcdonald, C.G., Battaglia, E., O’Malley, M.: A review of intent detection, arbitration, and communication aspects of shared control for physical human-robot interaction. Applied Mechanics Reviews 70 (2018) https://doi.org/10.1115/1.4039145 Jackson and Collins [2019] Jackson, R.W., Collins, S.H.: Heuristic-based ankle exoskeleton control for co-adaptive assistance of human locomotion. IEEE Transactions on Neural Systems and Rehabilitation Engineering 27, 2059–2069 (2019) Banala et al. [2007] Banala, S.K., Agrawal, S.K., Scholz, J.P.: Active leg exoskeleton (alex) for gait rehabilitation of motor-impaired patients. In: 2007 IEEE 10th International Conference on Rehabilitation Robotics, pp. 401–407 (2007). 2007 IEEE 10th International Conference on Rehabilitation Robotics Dinovitzer et al. [2023a] Dinovitzer, H., Shushtari, M., Arami, A.: Feedforward control of lower limb exoskeletons: which torque profile should we use? IEEE Robotics and Automation Letters (2023) Dinovitzer et al. [2023b] Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Nuckols, R.W., Lee, S., Swaminathan, K., Orzel, D., Howe, R.D., Walsh, C.J.: Individualization of exosuit assistance based on measured muscle dynamics during versatile walking. Science robotics 6 (2021) Lee et al. [2023] Lee, U.H., Shetty, V.S., Franks, P.W., Tan, J., Evangelopoulos, G., Ha, S., Rouse, E.J.: User preference optimization for control of ankle exoskeletons using sample efficient active learning. Science Robotics 8 (2023) Postol et al. [2020] Postol, N., Lamond, S., Galloway, M., Palazzi, K., Bivard, A., Spratt, N.J., Marquez, J.: The metabolic cost of exercising with a robotic exoskeleton: A comparison of healthy and neurologically impaired people. IEEE Transactions on Neural Systems and Rehabilitation Engineering 28, 3031–3039 (2020) Witte et al. [2020] Witte, K.A., Fiers, P., Sheets-Singer, A.L., Collins, S.H.: Improving the energy economy of human running with powered and unpowered ankle exoskeleton assistance. Science Robotics 5 (2020) Zhu et al. [2021] Zhu, F., Kern, M., Fowkes, E., Afzal, T., Contreras-Vidal, J.-L., Francisco, G.E., Chang, S.-H.: Effects of an exoskeleton-assisted gait training on post-stroke lower-limb muscle coordination. Journal of Neural Engineering 18, 046039 (2021) Küçüktabak et al. [2024] Küçüktabak, E.B., Wen, Y., Kim, S.J., Short, M., Ludvig, D., Hargrove, L., Perreault, E., Lynch, K., Pons, J.: Haptic transparency and interaction force control for a lower-limb exoskeleton. IEEE Transactions on Robotics (2024) Eva and Grizzle [2020] Eva, M.M., Grizzle, J.W.: Feedback control design for robust comfortable sit-to-stand motions of 3d lower-limb exoskeletons. IEEE Access 9, 122–161 (2020) Masengo et al. [2023] Masengo, G., Zhang, X., Dong, R., , A.B.A., Hamza, K., Mudaheranwa, E.: Lower limb exoskeleton robot and its cooperative control: A review, trends, and challenges for future research. Frontiers in Neurorobotics 16, 1–25 (2023) Ingraham et al. [2022] Ingraham, K.A., Remy, C.D., Rouse, E.J.: The role of user preference in the customized control of robotic exoskeletons. Science robotics 7 (2022) Pinto-Fernandez et al. [2020] Pinto-Fernandez, D., Diego, T., Carmen Sanchez-Villamanan, M., Aller, F., Mombaur, K., Conti, R., Vitiello, N., Moreno, J.C., Pons, J.L.: Performance evaluation of lower limb exoskeletons: A systematic review. IEEE Transactions on Neural Systems and Rehabilitation Engineering 28, 1573–1583 (2020) Slade et al. [2022] Slade, P., Kochenderfer, M.J., Delp, S.L., Collins, S.H.: Personalizing exoskeleton assistance while walking in the real world. Nature 610, 277–282 (2022) Medina et al. [2015] Medina, J.R., Lorenz, T., Hirche, S.: Synthesizing anticipatory haptic assistance considering human behavior uncertainty. IEEE Transactions on Robotics 31, 180–190 (2015) Martinez et al. [2018] Martinez, A., Lawson, B., Durrough, C., Goldfarb, M.: A velocity-field-based controller for assisting leg movement during walking with a bilateral hip and knee lower limb exoskeleton. IEEE Transactions on Robotics 35, 307–316 (2018) Shushtari et al. [2021] Shushtari, M., Nasiri, R., Arami, A.: Online reference trajectory adaptation: A personalized control strategy for lower limb exoskeletons. IEEE Robotics and Automation Letters 7, 128–134 (2021) Asl et al. [2020] Asl, H.J., Yamashita, M., Narikiyo, T., Kawanishi, M.: Field-based assist-as-needed control schemes for rehabilitation robots. IEEE/ASME Transactions on Mechatronics 25, 2100–2111 (2020) Dominijanni et al. [2023] Dominijanni, G., Pinheiro, D.L., Pollina, L., Orset, B., Gini, M., Anselmino, E., Pierella, C., Olivier, J., Shokur, S., Micera, S.: Human motor augmentation with an extra robotic arm without functional interference. Science Robotics 8 (2023) Losey et al. [2018] Losey, D.P., Mcdonald, C.G., Battaglia, E., O’Malley, M.: A review of intent detection, arbitration, and communication aspects of shared control for physical human-robot interaction. Applied Mechanics Reviews 70 (2018) https://doi.org/10.1115/1.4039145 Jackson and Collins [2019] Jackson, R.W., Collins, S.H.: Heuristic-based ankle exoskeleton control for co-adaptive assistance of human locomotion. IEEE Transactions on Neural Systems and Rehabilitation Engineering 27, 2059–2069 (2019) Banala et al. [2007] Banala, S.K., Agrawal, S.K., Scholz, J.P.: Active leg exoskeleton (alex) for gait rehabilitation of motor-impaired patients. In: 2007 IEEE 10th International Conference on Rehabilitation Robotics, pp. 401–407 (2007). 2007 IEEE 10th International Conference on Rehabilitation Robotics Dinovitzer et al. [2023a] Dinovitzer, H., Shushtari, M., Arami, A.: Feedforward control of lower limb exoskeletons: which torque profile should we use? IEEE Robotics and Automation Letters (2023) Dinovitzer et al. [2023b] Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Lee, U.H., Shetty, V.S., Franks, P.W., Tan, J., Evangelopoulos, G., Ha, S., Rouse, E.J.: User preference optimization for control of ankle exoskeletons using sample efficient active learning. Science Robotics 8 (2023) Postol et al. [2020] Postol, N., Lamond, S., Galloway, M., Palazzi, K., Bivard, A., Spratt, N.J., Marquez, J.: The metabolic cost of exercising with a robotic exoskeleton: A comparison of healthy and neurologically impaired people. IEEE Transactions on Neural Systems and Rehabilitation Engineering 28, 3031–3039 (2020) Witte et al. [2020] Witte, K.A., Fiers, P., Sheets-Singer, A.L., Collins, S.H.: Improving the energy economy of human running with powered and unpowered ankle exoskeleton assistance. Science Robotics 5 (2020) Zhu et al. [2021] Zhu, F., Kern, M., Fowkes, E., Afzal, T., Contreras-Vidal, J.-L., Francisco, G.E., Chang, S.-H.: Effects of an exoskeleton-assisted gait training on post-stroke lower-limb muscle coordination. Journal of Neural Engineering 18, 046039 (2021) Küçüktabak et al. [2024] Küçüktabak, E.B., Wen, Y., Kim, S.J., Short, M., Ludvig, D., Hargrove, L., Perreault, E., Lynch, K., Pons, J.: Haptic transparency and interaction force control for a lower-limb exoskeleton. IEEE Transactions on Robotics (2024) Eva and Grizzle [2020] Eva, M.M., Grizzle, J.W.: Feedback control design for robust comfortable sit-to-stand motions of 3d lower-limb exoskeletons. IEEE Access 9, 122–161 (2020) Masengo et al. [2023] Masengo, G., Zhang, X., Dong, R., , A.B.A., Hamza, K., Mudaheranwa, E.: Lower limb exoskeleton robot and its cooperative control: A review, trends, and challenges for future research. Frontiers in Neurorobotics 16, 1–25 (2023) Ingraham et al. [2022] Ingraham, K.A., Remy, C.D., Rouse, E.J.: The role of user preference in the customized control of robotic exoskeletons. Science robotics 7 (2022) Pinto-Fernandez et al. [2020] Pinto-Fernandez, D., Diego, T., Carmen Sanchez-Villamanan, M., Aller, F., Mombaur, K., Conti, R., Vitiello, N., Moreno, J.C., Pons, J.L.: Performance evaluation of lower limb exoskeletons: A systematic review. IEEE Transactions on Neural Systems and Rehabilitation Engineering 28, 1573–1583 (2020) Slade et al. [2022] Slade, P., Kochenderfer, M.J., Delp, S.L., Collins, S.H.: Personalizing exoskeleton assistance while walking in the real world. Nature 610, 277–282 (2022) Medina et al. [2015] Medina, J.R., Lorenz, T., Hirche, S.: Synthesizing anticipatory haptic assistance considering human behavior uncertainty. IEEE Transactions on Robotics 31, 180–190 (2015) Martinez et al. [2018] Martinez, A., Lawson, B., Durrough, C., Goldfarb, M.: A velocity-field-based controller for assisting leg movement during walking with a bilateral hip and knee lower limb exoskeleton. IEEE Transactions on Robotics 35, 307–316 (2018) Shushtari et al. [2021] Shushtari, M., Nasiri, R., Arami, A.: Online reference trajectory adaptation: A personalized control strategy for lower limb exoskeletons. IEEE Robotics and Automation Letters 7, 128–134 (2021) Asl et al. [2020] Asl, H.J., Yamashita, M., Narikiyo, T., Kawanishi, M.: Field-based assist-as-needed control schemes for rehabilitation robots. IEEE/ASME Transactions on Mechatronics 25, 2100–2111 (2020) Dominijanni et al. [2023] Dominijanni, G., Pinheiro, D.L., Pollina, L., Orset, B., Gini, M., Anselmino, E., Pierella, C., Olivier, J., Shokur, S., Micera, S.: Human motor augmentation with an extra robotic arm without functional interference. Science Robotics 8 (2023) Losey et al. [2018] Losey, D.P., Mcdonald, C.G., Battaglia, E., O’Malley, M.: A review of intent detection, arbitration, and communication aspects of shared control for physical human-robot interaction. Applied Mechanics Reviews 70 (2018) https://doi.org/10.1115/1.4039145 Jackson and Collins [2019] Jackson, R.W., Collins, S.H.: Heuristic-based ankle exoskeleton control for co-adaptive assistance of human locomotion. IEEE Transactions on Neural Systems and Rehabilitation Engineering 27, 2059–2069 (2019) Banala et al. [2007] Banala, S.K., Agrawal, S.K., Scholz, J.P.: Active leg exoskeleton (alex) for gait rehabilitation of motor-impaired patients. In: 2007 IEEE 10th International Conference on Rehabilitation Robotics, pp. 401–407 (2007). 2007 IEEE 10th International Conference on Rehabilitation Robotics Dinovitzer et al. [2023a] Dinovitzer, H., Shushtari, M., Arami, A.: Feedforward control of lower limb exoskeletons: which torque profile should we use? IEEE Robotics and Automation Letters (2023) Dinovitzer et al. [2023b] Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Postol, N., Lamond, S., Galloway, M., Palazzi, K., Bivard, A., Spratt, N.J., Marquez, J.: The metabolic cost of exercising with a robotic exoskeleton: A comparison of healthy and neurologically impaired people. IEEE Transactions on Neural Systems and Rehabilitation Engineering 28, 3031–3039 (2020) Witte et al. [2020] Witte, K.A., Fiers, P., Sheets-Singer, A.L., Collins, S.H.: Improving the energy economy of human running with powered and unpowered ankle exoskeleton assistance. Science Robotics 5 (2020) Zhu et al. [2021] Zhu, F., Kern, M., Fowkes, E., Afzal, T., Contreras-Vidal, J.-L., Francisco, G.E., Chang, S.-H.: Effects of an exoskeleton-assisted gait training on post-stroke lower-limb muscle coordination. Journal of Neural Engineering 18, 046039 (2021) Küçüktabak et al. [2024] Küçüktabak, E.B., Wen, Y., Kim, S.J., Short, M., Ludvig, D., Hargrove, L., Perreault, E., Lynch, K., Pons, J.: Haptic transparency and interaction force control for a lower-limb exoskeleton. IEEE Transactions on Robotics (2024) Eva and Grizzle [2020] Eva, M.M., Grizzle, J.W.: Feedback control design for robust comfortable sit-to-stand motions of 3d lower-limb exoskeletons. IEEE Access 9, 122–161 (2020) Masengo et al. [2023] Masengo, G., Zhang, X., Dong, R., , A.B.A., Hamza, K., Mudaheranwa, E.: Lower limb exoskeleton robot and its cooperative control: A review, trends, and challenges for future research. Frontiers in Neurorobotics 16, 1–25 (2023) Ingraham et al. [2022] Ingraham, K.A., Remy, C.D., Rouse, E.J.: The role of user preference in the customized control of robotic exoskeletons. Science robotics 7 (2022) Pinto-Fernandez et al. [2020] Pinto-Fernandez, D., Diego, T., Carmen Sanchez-Villamanan, M., Aller, F., Mombaur, K., Conti, R., Vitiello, N., Moreno, J.C., Pons, J.L.: Performance evaluation of lower limb exoskeletons: A systematic review. IEEE Transactions on Neural Systems and Rehabilitation Engineering 28, 1573–1583 (2020) Slade et al. [2022] Slade, P., Kochenderfer, M.J., Delp, S.L., Collins, S.H.: Personalizing exoskeleton assistance while walking in the real world. Nature 610, 277–282 (2022) Medina et al. [2015] Medina, J.R., Lorenz, T., Hirche, S.: Synthesizing anticipatory haptic assistance considering human behavior uncertainty. IEEE Transactions on Robotics 31, 180–190 (2015) Martinez et al. [2018] Martinez, A., Lawson, B., Durrough, C., Goldfarb, M.: A velocity-field-based controller for assisting leg movement during walking with a bilateral hip and knee lower limb exoskeleton. IEEE Transactions on Robotics 35, 307–316 (2018) Shushtari et al. [2021] Shushtari, M., Nasiri, R., Arami, A.: Online reference trajectory adaptation: A personalized control strategy for lower limb exoskeletons. IEEE Robotics and Automation Letters 7, 128–134 (2021) Asl et al. [2020] Asl, H.J., Yamashita, M., Narikiyo, T., Kawanishi, M.: Field-based assist-as-needed control schemes for rehabilitation robots. IEEE/ASME Transactions on Mechatronics 25, 2100–2111 (2020) Dominijanni et al. [2023] Dominijanni, G., Pinheiro, D.L., Pollina, L., Orset, B., Gini, M., Anselmino, E., Pierella, C., Olivier, J., Shokur, S., Micera, S.: Human motor augmentation with an extra robotic arm without functional interference. Science Robotics 8 (2023) Losey et al. [2018] Losey, D.P., Mcdonald, C.G., Battaglia, E., O’Malley, M.: A review of intent detection, arbitration, and communication aspects of shared control for physical human-robot interaction. Applied Mechanics Reviews 70 (2018) https://doi.org/10.1115/1.4039145 Jackson and Collins [2019] Jackson, R.W., Collins, S.H.: Heuristic-based ankle exoskeleton control for co-adaptive assistance of human locomotion. IEEE Transactions on Neural Systems and Rehabilitation Engineering 27, 2059–2069 (2019) Banala et al. [2007] Banala, S.K., Agrawal, S.K., Scholz, J.P.: Active leg exoskeleton (alex) for gait rehabilitation of motor-impaired patients. In: 2007 IEEE 10th International Conference on Rehabilitation Robotics, pp. 401–407 (2007). 2007 IEEE 10th International Conference on Rehabilitation Robotics Dinovitzer et al. [2023a] Dinovitzer, H., Shushtari, M., Arami, A.: Feedforward control of lower limb exoskeletons: which torque profile should we use? IEEE Robotics and Automation Letters (2023) Dinovitzer et al. [2023b] Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Witte, K.A., Fiers, P., Sheets-Singer, A.L., Collins, S.H.: Improving the energy economy of human running with powered and unpowered ankle exoskeleton assistance. Science Robotics 5 (2020) Zhu et al. [2021] Zhu, F., Kern, M., Fowkes, E., Afzal, T., Contreras-Vidal, J.-L., Francisco, G.E., Chang, S.-H.: Effects of an exoskeleton-assisted gait training on post-stroke lower-limb muscle coordination. Journal of Neural Engineering 18, 046039 (2021) Küçüktabak et al. [2024] Küçüktabak, E.B., Wen, Y., Kim, S.J., Short, M., Ludvig, D., Hargrove, L., Perreault, E., Lynch, K., Pons, J.: Haptic transparency and interaction force control for a lower-limb exoskeleton. IEEE Transactions on Robotics (2024) Eva and Grizzle [2020] Eva, M.M., Grizzle, J.W.: Feedback control design for robust comfortable sit-to-stand motions of 3d lower-limb exoskeletons. IEEE Access 9, 122–161 (2020) Masengo et al. [2023] Masengo, G., Zhang, X., Dong, R., , A.B.A., Hamza, K., Mudaheranwa, E.: Lower limb exoskeleton robot and its cooperative control: A review, trends, and challenges for future research. Frontiers in Neurorobotics 16, 1–25 (2023) Ingraham et al. [2022] Ingraham, K.A., Remy, C.D., Rouse, E.J.: The role of user preference in the customized control of robotic exoskeletons. Science robotics 7 (2022) Pinto-Fernandez et al. [2020] Pinto-Fernandez, D., Diego, T., Carmen Sanchez-Villamanan, M., Aller, F., Mombaur, K., Conti, R., Vitiello, N., Moreno, J.C., Pons, J.L.: Performance evaluation of lower limb exoskeletons: A systematic review. IEEE Transactions on Neural Systems and Rehabilitation Engineering 28, 1573–1583 (2020) Slade et al. [2022] Slade, P., Kochenderfer, M.J., Delp, S.L., Collins, S.H.: Personalizing exoskeleton assistance while walking in the real world. Nature 610, 277–282 (2022) Medina et al. [2015] Medina, J.R., Lorenz, T., Hirche, S.: Synthesizing anticipatory haptic assistance considering human behavior uncertainty. IEEE Transactions on Robotics 31, 180–190 (2015) Martinez et al. [2018] Martinez, A., Lawson, B., Durrough, C., Goldfarb, M.: A velocity-field-based controller for assisting leg movement during walking with a bilateral hip and knee lower limb exoskeleton. IEEE Transactions on Robotics 35, 307–316 (2018) Shushtari et al. [2021] Shushtari, M., Nasiri, R., Arami, A.: Online reference trajectory adaptation: A personalized control strategy for lower limb exoskeletons. IEEE Robotics and Automation Letters 7, 128–134 (2021) Asl et al. [2020] Asl, H.J., Yamashita, M., Narikiyo, T., Kawanishi, M.: Field-based assist-as-needed control schemes for rehabilitation robots. IEEE/ASME Transactions on Mechatronics 25, 2100–2111 (2020) Dominijanni et al. [2023] Dominijanni, G., Pinheiro, D.L., Pollina, L., Orset, B., Gini, M., Anselmino, E., Pierella, C., Olivier, J., Shokur, S., Micera, S.: Human motor augmentation with an extra robotic arm without functional interference. Science Robotics 8 (2023) Losey et al. [2018] Losey, D.P., Mcdonald, C.G., Battaglia, E., O’Malley, M.: A review of intent detection, arbitration, and communication aspects of shared control for physical human-robot interaction. Applied Mechanics Reviews 70 (2018) https://doi.org/10.1115/1.4039145 Jackson and Collins [2019] Jackson, R.W., Collins, S.H.: Heuristic-based ankle exoskeleton control for co-adaptive assistance of human locomotion. IEEE Transactions on Neural Systems and Rehabilitation Engineering 27, 2059–2069 (2019) Banala et al. [2007] Banala, S.K., Agrawal, S.K., Scholz, J.P.: Active leg exoskeleton (alex) for gait rehabilitation of motor-impaired patients. In: 2007 IEEE 10th International Conference on Rehabilitation Robotics, pp. 401–407 (2007). 2007 IEEE 10th International Conference on Rehabilitation Robotics Dinovitzer et al. [2023a] Dinovitzer, H., Shushtari, M., Arami, A.: Feedforward control of lower limb exoskeletons: which torque profile should we use? IEEE Robotics and Automation Letters (2023) Dinovitzer et al. [2023b] Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Zhu, F., Kern, M., Fowkes, E., Afzal, T., Contreras-Vidal, J.-L., Francisco, G.E., Chang, S.-H.: Effects of an exoskeleton-assisted gait training on post-stroke lower-limb muscle coordination. Journal of Neural Engineering 18, 046039 (2021) Küçüktabak et al. [2024] Küçüktabak, E.B., Wen, Y., Kim, S.J., Short, M., Ludvig, D., Hargrove, L., Perreault, E., Lynch, K., Pons, J.: Haptic transparency and interaction force control for a lower-limb exoskeleton. IEEE Transactions on Robotics (2024) Eva and Grizzle [2020] Eva, M.M., Grizzle, J.W.: Feedback control design for robust comfortable sit-to-stand motions of 3d lower-limb exoskeletons. IEEE Access 9, 122–161 (2020) Masengo et al. [2023] Masengo, G., Zhang, X., Dong, R., , A.B.A., Hamza, K., Mudaheranwa, E.: Lower limb exoskeleton robot and its cooperative control: A review, trends, and challenges for future research. Frontiers in Neurorobotics 16, 1–25 (2023) Ingraham et al. [2022] Ingraham, K.A., Remy, C.D., Rouse, E.J.: The role of user preference in the customized control of robotic exoskeletons. Science robotics 7 (2022) Pinto-Fernandez et al. [2020] Pinto-Fernandez, D., Diego, T., Carmen Sanchez-Villamanan, M., Aller, F., Mombaur, K., Conti, R., Vitiello, N., Moreno, J.C., Pons, J.L.: Performance evaluation of lower limb exoskeletons: A systematic review. IEEE Transactions on Neural Systems and Rehabilitation Engineering 28, 1573–1583 (2020) Slade et al. [2022] Slade, P., Kochenderfer, M.J., Delp, S.L., Collins, S.H.: Personalizing exoskeleton assistance while walking in the real world. Nature 610, 277–282 (2022) Medina et al. [2015] Medina, J.R., Lorenz, T., Hirche, S.: Synthesizing anticipatory haptic assistance considering human behavior uncertainty. IEEE Transactions on Robotics 31, 180–190 (2015) Martinez et al. [2018] Martinez, A., Lawson, B., Durrough, C., Goldfarb, M.: A velocity-field-based controller for assisting leg movement during walking with a bilateral hip and knee lower limb exoskeleton. IEEE Transactions on Robotics 35, 307–316 (2018) Shushtari et al. [2021] Shushtari, M., Nasiri, R., Arami, A.: Online reference trajectory adaptation: A personalized control strategy for lower limb exoskeletons. IEEE Robotics and Automation Letters 7, 128–134 (2021) Asl et al. [2020] Asl, H.J., Yamashita, M., Narikiyo, T., Kawanishi, M.: Field-based assist-as-needed control schemes for rehabilitation robots. IEEE/ASME Transactions on Mechatronics 25, 2100–2111 (2020) Dominijanni et al. [2023] Dominijanni, G., Pinheiro, D.L., Pollina, L., Orset, B., Gini, M., Anselmino, E., Pierella, C., Olivier, J., Shokur, S., Micera, S.: Human motor augmentation with an extra robotic arm without functional interference. Science Robotics 8 (2023) Losey et al. [2018] Losey, D.P., Mcdonald, C.G., Battaglia, E., O’Malley, M.: A review of intent detection, arbitration, and communication aspects of shared control for physical human-robot interaction. Applied Mechanics Reviews 70 (2018) https://doi.org/10.1115/1.4039145 Jackson and Collins [2019] Jackson, R.W., Collins, S.H.: Heuristic-based ankle exoskeleton control for co-adaptive assistance of human locomotion. IEEE Transactions on Neural Systems and Rehabilitation Engineering 27, 2059–2069 (2019) Banala et al. [2007] Banala, S.K., Agrawal, S.K., Scholz, J.P.: Active leg exoskeleton (alex) for gait rehabilitation of motor-impaired patients. In: 2007 IEEE 10th International Conference on Rehabilitation Robotics, pp. 401–407 (2007). 2007 IEEE 10th International Conference on Rehabilitation Robotics Dinovitzer et al. [2023a] Dinovitzer, H., Shushtari, M., Arami, A.: Feedforward control of lower limb exoskeletons: which torque profile should we use? IEEE Robotics and Automation Letters (2023) Dinovitzer et al. [2023b] Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Küçüktabak, E.B., Wen, Y., Kim, S.J., Short, M., Ludvig, D., Hargrove, L., Perreault, E., Lynch, K., Pons, J.: Haptic transparency and interaction force control for a lower-limb exoskeleton. IEEE Transactions on Robotics (2024) Eva and Grizzle [2020] Eva, M.M., Grizzle, J.W.: Feedback control design for robust comfortable sit-to-stand motions of 3d lower-limb exoskeletons. IEEE Access 9, 122–161 (2020) Masengo et al. [2023] Masengo, G., Zhang, X., Dong, R., , A.B.A., Hamza, K., Mudaheranwa, E.: Lower limb exoskeleton robot and its cooperative control: A review, trends, and challenges for future research. Frontiers in Neurorobotics 16, 1–25 (2023) Ingraham et al. [2022] Ingraham, K.A., Remy, C.D., Rouse, E.J.: The role of user preference in the customized control of robotic exoskeletons. Science robotics 7 (2022) Pinto-Fernandez et al. [2020] Pinto-Fernandez, D., Diego, T., Carmen Sanchez-Villamanan, M., Aller, F., Mombaur, K., Conti, R., Vitiello, N., Moreno, J.C., Pons, J.L.: Performance evaluation of lower limb exoskeletons: A systematic review. IEEE Transactions on Neural Systems and Rehabilitation Engineering 28, 1573–1583 (2020) Slade et al. [2022] Slade, P., Kochenderfer, M.J., Delp, S.L., Collins, S.H.: Personalizing exoskeleton assistance while walking in the real world. Nature 610, 277–282 (2022) Medina et al. [2015] Medina, J.R., Lorenz, T., Hirche, S.: Synthesizing anticipatory haptic assistance considering human behavior uncertainty. IEEE Transactions on Robotics 31, 180–190 (2015) Martinez et al. [2018] Martinez, A., Lawson, B., Durrough, C., Goldfarb, M.: A velocity-field-based controller for assisting leg movement during walking with a bilateral hip and knee lower limb exoskeleton. IEEE Transactions on Robotics 35, 307–316 (2018) Shushtari et al. [2021] Shushtari, M., Nasiri, R., Arami, A.: Online reference trajectory adaptation: A personalized control strategy for lower limb exoskeletons. IEEE Robotics and Automation Letters 7, 128–134 (2021) Asl et al. [2020] Asl, H.J., Yamashita, M., Narikiyo, T., Kawanishi, M.: Field-based assist-as-needed control schemes for rehabilitation robots. IEEE/ASME Transactions on Mechatronics 25, 2100–2111 (2020) Dominijanni et al. [2023] Dominijanni, G., Pinheiro, D.L., Pollina, L., Orset, B., Gini, M., Anselmino, E., Pierella, C., Olivier, J., Shokur, S., Micera, S.: Human motor augmentation with an extra robotic arm without functional interference. Science Robotics 8 (2023) Losey et al. [2018] Losey, D.P., Mcdonald, C.G., Battaglia, E., O’Malley, M.: A review of intent detection, arbitration, and communication aspects of shared control for physical human-robot interaction. Applied Mechanics Reviews 70 (2018) https://doi.org/10.1115/1.4039145 Jackson and Collins [2019] Jackson, R.W., Collins, S.H.: Heuristic-based ankle exoskeleton control for co-adaptive assistance of human locomotion. IEEE Transactions on Neural Systems and Rehabilitation Engineering 27, 2059–2069 (2019) Banala et al. [2007] Banala, S.K., Agrawal, S.K., Scholz, J.P.: Active leg exoskeleton (alex) for gait rehabilitation of motor-impaired patients. In: 2007 IEEE 10th International Conference on Rehabilitation Robotics, pp. 401–407 (2007). 2007 IEEE 10th International Conference on Rehabilitation Robotics Dinovitzer et al. [2023a] Dinovitzer, H., Shushtari, M., Arami, A.: Feedforward control of lower limb exoskeletons: which torque profile should we use? IEEE Robotics and Automation Letters (2023) Dinovitzer et al. [2023b] Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Eva, M.M., Grizzle, J.W.: Feedback control design for robust comfortable sit-to-stand motions of 3d lower-limb exoskeletons. IEEE Access 9, 122–161 (2020) Masengo et al. [2023] Masengo, G., Zhang, X., Dong, R., , A.B.A., Hamza, K., Mudaheranwa, E.: Lower limb exoskeleton robot and its cooperative control: A review, trends, and challenges for future research. Frontiers in Neurorobotics 16, 1–25 (2023) Ingraham et al. [2022] Ingraham, K.A., Remy, C.D., Rouse, E.J.: The role of user preference in the customized control of robotic exoskeletons. Science robotics 7 (2022) Pinto-Fernandez et al. [2020] Pinto-Fernandez, D., Diego, T., Carmen Sanchez-Villamanan, M., Aller, F., Mombaur, K., Conti, R., Vitiello, N., Moreno, J.C., Pons, J.L.: Performance evaluation of lower limb exoskeletons: A systematic review. IEEE Transactions on Neural Systems and Rehabilitation Engineering 28, 1573–1583 (2020) Slade et al. [2022] Slade, P., Kochenderfer, M.J., Delp, S.L., Collins, S.H.: Personalizing exoskeleton assistance while walking in the real world. Nature 610, 277–282 (2022) Medina et al. [2015] Medina, J.R., Lorenz, T., Hirche, S.: Synthesizing anticipatory haptic assistance considering human behavior uncertainty. IEEE Transactions on Robotics 31, 180–190 (2015) Martinez et al. [2018] Martinez, A., Lawson, B., Durrough, C., Goldfarb, M.: A velocity-field-based controller for assisting leg movement during walking with a bilateral hip and knee lower limb exoskeleton. IEEE Transactions on Robotics 35, 307–316 (2018) Shushtari et al. [2021] Shushtari, M., Nasiri, R., Arami, A.: Online reference trajectory adaptation: A personalized control strategy for lower limb exoskeletons. IEEE Robotics and Automation Letters 7, 128–134 (2021) Asl et al. [2020] Asl, H.J., Yamashita, M., Narikiyo, T., Kawanishi, M.: Field-based assist-as-needed control schemes for rehabilitation robots. IEEE/ASME Transactions on Mechatronics 25, 2100–2111 (2020) Dominijanni et al. [2023] Dominijanni, G., Pinheiro, D.L., Pollina, L., Orset, B., Gini, M., Anselmino, E., Pierella, C., Olivier, J., Shokur, S., Micera, S.: Human motor augmentation with an extra robotic arm without functional interference. Science Robotics 8 (2023) Losey et al. [2018] Losey, D.P., Mcdonald, C.G., Battaglia, E., O’Malley, M.: A review of intent detection, arbitration, and communication aspects of shared control for physical human-robot interaction. Applied Mechanics Reviews 70 (2018) https://doi.org/10.1115/1.4039145 Jackson and Collins [2019] Jackson, R.W., Collins, S.H.: Heuristic-based ankle exoskeleton control for co-adaptive assistance of human locomotion. IEEE Transactions on Neural Systems and Rehabilitation Engineering 27, 2059–2069 (2019) Banala et al. [2007] Banala, S.K., Agrawal, S.K., Scholz, J.P.: Active leg exoskeleton (alex) for gait rehabilitation of motor-impaired patients. In: 2007 IEEE 10th International Conference on Rehabilitation Robotics, pp. 401–407 (2007). 2007 IEEE 10th International Conference on Rehabilitation Robotics Dinovitzer et al. [2023a] Dinovitzer, H., Shushtari, M., Arami, A.: Feedforward control of lower limb exoskeletons: which torque profile should we use? IEEE Robotics and Automation Letters (2023) Dinovitzer et al. [2023b] Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Masengo, G., Zhang, X., Dong, R., , A.B.A., Hamza, K., Mudaheranwa, E.: Lower limb exoskeleton robot and its cooperative control: A review, trends, and challenges for future research. Frontiers in Neurorobotics 16, 1–25 (2023) Ingraham et al. [2022] Ingraham, K.A., Remy, C.D., Rouse, E.J.: The role of user preference in the customized control of robotic exoskeletons. Science robotics 7 (2022) Pinto-Fernandez et al. [2020] Pinto-Fernandez, D., Diego, T., Carmen Sanchez-Villamanan, M., Aller, F., Mombaur, K., Conti, R., Vitiello, N., Moreno, J.C., Pons, J.L.: Performance evaluation of lower limb exoskeletons: A systematic review. IEEE Transactions on Neural Systems and Rehabilitation Engineering 28, 1573–1583 (2020) Slade et al. [2022] Slade, P., Kochenderfer, M.J., Delp, S.L., Collins, S.H.: Personalizing exoskeleton assistance while walking in the real world. Nature 610, 277–282 (2022) Medina et al. [2015] Medina, J.R., Lorenz, T., Hirche, S.: Synthesizing anticipatory haptic assistance considering human behavior uncertainty. IEEE Transactions on Robotics 31, 180–190 (2015) Martinez et al. [2018] Martinez, A., Lawson, B., Durrough, C., Goldfarb, M.: A velocity-field-based controller for assisting leg movement during walking with a bilateral hip and knee lower limb exoskeleton. IEEE Transactions on Robotics 35, 307–316 (2018) Shushtari et al. [2021] Shushtari, M., Nasiri, R., Arami, A.: Online reference trajectory adaptation: A personalized control strategy for lower limb exoskeletons. IEEE Robotics and Automation Letters 7, 128–134 (2021) Asl et al. [2020] Asl, H.J., Yamashita, M., Narikiyo, T., Kawanishi, M.: Field-based assist-as-needed control schemes for rehabilitation robots. IEEE/ASME Transactions on Mechatronics 25, 2100–2111 (2020) Dominijanni et al. [2023] Dominijanni, G., Pinheiro, D.L., Pollina, L., Orset, B., Gini, M., Anselmino, E., Pierella, C., Olivier, J., Shokur, S., Micera, S.: Human motor augmentation with an extra robotic arm without functional interference. Science Robotics 8 (2023) Losey et al. [2018] Losey, D.P., Mcdonald, C.G., Battaglia, E., O’Malley, M.: A review of intent detection, arbitration, and communication aspects of shared control for physical human-robot interaction. Applied Mechanics Reviews 70 (2018) https://doi.org/10.1115/1.4039145 Jackson and Collins [2019] Jackson, R.W., Collins, S.H.: Heuristic-based ankle exoskeleton control for co-adaptive assistance of human locomotion. IEEE Transactions on Neural Systems and Rehabilitation Engineering 27, 2059–2069 (2019) Banala et al. [2007] Banala, S.K., Agrawal, S.K., Scholz, J.P.: Active leg exoskeleton (alex) for gait rehabilitation of motor-impaired patients. In: 2007 IEEE 10th International Conference on Rehabilitation Robotics, pp. 401–407 (2007). 2007 IEEE 10th International Conference on Rehabilitation Robotics Dinovitzer et al. [2023a] Dinovitzer, H., Shushtari, M., Arami, A.: Feedforward control of lower limb exoskeletons: which torque profile should we use? IEEE Robotics and Automation Letters (2023) Dinovitzer et al. [2023b] Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Ingraham, K.A., Remy, C.D., Rouse, E.J.: The role of user preference in the customized control of robotic exoskeletons. Science robotics 7 (2022) Pinto-Fernandez et al. [2020] Pinto-Fernandez, D., Diego, T., Carmen Sanchez-Villamanan, M., Aller, F., Mombaur, K., Conti, R., Vitiello, N., Moreno, J.C., Pons, J.L.: Performance evaluation of lower limb exoskeletons: A systematic review. IEEE Transactions on Neural Systems and Rehabilitation Engineering 28, 1573–1583 (2020) Slade et al. [2022] Slade, P., Kochenderfer, M.J., Delp, S.L., Collins, S.H.: Personalizing exoskeleton assistance while walking in the real world. Nature 610, 277–282 (2022) Medina et al. [2015] Medina, J.R., Lorenz, T., Hirche, S.: Synthesizing anticipatory haptic assistance considering human behavior uncertainty. IEEE Transactions on Robotics 31, 180–190 (2015) Martinez et al. [2018] Martinez, A., Lawson, B., Durrough, C., Goldfarb, M.: A velocity-field-based controller for assisting leg movement during walking with a bilateral hip and knee lower limb exoskeleton. IEEE Transactions on Robotics 35, 307–316 (2018) Shushtari et al. [2021] Shushtari, M., Nasiri, R., Arami, A.: Online reference trajectory adaptation: A personalized control strategy for lower limb exoskeletons. IEEE Robotics and Automation Letters 7, 128–134 (2021) Asl et al. [2020] Asl, H.J., Yamashita, M., Narikiyo, T., Kawanishi, M.: Field-based assist-as-needed control schemes for rehabilitation robots. IEEE/ASME Transactions on Mechatronics 25, 2100–2111 (2020) Dominijanni et al. [2023] Dominijanni, G., Pinheiro, D.L., Pollina, L., Orset, B., Gini, M., Anselmino, E., Pierella, C., Olivier, J., Shokur, S., Micera, S.: Human motor augmentation with an extra robotic arm without functional interference. Science Robotics 8 (2023) Losey et al. [2018] Losey, D.P., Mcdonald, C.G., Battaglia, E., O’Malley, M.: A review of intent detection, arbitration, and communication aspects of shared control for physical human-robot interaction. Applied Mechanics Reviews 70 (2018) https://doi.org/10.1115/1.4039145 Jackson and Collins [2019] Jackson, R.W., Collins, S.H.: Heuristic-based ankle exoskeleton control for co-adaptive assistance of human locomotion. IEEE Transactions on Neural Systems and Rehabilitation Engineering 27, 2059–2069 (2019) Banala et al. [2007] Banala, S.K., Agrawal, S.K., Scholz, J.P.: Active leg exoskeleton (alex) for gait rehabilitation of motor-impaired patients. In: 2007 IEEE 10th International Conference on Rehabilitation Robotics, pp. 401–407 (2007). 2007 IEEE 10th International Conference on Rehabilitation Robotics Dinovitzer et al. [2023a] Dinovitzer, H., Shushtari, M., Arami, A.: Feedforward control of lower limb exoskeletons: which torque profile should we use? IEEE Robotics and Automation Letters (2023) Dinovitzer et al. [2023b] Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Pinto-Fernandez, D., Diego, T., Carmen Sanchez-Villamanan, M., Aller, F., Mombaur, K., Conti, R., Vitiello, N., Moreno, J.C., Pons, J.L.: Performance evaluation of lower limb exoskeletons: A systematic review. IEEE Transactions on Neural Systems and Rehabilitation Engineering 28, 1573–1583 (2020) Slade et al. [2022] Slade, P., Kochenderfer, M.J., Delp, S.L., Collins, S.H.: Personalizing exoskeleton assistance while walking in the real world. Nature 610, 277–282 (2022) Medina et al. [2015] Medina, J.R., Lorenz, T., Hirche, S.: Synthesizing anticipatory haptic assistance considering human behavior uncertainty. IEEE Transactions on Robotics 31, 180–190 (2015) Martinez et al. [2018] Martinez, A., Lawson, B., Durrough, C., Goldfarb, M.: A velocity-field-based controller for assisting leg movement during walking with a bilateral hip and knee lower limb exoskeleton. IEEE Transactions on Robotics 35, 307–316 (2018) Shushtari et al. [2021] Shushtari, M., Nasiri, R., Arami, A.: Online reference trajectory adaptation: A personalized control strategy for lower limb exoskeletons. IEEE Robotics and Automation Letters 7, 128–134 (2021) Asl et al. [2020] Asl, H.J., Yamashita, M., Narikiyo, T., Kawanishi, M.: Field-based assist-as-needed control schemes for rehabilitation robots. IEEE/ASME Transactions on Mechatronics 25, 2100–2111 (2020) Dominijanni et al. [2023] Dominijanni, G., Pinheiro, D.L., Pollina, L., Orset, B., Gini, M., Anselmino, E., Pierella, C., Olivier, J., Shokur, S., Micera, S.: Human motor augmentation with an extra robotic arm without functional interference. Science Robotics 8 (2023) Losey et al. [2018] Losey, D.P., Mcdonald, C.G., Battaglia, E., O’Malley, M.: A review of intent detection, arbitration, and communication aspects of shared control for physical human-robot interaction. Applied Mechanics Reviews 70 (2018) https://doi.org/10.1115/1.4039145 Jackson and Collins [2019] Jackson, R.W., Collins, S.H.: Heuristic-based ankle exoskeleton control for co-adaptive assistance of human locomotion. IEEE Transactions on Neural Systems and Rehabilitation Engineering 27, 2059–2069 (2019) Banala et al. [2007] Banala, S.K., Agrawal, S.K., Scholz, J.P.: Active leg exoskeleton (alex) for gait rehabilitation of motor-impaired patients. In: 2007 IEEE 10th International Conference on Rehabilitation Robotics, pp. 401–407 (2007). 2007 IEEE 10th International Conference on Rehabilitation Robotics Dinovitzer et al. [2023a] Dinovitzer, H., Shushtari, M., Arami, A.: Feedforward control of lower limb exoskeletons: which torque profile should we use? IEEE Robotics and Automation Letters (2023) Dinovitzer et al. [2023b] Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Slade, P., Kochenderfer, M.J., Delp, S.L., Collins, S.H.: Personalizing exoskeleton assistance while walking in the real world. Nature 610, 277–282 (2022) Medina et al. [2015] Medina, J.R., Lorenz, T., Hirche, S.: Synthesizing anticipatory haptic assistance considering human behavior uncertainty. IEEE Transactions on Robotics 31, 180–190 (2015) Martinez et al. [2018] Martinez, A., Lawson, B., Durrough, C., Goldfarb, M.: A velocity-field-based controller for assisting leg movement during walking with a bilateral hip and knee lower limb exoskeleton. IEEE Transactions on Robotics 35, 307–316 (2018) Shushtari et al. [2021] Shushtari, M., Nasiri, R., Arami, A.: Online reference trajectory adaptation: A personalized control strategy for lower limb exoskeletons. IEEE Robotics and Automation Letters 7, 128–134 (2021) Asl et al. [2020] Asl, H.J., Yamashita, M., Narikiyo, T., Kawanishi, M.: Field-based assist-as-needed control schemes for rehabilitation robots. IEEE/ASME Transactions on Mechatronics 25, 2100–2111 (2020) Dominijanni et al. [2023] Dominijanni, G., Pinheiro, D.L., Pollina, L., Orset, B., Gini, M., Anselmino, E., Pierella, C., Olivier, J., Shokur, S., Micera, S.: Human motor augmentation with an extra robotic arm without functional interference. Science Robotics 8 (2023) Losey et al. [2018] Losey, D.P., Mcdonald, C.G., Battaglia, E., O’Malley, M.: A review of intent detection, arbitration, and communication aspects of shared control for physical human-robot interaction. Applied Mechanics Reviews 70 (2018) https://doi.org/10.1115/1.4039145 Jackson and Collins [2019] Jackson, R.W., Collins, S.H.: Heuristic-based ankle exoskeleton control for co-adaptive assistance of human locomotion. IEEE Transactions on Neural Systems and Rehabilitation Engineering 27, 2059–2069 (2019) Banala et al. [2007] Banala, S.K., Agrawal, S.K., Scholz, J.P.: Active leg exoskeleton (alex) for gait rehabilitation of motor-impaired patients. In: 2007 IEEE 10th International Conference on Rehabilitation Robotics, pp. 401–407 (2007). 2007 IEEE 10th International Conference on Rehabilitation Robotics Dinovitzer et al. [2023a] Dinovitzer, H., Shushtari, M., Arami, A.: Feedforward control of lower limb exoskeletons: which torque profile should we use? IEEE Robotics and Automation Letters (2023) Dinovitzer et al. [2023b] Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Medina, J.R., Lorenz, T., Hirche, S.: Synthesizing anticipatory haptic assistance considering human behavior uncertainty. IEEE Transactions on Robotics 31, 180–190 (2015) Martinez et al. [2018] Martinez, A., Lawson, B., Durrough, C., Goldfarb, M.: A velocity-field-based controller for assisting leg movement during walking with a bilateral hip and knee lower limb exoskeleton. IEEE Transactions on Robotics 35, 307–316 (2018) Shushtari et al. [2021] Shushtari, M., Nasiri, R., Arami, A.: Online reference trajectory adaptation: A personalized control strategy for lower limb exoskeletons. IEEE Robotics and Automation Letters 7, 128–134 (2021) Asl et al. [2020] Asl, H.J., Yamashita, M., Narikiyo, T., Kawanishi, M.: Field-based assist-as-needed control schemes for rehabilitation robots. IEEE/ASME Transactions on Mechatronics 25, 2100–2111 (2020) Dominijanni et al. [2023] Dominijanni, G., Pinheiro, D.L., Pollina, L., Orset, B., Gini, M., Anselmino, E., Pierella, C., Olivier, J., Shokur, S., Micera, S.: Human motor augmentation with an extra robotic arm without functional interference. Science Robotics 8 (2023) Losey et al. [2018] Losey, D.P., Mcdonald, C.G., Battaglia, E., O’Malley, M.: A review of intent detection, arbitration, and communication aspects of shared control for physical human-robot interaction. Applied Mechanics Reviews 70 (2018) https://doi.org/10.1115/1.4039145 Jackson and Collins [2019] Jackson, R.W., Collins, S.H.: Heuristic-based ankle exoskeleton control for co-adaptive assistance of human locomotion. IEEE Transactions on Neural Systems and Rehabilitation Engineering 27, 2059–2069 (2019) Banala et al. [2007] Banala, S.K., Agrawal, S.K., Scholz, J.P.: Active leg exoskeleton (alex) for gait rehabilitation of motor-impaired patients. In: 2007 IEEE 10th International Conference on Rehabilitation Robotics, pp. 401–407 (2007). 2007 IEEE 10th International Conference on Rehabilitation Robotics Dinovitzer et al. [2023a] Dinovitzer, H., Shushtari, M., Arami, A.: Feedforward control of lower limb exoskeletons: which torque profile should we use? IEEE Robotics and Automation Letters (2023) Dinovitzer et al. [2023b] Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Martinez, A., Lawson, B., Durrough, C., Goldfarb, M.: A velocity-field-based controller for assisting leg movement during walking with a bilateral hip and knee lower limb exoskeleton. IEEE Transactions on Robotics 35, 307–316 (2018) Shushtari et al. [2021] Shushtari, M., Nasiri, R., Arami, A.: Online reference trajectory adaptation: A personalized control strategy for lower limb exoskeletons. IEEE Robotics and Automation Letters 7, 128–134 (2021) Asl et al. [2020] Asl, H.J., Yamashita, M., Narikiyo, T., Kawanishi, M.: Field-based assist-as-needed control schemes for rehabilitation robots. IEEE/ASME Transactions on Mechatronics 25, 2100–2111 (2020) Dominijanni et al. [2023] Dominijanni, G., Pinheiro, D.L., Pollina, L., Orset, B., Gini, M., Anselmino, E., Pierella, C., Olivier, J., Shokur, S., Micera, S.: Human motor augmentation with an extra robotic arm without functional interference. Science Robotics 8 (2023) Losey et al. [2018] Losey, D.P., Mcdonald, C.G., Battaglia, E., O’Malley, M.: A review of intent detection, arbitration, and communication aspects of shared control for physical human-robot interaction. Applied Mechanics Reviews 70 (2018) https://doi.org/10.1115/1.4039145 Jackson and Collins [2019] Jackson, R.W., Collins, S.H.: Heuristic-based ankle exoskeleton control for co-adaptive assistance of human locomotion. IEEE Transactions on Neural Systems and Rehabilitation Engineering 27, 2059–2069 (2019) Banala et al. [2007] Banala, S.K., Agrawal, S.K., Scholz, J.P.: Active leg exoskeleton (alex) for gait rehabilitation of motor-impaired patients. In: 2007 IEEE 10th International Conference on Rehabilitation Robotics, pp. 401–407 (2007). 2007 IEEE 10th International Conference on Rehabilitation Robotics Dinovitzer et al. [2023a] Dinovitzer, H., Shushtari, M., Arami, A.: Feedforward control of lower limb exoskeletons: which torque profile should we use? IEEE Robotics and Automation Letters (2023) Dinovitzer et al. [2023b] Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Shushtari, M., Nasiri, R., Arami, A.: Online reference trajectory adaptation: A personalized control strategy for lower limb exoskeletons. IEEE Robotics and Automation Letters 7, 128–134 (2021) Asl et al. [2020] Asl, H.J., Yamashita, M., Narikiyo, T., Kawanishi, M.: Field-based assist-as-needed control schemes for rehabilitation robots. IEEE/ASME Transactions on Mechatronics 25, 2100–2111 (2020) Dominijanni et al. [2023] Dominijanni, G., Pinheiro, D.L., Pollina, L., Orset, B., Gini, M., Anselmino, E., Pierella, C., Olivier, J., Shokur, S., Micera, S.: Human motor augmentation with an extra robotic arm without functional interference. Science Robotics 8 (2023) Losey et al. [2018] Losey, D.P., Mcdonald, C.G., Battaglia, E., O’Malley, M.: A review of intent detection, arbitration, and communication aspects of shared control for physical human-robot interaction. Applied Mechanics Reviews 70 (2018) https://doi.org/10.1115/1.4039145 Jackson and Collins [2019] Jackson, R.W., Collins, S.H.: Heuristic-based ankle exoskeleton control for co-adaptive assistance of human locomotion. IEEE Transactions on Neural Systems and Rehabilitation Engineering 27, 2059–2069 (2019) Banala et al. [2007] Banala, S.K., Agrawal, S.K., Scholz, J.P.: Active leg exoskeleton (alex) for gait rehabilitation of motor-impaired patients. In: 2007 IEEE 10th International Conference on Rehabilitation Robotics, pp. 401–407 (2007). 2007 IEEE 10th International Conference on Rehabilitation Robotics Dinovitzer et al. [2023a] Dinovitzer, H., Shushtari, M., Arami, A.: Feedforward control of lower limb exoskeletons: which torque profile should we use? IEEE Robotics and Automation Letters (2023) Dinovitzer et al. [2023b] Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Asl, H.J., Yamashita, M., Narikiyo, T., Kawanishi, M.: Field-based assist-as-needed control schemes for rehabilitation robots. IEEE/ASME Transactions on Mechatronics 25, 2100–2111 (2020) Dominijanni et al. [2023] Dominijanni, G., Pinheiro, D.L., Pollina, L., Orset, B., Gini, M., Anselmino, E., Pierella, C., Olivier, J., Shokur, S., Micera, S.: Human motor augmentation with an extra robotic arm without functional interference. Science Robotics 8 (2023) Losey et al. [2018] Losey, D.P., Mcdonald, C.G., Battaglia, E., O’Malley, M.: A review of intent detection, arbitration, and communication aspects of shared control for physical human-robot interaction. Applied Mechanics Reviews 70 (2018) https://doi.org/10.1115/1.4039145 Jackson and Collins [2019] Jackson, R.W., Collins, S.H.: Heuristic-based ankle exoskeleton control for co-adaptive assistance of human locomotion. IEEE Transactions on Neural Systems and Rehabilitation Engineering 27, 2059–2069 (2019) Banala et al. [2007] Banala, S.K., Agrawal, S.K., Scholz, J.P.: Active leg exoskeleton (alex) for gait rehabilitation of motor-impaired patients. In: 2007 IEEE 10th International Conference on Rehabilitation Robotics, pp. 401–407 (2007). 2007 IEEE 10th International Conference on Rehabilitation Robotics Dinovitzer et al. [2023a] Dinovitzer, H., Shushtari, M., Arami, A.: Feedforward control of lower limb exoskeletons: which torque profile should we use? IEEE Robotics and Automation Letters (2023) Dinovitzer et al. [2023b] Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Dominijanni, G., Pinheiro, D.L., Pollina, L., Orset, B., Gini, M., Anselmino, E., Pierella, C., Olivier, J., Shokur, S., Micera, S.: Human motor augmentation with an extra robotic arm without functional interference. Science Robotics 8 (2023) Losey et al. [2018] Losey, D.P., Mcdonald, C.G., Battaglia, E., O’Malley, M.: A review of intent detection, arbitration, and communication aspects of shared control for physical human-robot interaction. Applied Mechanics Reviews 70 (2018) https://doi.org/10.1115/1.4039145 Jackson and Collins [2019] Jackson, R.W., Collins, S.H.: Heuristic-based ankle exoskeleton control for co-adaptive assistance of human locomotion. IEEE Transactions on Neural Systems and Rehabilitation Engineering 27, 2059–2069 (2019) Banala et al. [2007] Banala, S.K., Agrawal, S.K., Scholz, J.P.: Active leg exoskeleton (alex) for gait rehabilitation of motor-impaired patients. In: 2007 IEEE 10th International Conference on Rehabilitation Robotics, pp. 401–407 (2007). 2007 IEEE 10th International Conference on Rehabilitation Robotics Dinovitzer et al. [2023a] Dinovitzer, H., Shushtari, M., Arami, A.: Feedforward control of lower limb exoskeletons: which torque profile should we use? IEEE Robotics and Automation Letters (2023) Dinovitzer et al. [2023b] Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Losey, D.P., Mcdonald, C.G., Battaglia, E., O’Malley, M.: A review of intent detection, arbitration, and communication aspects of shared control for physical human-robot interaction. Applied Mechanics Reviews 70 (2018) https://doi.org/10.1115/1.4039145 Jackson and Collins [2019] Jackson, R.W., Collins, S.H.: Heuristic-based ankle exoskeleton control for co-adaptive assistance of human locomotion. IEEE Transactions on Neural Systems and Rehabilitation Engineering 27, 2059–2069 (2019) Banala et al. [2007] Banala, S.K., Agrawal, S.K., Scholz, J.P.: Active leg exoskeleton (alex) for gait rehabilitation of motor-impaired patients. In: 2007 IEEE 10th International Conference on Rehabilitation Robotics, pp. 401–407 (2007). 2007 IEEE 10th International Conference on Rehabilitation Robotics Dinovitzer et al. [2023a] Dinovitzer, H., Shushtari, M., Arami, A.: Feedforward control of lower limb exoskeletons: which torque profile should we use? IEEE Robotics and Automation Letters (2023) Dinovitzer et al. [2023b] Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Jackson, R.W., Collins, S.H.: Heuristic-based ankle exoskeleton control for co-adaptive assistance of human locomotion. IEEE Transactions on Neural Systems and Rehabilitation Engineering 27, 2059–2069 (2019) Banala et al. [2007] Banala, S.K., Agrawal, S.K., Scholz, J.P.: Active leg exoskeleton (alex) for gait rehabilitation of motor-impaired patients. In: 2007 IEEE 10th International Conference on Rehabilitation Robotics, pp. 401–407 (2007). 2007 IEEE 10th International Conference on Rehabilitation Robotics Dinovitzer et al. [2023a] Dinovitzer, H., Shushtari, M., Arami, A.: Feedforward control of lower limb exoskeletons: which torque profile should we use? IEEE Robotics and Automation Letters (2023) Dinovitzer et al. [2023b] Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Banala, S.K., Agrawal, S.K., Scholz, J.P.: Active leg exoskeleton (alex) for gait rehabilitation of motor-impaired patients. In: 2007 IEEE 10th International Conference on Rehabilitation Robotics, pp. 401–407 (2007). 2007 IEEE 10th International Conference on Rehabilitation Robotics Dinovitzer et al. [2023a] Dinovitzer, H., Shushtari, M., Arami, A.: Feedforward control of lower limb exoskeletons: which torque profile should we use? IEEE Robotics and Automation Letters (2023) Dinovitzer et al. [2023b] Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Dinovitzer, H., Shushtari, M., Arami, A.: Feedforward control of lower limb exoskeletons: which torque profile should we use? IEEE Robotics and Automation Letters (2023) Dinovitzer et al. [2023b] Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017)
  4. Durandau, G., Rampeltshammer, W.F., Kooij, H., Sartori, M.: Neuromechanical model-based adaptive control of bilateral ankle exoskeletons: biological joint torque and electromyogram reduction across walking conditions. IEEE Transactions on Robotics 38, 1380–1394 (2022) Poggensee and Collins [2021] Poggensee, K.L., Collins, S.H.: How adaptation, training, and customization contribute to benefits from exoskeleton assistance. Science Robotics 6 (2021) Nuckols et al. [2021] Nuckols, R.W., Lee, S., Swaminathan, K., Orzel, D., Howe, R.D., Walsh, C.J.: Individualization of exosuit assistance based on measured muscle dynamics during versatile walking. Science robotics 6 (2021) Lee et al. [2023] Lee, U.H., Shetty, V.S., Franks, P.W., Tan, J., Evangelopoulos, G., Ha, S., Rouse, E.J.: User preference optimization for control of ankle exoskeletons using sample efficient active learning. Science Robotics 8 (2023) Postol et al. [2020] Postol, N., Lamond, S., Galloway, M., Palazzi, K., Bivard, A., Spratt, N.J., Marquez, J.: The metabolic cost of exercising with a robotic exoskeleton: A comparison of healthy and neurologically impaired people. IEEE Transactions on Neural Systems and Rehabilitation Engineering 28, 3031–3039 (2020) Witte et al. [2020] Witte, K.A., Fiers, P., Sheets-Singer, A.L., Collins, S.H.: Improving the energy economy of human running with powered and unpowered ankle exoskeleton assistance. Science Robotics 5 (2020) Zhu et al. [2021] Zhu, F., Kern, M., Fowkes, E., Afzal, T., Contreras-Vidal, J.-L., Francisco, G.E., Chang, S.-H.: Effects of an exoskeleton-assisted gait training on post-stroke lower-limb muscle coordination. Journal of Neural Engineering 18, 046039 (2021) Küçüktabak et al. [2024] Küçüktabak, E.B., Wen, Y., Kim, S.J., Short, M., Ludvig, D., Hargrove, L., Perreault, E., Lynch, K., Pons, J.: Haptic transparency and interaction force control for a lower-limb exoskeleton. IEEE Transactions on Robotics (2024) Eva and Grizzle [2020] Eva, M.M., Grizzle, J.W.: Feedback control design for robust comfortable sit-to-stand motions of 3d lower-limb exoskeletons. IEEE Access 9, 122–161 (2020) Masengo et al. [2023] Masengo, G., Zhang, X., Dong, R., , A.B.A., Hamza, K., Mudaheranwa, E.: Lower limb exoskeleton robot and its cooperative control: A review, trends, and challenges for future research. Frontiers in Neurorobotics 16, 1–25 (2023) Ingraham et al. [2022] Ingraham, K.A., Remy, C.D., Rouse, E.J.: The role of user preference in the customized control of robotic exoskeletons. Science robotics 7 (2022) Pinto-Fernandez et al. [2020] Pinto-Fernandez, D., Diego, T., Carmen Sanchez-Villamanan, M., Aller, F., Mombaur, K., Conti, R., Vitiello, N., Moreno, J.C., Pons, J.L.: Performance evaluation of lower limb exoskeletons: A systematic review. IEEE Transactions on Neural Systems and Rehabilitation Engineering 28, 1573–1583 (2020) Slade et al. [2022] Slade, P., Kochenderfer, M.J., Delp, S.L., Collins, S.H.: Personalizing exoskeleton assistance while walking in the real world. Nature 610, 277–282 (2022) Medina et al. [2015] Medina, J.R., Lorenz, T., Hirche, S.: Synthesizing anticipatory haptic assistance considering human behavior uncertainty. IEEE Transactions on Robotics 31, 180–190 (2015) Martinez et al. [2018] Martinez, A., Lawson, B., Durrough, C., Goldfarb, M.: A velocity-field-based controller for assisting leg movement during walking with a bilateral hip and knee lower limb exoskeleton. IEEE Transactions on Robotics 35, 307–316 (2018) Shushtari et al. [2021] Shushtari, M., Nasiri, R., Arami, A.: Online reference trajectory adaptation: A personalized control strategy for lower limb exoskeletons. IEEE Robotics and Automation Letters 7, 128–134 (2021) Asl et al. [2020] Asl, H.J., Yamashita, M., Narikiyo, T., Kawanishi, M.: Field-based assist-as-needed control schemes for rehabilitation robots. IEEE/ASME Transactions on Mechatronics 25, 2100–2111 (2020) Dominijanni et al. [2023] Dominijanni, G., Pinheiro, D.L., Pollina, L., Orset, B., Gini, M., Anselmino, E., Pierella, C., Olivier, J., Shokur, S., Micera, S.: Human motor augmentation with an extra robotic arm without functional interference. Science Robotics 8 (2023) Losey et al. [2018] Losey, D.P., Mcdonald, C.G., Battaglia, E., O’Malley, M.: A review of intent detection, arbitration, and communication aspects of shared control for physical human-robot interaction. Applied Mechanics Reviews 70 (2018) https://doi.org/10.1115/1.4039145 Jackson and Collins [2019] Jackson, R.W., Collins, S.H.: Heuristic-based ankle exoskeleton control for co-adaptive assistance of human locomotion. IEEE Transactions on Neural Systems and Rehabilitation Engineering 27, 2059–2069 (2019) Banala et al. [2007] Banala, S.K., Agrawal, S.K., Scholz, J.P.: Active leg exoskeleton (alex) for gait rehabilitation of motor-impaired patients. In: 2007 IEEE 10th International Conference on Rehabilitation Robotics, pp. 401–407 (2007). 2007 IEEE 10th International Conference on Rehabilitation Robotics Dinovitzer et al. [2023a] Dinovitzer, H., Shushtari, M., Arami, A.: Feedforward control of lower limb exoskeletons: which torque profile should we use? IEEE Robotics and Automation Letters (2023) Dinovitzer et al. [2023b] Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Poggensee, K.L., Collins, S.H.: How adaptation, training, and customization contribute to benefits from exoskeleton assistance. Science Robotics 6 (2021) Nuckols et al. [2021] Nuckols, R.W., Lee, S., Swaminathan, K., Orzel, D., Howe, R.D., Walsh, C.J.: Individualization of exosuit assistance based on measured muscle dynamics during versatile walking. Science robotics 6 (2021) Lee et al. [2023] Lee, U.H., Shetty, V.S., Franks, P.W., Tan, J., Evangelopoulos, G., Ha, S., Rouse, E.J.: User preference optimization for control of ankle exoskeletons using sample efficient active learning. Science Robotics 8 (2023) Postol et al. [2020] Postol, N., Lamond, S., Galloway, M., Palazzi, K., Bivard, A., Spratt, N.J., Marquez, J.: The metabolic cost of exercising with a robotic exoskeleton: A comparison of healthy and neurologically impaired people. IEEE Transactions on Neural Systems and Rehabilitation Engineering 28, 3031–3039 (2020) Witte et al. [2020] Witte, K.A., Fiers, P., Sheets-Singer, A.L., Collins, S.H.: Improving the energy economy of human running with powered and unpowered ankle exoskeleton assistance. Science Robotics 5 (2020) Zhu et al. [2021] Zhu, F., Kern, M., Fowkes, E., Afzal, T., Contreras-Vidal, J.-L., Francisco, G.E., Chang, S.-H.: Effects of an exoskeleton-assisted gait training on post-stroke lower-limb muscle coordination. Journal of Neural Engineering 18, 046039 (2021) Küçüktabak et al. [2024] Küçüktabak, E.B., Wen, Y., Kim, S.J., Short, M., Ludvig, D., Hargrove, L., Perreault, E., Lynch, K., Pons, J.: Haptic transparency and interaction force control for a lower-limb exoskeleton. IEEE Transactions on Robotics (2024) Eva and Grizzle [2020] Eva, M.M., Grizzle, J.W.: Feedback control design for robust comfortable sit-to-stand motions of 3d lower-limb exoskeletons. IEEE Access 9, 122–161 (2020) Masengo et al. [2023] Masengo, G., Zhang, X., Dong, R., , A.B.A., Hamza, K., Mudaheranwa, E.: Lower limb exoskeleton robot and its cooperative control: A review, trends, and challenges for future research. Frontiers in Neurorobotics 16, 1–25 (2023) Ingraham et al. [2022] Ingraham, K.A., Remy, C.D., Rouse, E.J.: The role of user preference in the customized control of robotic exoskeletons. Science robotics 7 (2022) Pinto-Fernandez et al. [2020] Pinto-Fernandez, D., Diego, T., Carmen Sanchez-Villamanan, M., Aller, F., Mombaur, K., Conti, R., Vitiello, N., Moreno, J.C., Pons, J.L.: Performance evaluation of lower limb exoskeletons: A systematic review. IEEE Transactions on Neural Systems and Rehabilitation Engineering 28, 1573–1583 (2020) Slade et al. [2022] Slade, P., Kochenderfer, M.J., Delp, S.L., Collins, S.H.: Personalizing exoskeleton assistance while walking in the real world. Nature 610, 277–282 (2022) Medina et al. [2015] Medina, J.R., Lorenz, T., Hirche, S.: Synthesizing anticipatory haptic assistance considering human behavior uncertainty. IEEE Transactions on Robotics 31, 180–190 (2015) Martinez et al. [2018] Martinez, A., Lawson, B., Durrough, C., Goldfarb, M.: A velocity-field-based controller for assisting leg movement during walking with a bilateral hip and knee lower limb exoskeleton. IEEE Transactions on Robotics 35, 307–316 (2018) Shushtari et al. [2021] Shushtari, M., Nasiri, R., Arami, A.: Online reference trajectory adaptation: A personalized control strategy for lower limb exoskeletons. IEEE Robotics and Automation Letters 7, 128–134 (2021) Asl et al. [2020] Asl, H.J., Yamashita, M., Narikiyo, T., Kawanishi, M.: Field-based assist-as-needed control schemes for rehabilitation robots. IEEE/ASME Transactions on Mechatronics 25, 2100–2111 (2020) Dominijanni et al. [2023] Dominijanni, G., Pinheiro, D.L., Pollina, L., Orset, B., Gini, M., Anselmino, E., Pierella, C., Olivier, J., Shokur, S., Micera, S.: Human motor augmentation with an extra robotic arm without functional interference. Science Robotics 8 (2023) Losey et al. [2018] Losey, D.P., Mcdonald, C.G., Battaglia, E., O’Malley, M.: A review of intent detection, arbitration, and communication aspects of shared control for physical human-robot interaction. Applied Mechanics Reviews 70 (2018) https://doi.org/10.1115/1.4039145 Jackson and Collins [2019] Jackson, R.W., Collins, S.H.: Heuristic-based ankle exoskeleton control for co-adaptive assistance of human locomotion. IEEE Transactions on Neural Systems and Rehabilitation Engineering 27, 2059–2069 (2019) Banala et al. [2007] Banala, S.K., Agrawal, S.K., Scholz, J.P.: Active leg exoskeleton (alex) for gait rehabilitation of motor-impaired patients. In: 2007 IEEE 10th International Conference on Rehabilitation Robotics, pp. 401–407 (2007). 2007 IEEE 10th International Conference on Rehabilitation Robotics Dinovitzer et al. [2023a] Dinovitzer, H., Shushtari, M., Arami, A.: Feedforward control of lower limb exoskeletons: which torque profile should we use? IEEE Robotics and Automation Letters (2023) Dinovitzer et al. [2023b] Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Nuckols, R.W., Lee, S., Swaminathan, K., Orzel, D., Howe, R.D., Walsh, C.J.: Individualization of exosuit assistance based on measured muscle dynamics during versatile walking. Science robotics 6 (2021) Lee et al. [2023] Lee, U.H., Shetty, V.S., Franks, P.W., Tan, J., Evangelopoulos, G., Ha, S., Rouse, E.J.: User preference optimization for control of ankle exoskeletons using sample efficient active learning. Science Robotics 8 (2023) Postol et al. [2020] Postol, N., Lamond, S., Galloway, M., Palazzi, K., Bivard, A., Spratt, N.J., Marquez, J.: The metabolic cost of exercising with a robotic exoskeleton: A comparison of healthy and neurologically impaired people. IEEE Transactions on Neural Systems and Rehabilitation Engineering 28, 3031–3039 (2020) Witte et al. [2020] Witte, K.A., Fiers, P., Sheets-Singer, A.L., Collins, S.H.: Improving the energy economy of human running with powered and unpowered ankle exoskeleton assistance. Science Robotics 5 (2020) Zhu et al. [2021] Zhu, F., Kern, M., Fowkes, E., Afzal, T., Contreras-Vidal, J.-L., Francisco, G.E., Chang, S.-H.: Effects of an exoskeleton-assisted gait training on post-stroke lower-limb muscle coordination. Journal of Neural Engineering 18, 046039 (2021) Küçüktabak et al. [2024] Küçüktabak, E.B., Wen, Y., Kim, S.J., Short, M., Ludvig, D., Hargrove, L., Perreault, E., Lynch, K., Pons, J.: Haptic transparency and interaction force control for a lower-limb exoskeleton. IEEE Transactions on Robotics (2024) Eva and Grizzle [2020] Eva, M.M., Grizzle, J.W.: Feedback control design for robust comfortable sit-to-stand motions of 3d lower-limb exoskeletons. IEEE Access 9, 122–161 (2020) Masengo et al. [2023] Masengo, G., Zhang, X., Dong, R., , A.B.A., Hamza, K., Mudaheranwa, E.: Lower limb exoskeleton robot and its cooperative control: A review, trends, and challenges for future research. Frontiers in Neurorobotics 16, 1–25 (2023) Ingraham et al. [2022] Ingraham, K.A., Remy, C.D., Rouse, E.J.: The role of user preference in the customized control of robotic exoskeletons. Science robotics 7 (2022) Pinto-Fernandez et al. [2020] Pinto-Fernandez, D., Diego, T., Carmen Sanchez-Villamanan, M., Aller, F., Mombaur, K., Conti, R., Vitiello, N., Moreno, J.C., Pons, J.L.: Performance evaluation of lower limb exoskeletons: A systematic review. IEEE Transactions on Neural Systems and Rehabilitation Engineering 28, 1573–1583 (2020) Slade et al. [2022] Slade, P., Kochenderfer, M.J., Delp, S.L., Collins, S.H.: Personalizing exoskeleton assistance while walking in the real world. Nature 610, 277–282 (2022) Medina et al. [2015] Medina, J.R., Lorenz, T., Hirche, S.: Synthesizing anticipatory haptic assistance considering human behavior uncertainty. IEEE Transactions on Robotics 31, 180–190 (2015) Martinez et al. [2018] Martinez, A., Lawson, B., Durrough, C., Goldfarb, M.: A velocity-field-based controller for assisting leg movement during walking with a bilateral hip and knee lower limb exoskeleton. IEEE Transactions on Robotics 35, 307–316 (2018) Shushtari et al. [2021] Shushtari, M., Nasiri, R., Arami, A.: Online reference trajectory adaptation: A personalized control strategy for lower limb exoskeletons. IEEE Robotics and Automation Letters 7, 128–134 (2021) Asl et al. [2020] Asl, H.J., Yamashita, M., Narikiyo, T., Kawanishi, M.: Field-based assist-as-needed control schemes for rehabilitation robots. IEEE/ASME Transactions on Mechatronics 25, 2100–2111 (2020) Dominijanni et al. [2023] Dominijanni, G., Pinheiro, D.L., Pollina, L., Orset, B., Gini, M., Anselmino, E., Pierella, C., Olivier, J., Shokur, S., Micera, S.: Human motor augmentation with an extra robotic arm without functional interference. Science Robotics 8 (2023) Losey et al. [2018] Losey, D.P., Mcdonald, C.G., Battaglia, E., O’Malley, M.: A review of intent detection, arbitration, and communication aspects of shared control for physical human-robot interaction. Applied Mechanics Reviews 70 (2018) https://doi.org/10.1115/1.4039145 Jackson and Collins [2019] Jackson, R.W., Collins, S.H.: Heuristic-based ankle exoskeleton control for co-adaptive assistance of human locomotion. IEEE Transactions on Neural Systems and Rehabilitation Engineering 27, 2059–2069 (2019) Banala et al. [2007] Banala, S.K., Agrawal, S.K., Scholz, J.P.: Active leg exoskeleton (alex) for gait rehabilitation of motor-impaired patients. In: 2007 IEEE 10th International Conference on Rehabilitation Robotics, pp. 401–407 (2007). 2007 IEEE 10th International Conference on Rehabilitation Robotics Dinovitzer et al. [2023a] Dinovitzer, H., Shushtari, M., Arami, A.: Feedforward control of lower limb exoskeletons: which torque profile should we use? IEEE Robotics and Automation Letters (2023) Dinovitzer et al. [2023b] Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Lee, U.H., Shetty, V.S., Franks, P.W., Tan, J., Evangelopoulos, G., Ha, S., Rouse, E.J.: User preference optimization for control of ankle exoskeletons using sample efficient active learning. Science Robotics 8 (2023) Postol et al. [2020] Postol, N., Lamond, S., Galloway, M., Palazzi, K., Bivard, A., Spratt, N.J., Marquez, J.: The metabolic cost of exercising with a robotic exoskeleton: A comparison of healthy and neurologically impaired people. IEEE Transactions on Neural Systems and Rehabilitation Engineering 28, 3031–3039 (2020) Witte et al. [2020] Witte, K.A., Fiers, P., Sheets-Singer, A.L., Collins, S.H.: Improving the energy economy of human running with powered and unpowered ankle exoskeleton assistance. Science Robotics 5 (2020) Zhu et al. [2021] Zhu, F., Kern, M., Fowkes, E., Afzal, T., Contreras-Vidal, J.-L., Francisco, G.E., Chang, S.-H.: Effects of an exoskeleton-assisted gait training on post-stroke lower-limb muscle coordination. Journal of Neural Engineering 18, 046039 (2021) Küçüktabak et al. [2024] Küçüktabak, E.B., Wen, Y., Kim, S.J., Short, M., Ludvig, D., Hargrove, L., Perreault, E., Lynch, K., Pons, J.: Haptic transparency and interaction force control for a lower-limb exoskeleton. IEEE Transactions on Robotics (2024) Eva and Grizzle [2020] Eva, M.M., Grizzle, J.W.: Feedback control design for robust comfortable sit-to-stand motions of 3d lower-limb exoskeletons. IEEE Access 9, 122–161 (2020) Masengo et al. [2023] Masengo, G., Zhang, X., Dong, R., , A.B.A., Hamza, K., Mudaheranwa, E.: Lower limb exoskeleton robot and its cooperative control: A review, trends, and challenges for future research. Frontiers in Neurorobotics 16, 1–25 (2023) Ingraham et al. [2022] Ingraham, K.A., Remy, C.D., Rouse, E.J.: The role of user preference in the customized control of robotic exoskeletons. Science robotics 7 (2022) Pinto-Fernandez et al. [2020] Pinto-Fernandez, D., Diego, T., Carmen Sanchez-Villamanan, M., Aller, F., Mombaur, K., Conti, R., Vitiello, N., Moreno, J.C., Pons, J.L.: Performance evaluation of lower limb exoskeletons: A systematic review. IEEE Transactions on Neural Systems and Rehabilitation Engineering 28, 1573–1583 (2020) Slade et al. [2022] Slade, P., Kochenderfer, M.J., Delp, S.L., Collins, S.H.: Personalizing exoskeleton assistance while walking in the real world. Nature 610, 277–282 (2022) Medina et al. [2015] Medina, J.R., Lorenz, T., Hirche, S.: Synthesizing anticipatory haptic assistance considering human behavior uncertainty. IEEE Transactions on Robotics 31, 180–190 (2015) Martinez et al. [2018] Martinez, A., Lawson, B., Durrough, C., Goldfarb, M.: A velocity-field-based controller for assisting leg movement during walking with a bilateral hip and knee lower limb exoskeleton. IEEE Transactions on Robotics 35, 307–316 (2018) Shushtari et al. [2021] Shushtari, M., Nasiri, R., Arami, A.: Online reference trajectory adaptation: A personalized control strategy for lower limb exoskeletons. IEEE Robotics and Automation Letters 7, 128–134 (2021) Asl et al. [2020] Asl, H.J., Yamashita, M., Narikiyo, T., Kawanishi, M.: Field-based assist-as-needed control schemes for rehabilitation robots. IEEE/ASME Transactions on Mechatronics 25, 2100–2111 (2020) Dominijanni et al. [2023] Dominijanni, G., Pinheiro, D.L., Pollina, L., Orset, B., Gini, M., Anselmino, E., Pierella, C., Olivier, J., Shokur, S., Micera, S.: Human motor augmentation with an extra robotic arm without functional interference. Science Robotics 8 (2023) Losey et al. [2018] Losey, D.P., Mcdonald, C.G., Battaglia, E., O’Malley, M.: A review of intent detection, arbitration, and communication aspects of shared control for physical human-robot interaction. Applied Mechanics Reviews 70 (2018) https://doi.org/10.1115/1.4039145 Jackson and Collins [2019] Jackson, R.W., Collins, S.H.: Heuristic-based ankle exoskeleton control for co-adaptive assistance of human locomotion. IEEE Transactions on Neural Systems and Rehabilitation Engineering 27, 2059–2069 (2019) Banala et al. [2007] Banala, S.K., Agrawal, S.K., Scholz, J.P.: Active leg exoskeleton (alex) for gait rehabilitation of motor-impaired patients. In: 2007 IEEE 10th International Conference on Rehabilitation Robotics, pp. 401–407 (2007). 2007 IEEE 10th International Conference on Rehabilitation Robotics Dinovitzer et al. [2023a] Dinovitzer, H., Shushtari, M., Arami, A.: Feedforward control of lower limb exoskeletons: which torque profile should we use? IEEE Robotics and Automation Letters (2023) Dinovitzer et al. [2023b] Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Postol, N., Lamond, S., Galloway, M., Palazzi, K., Bivard, A., Spratt, N.J., Marquez, J.: The metabolic cost of exercising with a robotic exoskeleton: A comparison of healthy and neurologically impaired people. IEEE Transactions on Neural Systems and Rehabilitation Engineering 28, 3031–3039 (2020) Witte et al. [2020] Witte, K.A., Fiers, P., Sheets-Singer, A.L., Collins, S.H.: Improving the energy economy of human running with powered and unpowered ankle exoskeleton assistance. Science Robotics 5 (2020) Zhu et al. [2021] Zhu, F., Kern, M., Fowkes, E., Afzal, T., Contreras-Vidal, J.-L., Francisco, G.E., Chang, S.-H.: Effects of an exoskeleton-assisted gait training on post-stroke lower-limb muscle coordination. Journal of Neural Engineering 18, 046039 (2021) Küçüktabak et al. [2024] Küçüktabak, E.B., Wen, Y., Kim, S.J., Short, M., Ludvig, D., Hargrove, L., Perreault, E., Lynch, K., Pons, J.: Haptic transparency and interaction force control for a lower-limb exoskeleton. IEEE Transactions on Robotics (2024) Eva and Grizzle [2020] Eva, M.M., Grizzle, J.W.: Feedback control design for robust comfortable sit-to-stand motions of 3d lower-limb exoskeletons. IEEE Access 9, 122–161 (2020) Masengo et al. [2023] Masengo, G., Zhang, X., Dong, R., , A.B.A., Hamza, K., Mudaheranwa, E.: Lower limb exoskeleton robot and its cooperative control: A review, trends, and challenges for future research. Frontiers in Neurorobotics 16, 1–25 (2023) Ingraham et al. [2022] Ingraham, K.A., Remy, C.D., Rouse, E.J.: The role of user preference in the customized control of robotic exoskeletons. Science robotics 7 (2022) Pinto-Fernandez et al. [2020] Pinto-Fernandez, D., Diego, T., Carmen Sanchez-Villamanan, M., Aller, F., Mombaur, K., Conti, R., Vitiello, N., Moreno, J.C., Pons, J.L.: Performance evaluation of lower limb exoskeletons: A systematic review. IEEE Transactions on Neural Systems and Rehabilitation Engineering 28, 1573–1583 (2020) Slade et al. [2022] Slade, P., Kochenderfer, M.J., Delp, S.L., Collins, S.H.: Personalizing exoskeleton assistance while walking in the real world. Nature 610, 277–282 (2022) Medina et al. [2015] Medina, J.R., Lorenz, T., Hirche, S.: Synthesizing anticipatory haptic assistance considering human behavior uncertainty. IEEE Transactions on Robotics 31, 180–190 (2015) Martinez et al. [2018] Martinez, A., Lawson, B., Durrough, C., Goldfarb, M.: A velocity-field-based controller for assisting leg movement during walking with a bilateral hip and knee lower limb exoskeleton. IEEE Transactions on Robotics 35, 307–316 (2018) Shushtari et al. [2021] Shushtari, M., Nasiri, R., Arami, A.: Online reference trajectory adaptation: A personalized control strategy for lower limb exoskeletons. IEEE Robotics and Automation Letters 7, 128–134 (2021) Asl et al. [2020] Asl, H.J., Yamashita, M., Narikiyo, T., Kawanishi, M.: Field-based assist-as-needed control schemes for rehabilitation robots. IEEE/ASME Transactions on Mechatronics 25, 2100–2111 (2020) Dominijanni et al. [2023] Dominijanni, G., Pinheiro, D.L., Pollina, L., Orset, B., Gini, M., Anselmino, E., Pierella, C., Olivier, J., Shokur, S., Micera, S.: Human motor augmentation with an extra robotic arm without functional interference. Science Robotics 8 (2023) Losey et al. [2018] Losey, D.P., Mcdonald, C.G., Battaglia, E., O’Malley, M.: A review of intent detection, arbitration, and communication aspects of shared control for physical human-robot interaction. Applied Mechanics Reviews 70 (2018) https://doi.org/10.1115/1.4039145 Jackson and Collins [2019] Jackson, R.W., Collins, S.H.: Heuristic-based ankle exoskeleton control for co-adaptive assistance of human locomotion. IEEE Transactions on Neural Systems and Rehabilitation Engineering 27, 2059–2069 (2019) Banala et al. [2007] Banala, S.K., Agrawal, S.K., Scholz, J.P.: Active leg exoskeleton (alex) for gait rehabilitation of motor-impaired patients. In: 2007 IEEE 10th International Conference on Rehabilitation Robotics, pp. 401–407 (2007). 2007 IEEE 10th International Conference on Rehabilitation Robotics Dinovitzer et al. [2023a] Dinovitzer, H., Shushtari, M., Arami, A.: Feedforward control of lower limb exoskeletons: which torque profile should we use? IEEE Robotics and Automation Letters (2023) Dinovitzer et al. [2023b] Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Witte, K.A., Fiers, P., Sheets-Singer, A.L., Collins, S.H.: Improving the energy economy of human running with powered and unpowered ankle exoskeleton assistance. Science Robotics 5 (2020) Zhu et al. [2021] Zhu, F., Kern, M., Fowkes, E., Afzal, T., Contreras-Vidal, J.-L., Francisco, G.E., Chang, S.-H.: Effects of an exoskeleton-assisted gait training on post-stroke lower-limb muscle coordination. Journal of Neural Engineering 18, 046039 (2021) Küçüktabak et al. [2024] Küçüktabak, E.B., Wen, Y., Kim, S.J., Short, M., Ludvig, D., Hargrove, L., Perreault, E., Lynch, K., Pons, J.: Haptic transparency and interaction force control for a lower-limb exoskeleton. IEEE Transactions on Robotics (2024) Eva and Grizzle [2020] Eva, M.M., Grizzle, J.W.: Feedback control design for robust comfortable sit-to-stand motions of 3d lower-limb exoskeletons. IEEE Access 9, 122–161 (2020) Masengo et al. [2023] Masengo, G., Zhang, X., Dong, R., , A.B.A., Hamza, K., Mudaheranwa, E.: Lower limb exoskeleton robot and its cooperative control: A review, trends, and challenges for future research. Frontiers in Neurorobotics 16, 1–25 (2023) Ingraham et al. [2022] Ingraham, K.A., Remy, C.D., Rouse, E.J.: The role of user preference in the customized control of robotic exoskeletons. Science robotics 7 (2022) Pinto-Fernandez et al. [2020] Pinto-Fernandez, D., Diego, T., Carmen Sanchez-Villamanan, M., Aller, F., Mombaur, K., Conti, R., Vitiello, N., Moreno, J.C., Pons, J.L.: Performance evaluation of lower limb exoskeletons: A systematic review. IEEE Transactions on Neural Systems and Rehabilitation Engineering 28, 1573–1583 (2020) Slade et al. [2022] Slade, P., Kochenderfer, M.J., Delp, S.L., Collins, S.H.: Personalizing exoskeleton assistance while walking in the real world. Nature 610, 277–282 (2022) Medina et al. [2015] Medina, J.R., Lorenz, T., Hirche, S.: Synthesizing anticipatory haptic assistance considering human behavior uncertainty. IEEE Transactions on Robotics 31, 180–190 (2015) Martinez et al. [2018] Martinez, A., Lawson, B., Durrough, C., Goldfarb, M.: A velocity-field-based controller for assisting leg movement during walking with a bilateral hip and knee lower limb exoskeleton. IEEE Transactions on Robotics 35, 307–316 (2018) Shushtari et al. [2021] Shushtari, M., Nasiri, R., Arami, A.: Online reference trajectory adaptation: A personalized control strategy for lower limb exoskeletons. IEEE Robotics and Automation Letters 7, 128–134 (2021) Asl et al. [2020] Asl, H.J., Yamashita, M., Narikiyo, T., Kawanishi, M.: Field-based assist-as-needed control schemes for rehabilitation robots. IEEE/ASME Transactions on Mechatronics 25, 2100–2111 (2020) Dominijanni et al. [2023] Dominijanni, G., Pinheiro, D.L., Pollina, L., Orset, B., Gini, M., Anselmino, E., Pierella, C., Olivier, J., Shokur, S., Micera, S.: Human motor augmentation with an extra robotic arm without functional interference. Science Robotics 8 (2023) Losey et al. [2018] Losey, D.P., Mcdonald, C.G., Battaglia, E., O’Malley, M.: A review of intent detection, arbitration, and communication aspects of shared control for physical human-robot interaction. Applied Mechanics Reviews 70 (2018) https://doi.org/10.1115/1.4039145 Jackson and Collins [2019] Jackson, R.W., Collins, S.H.: Heuristic-based ankle exoskeleton control for co-adaptive assistance of human locomotion. IEEE Transactions on Neural Systems and Rehabilitation Engineering 27, 2059–2069 (2019) Banala et al. [2007] Banala, S.K., Agrawal, S.K., Scholz, J.P.: Active leg exoskeleton (alex) for gait rehabilitation of motor-impaired patients. In: 2007 IEEE 10th International Conference on Rehabilitation Robotics, pp. 401–407 (2007). 2007 IEEE 10th International Conference on Rehabilitation Robotics Dinovitzer et al. [2023a] Dinovitzer, H., Shushtari, M., Arami, A.: Feedforward control of lower limb exoskeletons: which torque profile should we use? IEEE Robotics and Automation Letters (2023) Dinovitzer et al. [2023b] Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Zhu, F., Kern, M., Fowkes, E., Afzal, T., Contreras-Vidal, J.-L., Francisco, G.E., Chang, S.-H.: Effects of an exoskeleton-assisted gait training on post-stroke lower-limb muscle coordination. Journal of Neural Engineering 18, 046039 (2021) Küçüktabak et al. [2024] Küçüktabak, E.B., Wen, Y., Kim, S.J., Short, M., Ludvig, D., Hargrove, L., Perreault, E., Lynch, K., Pons, J.: Haptic transparency and interaction force control for a lower-limb exoskeleton. IEEE Transactions on Robotics (2024) Eva and Grizzle [2020] Eva, M.M., Grizzle, J.W.: Feedback control design for robust comfortable sit-to-stand motions of 3d lower-limb exoskeletons. IEEE Access 9, 122–161 (2020) Masengo et al. [2023] Masengo, G., Zhang, X., Dong, R., , A.B.A., Hamza, K., Mudaheranwa, E.: Lower limb exoskeleton robot and its cooperative control: A review, trends, and challenges for future research. Frontiers in Neurorobotics 16, 1–25 (2023) Ingraham et al. [2022] Ingraham, K.A., Remy, C.D., Rouse, E.J.: The role of user preference in the customized control of robotic exoskeletons. Science robotics 7 (2022) Pinto-Fernandez et al. [2020] Pinto-Fernandez, D., Diego, T., Carmen Sanchez-Villamanan, M., Aller, F., Mombaur, K., Conti, R., Vitiello, N., Moreno, J.C., Pons, J.L.: Performance evaluation of lower limb exoskeletons: A systematic review. IEEE Transactions on Neural Systems and Rehabilitation Engineering 28, 1573–1583 (2020) Slade et al. [2022] Slade, P., Kochenderfer, M.J., Delp, S.L., Collins, S.H.: Personalizing exoskeleton assistance while walking in the real world. Nature 610, 277–282 (2022) Medina et al. [2015] Medina, J.R., Lorenz, T., Hirche, S.: Synthesizing anticipatory haptic assistance considering human behavior uncertainty. IEEE Transactions on Robotics 31, 180–190 (2015) Martinez et al. [2018] Martinez, A., Lawson, B., Durrough, C., Goldfarb, M.: A velocity-field-based controller for assisting leg movement during walking with a bilateral hip and knee lower limb exoskeleton. IEEE Transactions on Robotics 35, 307–316 (2018) Shushtari et al. [2021] Shushtari, M., Nasiri, R., Arami, A.: Online reference trajectory adaptation: A personalized control strategy for lower limb exoskeletons. IEEE Robotics and Automation Letters 7, 128–134 (2021) Asl et al. [2020] Asl, H.J., Yamashita, M., Narikiyo, T., Kawanishi, M.: Field-based assist-as-needed control schemes for rehabilitation robots. IEEE/ASME Transactions on Mechatronics 25, 2100–2111 (2020) Dominijanni et al. [2023] Dominijanni, G., Pinheiro, D.L., Pollina, L., Orset, B., Gini, M., Anselmino, E., Pierella, C., Olivier, J., Shokur, S., Micera, S.: Human motor augmentation with an extra robotic arm without functional interference. Science Robotics 8 (2023) Losey et al. [2018] Losey, D.P., Mcdonald, C.G., Battaglia, E., O’Malley, M.: A review of intent detection, arbitration, and communication aspects of shared control for physical human-robot interaction. Applied Mechanics Reviews 70 (2018) https://doi.org/10.1115/1.4039145 Jackson and Collins [2019] Jackson, R.W., Collins, S.H.: Heuristic-based ankle exoskeleton control for co-adaptive assistance of human locomotion. IEEE Transactions on Neural Systems and Rehabilitation Engineering 27, 2059–2069 (2019) Banala et al. [2007] Banala, S.K., Agrawal, S.K., Scholz, J.P.: Active leg exoskeleton (alex) for gait rehabilitation of motor-impaired patients. In: 2007 IEEE 10th International Conference on Rehabilitation Robotics, pp. 401–407 (2007). 2007 IEEE 10th International Conference on Rehabilitation Robotics Dinovitzer et al. [2023a] Dinovitzer, H., Shushtari, M., Arami, A.: Feedforward control of lower limb exoskeletons: which torque profile should we use? IEEE Robotics and Automation Letters (2023) Dinovitzer et al. [2023b] Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Küçüktabak, E.B., Wen, Y., Kim, S.J., Short, M., Ludvig, D., Hargrove, L., Perreault, E., Lynch, K., Pons, J.: Haptic transparency and interaction force control for a lower-limb exoskeleton. IEEE Transactions on Robotics (2024) Eva and Grizzle [2020] Eva, M.M., Grizzle, J.W.: Feedback control design for robust comfortable sit-to-stand motions of 3d lower-limb exoskeletons. IEEE Access 9, 122–161 (2020) Masengo et al. [2023] Masengo, G., Zhang, X., Dong, R., , A.B.A., Hamza, K., Mudaheranwa, E.: Lower limb exoskeleton robot and its cooperative control: A review, trends, and challenges for future research. Frontiers in Neurorobotics 16, 1–25 (2023) Ingraham et al. [2022] Ingraham, K.A., Remy, C.D., Rouse, E.J.: The role of user preference in the customized control of robotic exoskeletons. Science robotics 7 (2022) Pinto-Fernandez et al. [2020] Pinto-Fernandez, D., Diego, T., Carmen Sanchez-Villamanan, M., Aller, F., Mombaur, K., Conti, R., Vitiello, N., Moreno, J.C., Pons, J.L.: Performance evaluation of lower limb exoskeletons: A systematic review. IEEE Transactions on Neural Systems and Rehabilitation Engineering 28, 1573–1583 (2020) Slade et al. [2022] Slade, P., Kochenderfer, M.J., Delp, S.L., Collins, S.H.: Personalizing exoskeleton assistance while walking in the real world. Nature 610, 277–282 (2022) Medina et al. [2015] Medina, J.R., Lorenz, T., Hirche, S.: Synthesizing anticipatory haptic assistance considering human behavior uncertainty. IEEE Transactions on Robotics 31, 180–190 (2015) Martinez et al. [2018] Martinez, A., Lawson, B., Durrough, C., Goldfarb, M.: A velocity-field-based controller for assisting leg movement during walking with a bilateral hip and knee lower limb exoskeleton. IEEE Transactions on Robotics 35, 307–316 (2018) Shushtari et al. [2021] Shushtari, M., Nasiri, R., Arami, A.: Online reference trajectory adaptation: A personalized control strategy for lower limb exoskeletons. IEEE Robotics and Automation Letters 7, 128–134 (2021) Asl et al. [2020] Asl, H.J., Yamashita, M., Narikiyo, T., Kawanishi, M.: Field-based assist-as-needed control schemes for rehabilitation robots. IEEE/ASME Transactions on Mechatronics 25, 2100–2111 (2020) Dominijanni et al. [2023] Dominijanni, G., Pinheiro, D.L., Pollina, L., Orset, B., Gini, M., Anselmino, E., Pierella, C., Olivier, J., Shokur, S., Micera, S.: Human motor augmentation with an extra robotic arm without functional interference. Science Robotics 8 (2023) Losey et al. [2018] Losey, D.P., Mcdonald, C.G., Battaglia, E., O’Malley, M.: A review of intent detection, arbitration, and communication aspects of shared control for physical human-robot interaction. Applied Mechanics Reviews 70 (2018) https://doi.org/10.1115/1.4039145 Jackson and Collins [2019] Jackson, R.W., Collins, S.H.: Heuristic-based ankle exoskeleton control for co-adaptive assistance of human locomotion. IEEE Transactions on Neural Systems and Rehabilitation Engineering 27, 2059–2069 (2019) Banala et al. [2007] Banala, S.K., Agrawal, S.K., Scholz, J.P.: Active leg exoskeleton (alex) for gait rehabilitation of motor-impaired patients. In: 2007 IEEE 10th International Conference on Rehabilitation Robotics, pp. 401–407 (2007). 2007 IEEE 10th International Conference on Rehabilitation Robotics Dinovitzer et al. [2023a] Dinovitzer, H., Shushtari, M., Arami, A.: Feedforward control of lower limb exoskeletons: which torque profile should we use? IEEE Robotics and Automation Letters (2023) Dinovitzer et al. [2023b] Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Eva, M.M., Grizzle, J.W.: Feedback control design for robust comfortable sit-to-stand motions of 3d lower-limb exoskeletons. IEEE Access 9, 122–161 (2020) Masengo et al. [2023] Masengo, G., Zhang, X., Dong, R., , A.B.A., Hamza, K., Mudaheranwa, E.: Lower limb exoskeleton robot and its cooperative control: A review, trends, and challenges for future research. Frontiers in Neurorobotics 16, 1–25 (2023) Ingraham et al. [2022] Ingraham, K.A., Remy, C.D., Rouse, E.J.: The role of user preference in the customized control of robotic exoskeletons. Science robotics 7 (2022) Pinto-Fernandez et al. [2020] Pinto-Fernandez, D., Diego, T., Carmen Sanchez-Villamanan, M., Aller, F., Mombaur, K., Conti, R., Vitiello, N., Moreno, J.C., Pons, J.L.: Performance evaluation of lower limb exoskeletons: A systematic review. IEEE Transactions on Neural Systems and Rehabilitation Engineering 28, 1573–1583 (2020) Slade et al. [2022] Slade, P., Kochenderfer, M.J., Delp, S.L., Collins, S.H.: Personalizing exoskeleton assistance while walking in the real world. Nature 610, 277–282 (2022) Medina et al. [2015] Medina, J.R., Lorenz, T., Hirche, S.: Synthesizing anticipatory haptic assistance considering human behavior uncertainty. IEEE Transactions on Robotics 31, 180–190 (2015) Martinez et al. [2018] Martinez, A., Lawson, B., Durrough, C., Goldfarb, M.: A velocity-field-based controller for assisting leg movement during walking with a bilateral hip and knee lower limb exoskeleton. IEEE Transactions on Robotics 35, 307–316 (2018) Shushtari et al. [2021] Shushtari, M., Nasiri, R., Arami, A.: Online reference trajectory adaptation: A personalized control strategy for lower limb exoskeletons. IEEE Robotics and Automation Letters 7, 128–134 (2021) Asl et al. [2020] Asl, H.J., Yamashita, M., Narikiyo, T., Kawanishi, M.: Field-based assist-as-needed control schemes for rehabilitation robots. IEEE/ASME Transactions on Mechatronics 25, 2100–2111 (2020) Dominijanni et al. [2023] Dominijanni, G., Pinheiro, D.L., Pollina, L., Orset, B., Gini, M., Anselmino, E., Pierella, C., Olivier, J., Shokur, S., Micera, S.: Human motor augmentation with an extra robotic arm without functional interference. Science Robotics 8 (2023) Losey et al. [2018] Losey, D.P., Mcdonald, C.G., Battaglia, E., O’Malley, M.: A review of intent detection, arbitration, and communication aspects of shared control for physical human-robot interaction. Applied Mechanics Reviews 70 (2018) https://doi.org/10.1115/1.4039145 Jackson and Collins [2019] Jackson, R.W., Collins, S.H.: Heuristic-based ankle exoskeleton control for co-adaptive assistance of human locomotion. IEEE Transactions on Neural Systems and Rehabilitation Engineering 27, 2059–2069 (2019) Banala et al. [2007] Banala, S.K., Agrawal, S.K., Scholz, J.P.: Active leg exoskeleton (alex) for gait rehabilitation of motor-impaired patients. In: 2007 IEEE 10th International Conference on Rehabilitation Robotics, pp. 401–407 (2007). 2007 IEEE 10th International Conference on Rehabilitation Robotics Dinovitzer et al. [2023a] Dinovitzer, H., Shushtari, M., Arami, A.: Feedforward control of lower limb exoskeletons: which torque profile should we use? IEEE Robotics and Automation Letters (2023) Dinovitzer et al. [2023b] Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Masengo, G., Zhang, X., Dong, R., , A.B.A., Hamza, K., Mudaheranwa, E.: Lower limb exoskeleton robot and its cooperative control: A review, trends, and challenges for future research. Frontiers in Neurorobotics 16, 1–25 (2023) Ingraham et al. [2022] Ingraham, K.A., Remy, C.D., Rouse, E.J.: The role of user preference in the customized control of robotic exoskeletons. Science robotics 7 (2022) Pinto-Fernandez et al. [2020] Pinto-Fernandez, D., Diego, T., Carmen Sanchez-Villamanan, M., Aller, F., Mombaur, K., Conti, R., Vitiello, N., Moreno, J.C., Pons, J.L.: Performance evaluation of lower limb exoskeletons: A systematic review. IEEE Transactions on Neural Systems and Rehabilitation Engineering 28, 1573–1583 (2020) Slade et al. [2022] Slade, P., Kochenderfer, M.J., Delp, S.L., Collins, S.H.: Personalizing exoskeleton assistance while walking in the real world. Nature 610, 277–282 (2022) Medina et al. [2015] Medina, J.R., Lorenz, T., Hirche, S.: Synthesizing anticipatory haptic assistance considering human behavior uncertainty. IEEE Transactions on Robotics 31, 180–190 (2015) Martinez et al. [2018] Martinez, A., Lawson, B., Durrough, C., Goldfarb, M.: A velocity-field-based controller for assisting leg movement during walking with a bilateral hip and knee lower limb exoskeleton. IEEE Transactions on Robotics 35, 307–316 (2018) Shushtari et al. [2021] Shushtari, M., Nasiri, R., Arami, A.: Online reference trajectory adaptation: A personalized control strategy for lower limb exoskeletons. IEEE Robotics and Automation Letters 7, 128–134 (2021) Asl et al. [2020] Asl, H.J., Yamashita, M., Narikiyo, T., Kawanishi, M.: Field-based assist-as-needed control schemes for rehabilitation robots. IEEE/ASME Transactions on Mechatronics 25, 2100–2111 (2020) Dominijanni et al. [2023] Dominijanni, G., Pinheiro, D.L., Pollina, L., Orset, B., Gini, M., Anselmino, E., Pierella, C., Olivier, J., Shokur, S., Micera, S.: Human motor augmentation with an extra robotic arm without functional interference. Science Robotics 8 (2023) Losey et al. [2018] Losey, D.P., Mcdonald, C.G., Battaglia, E., O’Malley, M.: A review of intent detection, arbitration, and communication aspects of shared control for physical human-robot interaction. Applied Mechanics Reviews 70 (2018) https://doi.org/10.1115/1.4039145 Jackson and Collins [2019] Jackson, R.W., Collins, S.H.: Heuristic-based ankle exoskeleton control for co-adaptive assistance of human locomotion. IEEE Transactions on Neural Systems and Rehabilitation Engineering 27, 2059–2069 (2019) Banala et al. [2007] Banala, S.K., Agrawal, S.K., Scholz, J.P.: Active leg exoskeleton (alex) for gait rehabilitation of motor-impaired patients. In: 2007 IEEE 10th International Conference on Rehabilitation Robotics, pp. 401–407 (2007). 2007 IEEE 10th International Conference on Rehabilitation Robotics Dinovitzer et al. [2023a] Dinovitzer, H., Shushtari, M., Arami, A.: Feedforward control of lower limb exoskeletons: which torque profile should we use? IEEE Robotics and Automation Letters (2023) Dinovitzer et al. [2023b] Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Ingraham, K.A., Remy, C.D., Rouse, E.J.: The role of user preference in the customized control of robotic exoskeletons. Science robotics 7 (2022) Pinto-Fernandez et al. [2020] Pinto-Fernandez, D., Diego, T., Carmen Sanchez-Villamanan, M., Aller, F., Mombaur, K., Conti, R., Vitiello, N., Moreno, J.C., Pons, J.L.: Performance evaluation of lower limb exoskeletons: A systematic review. IEEE Transactions on Neural Systems and Rehabilitation Engineering 28, 1573–1583 (2020) Slade et al. [2022] Slade, P., Kochenderfer, M.J., Delp, S.L., Collins, S.H.: Personalizing exoskeleton assistance while walking in the real world. Nature 610, 277–282 (2022) Medina et al. [2015] Medina, J.R., Lorenz, T., Hirche, S.: Synthesizing anticipatory haptic assistance considering human behavior uncertainty. IEEE Transactions on Robotics 31, 180–190 (2015) Martinez et al. [2018] Martinez, A., Lawson, B., Durrough, C., Goldfarb, M.: A velocity-field-based controller for assisting leg movement during walking with a bilateral hip and knee lower limb exoskeleton. IEEE Transactions on Robotics 35, 307–316 (2018) Shushtari et al. [2021] Shushtari, M., Nasiri, R., Arami, A.: Online reference trajectory adaptation: A personalized control strategy for lower limb exoskeletons. IEEE Robotics and Automation Letters 7, 128–134 (2021) Asl et al. [2020] Asl, H.J., Yamashita, M., Narikiyo, T., Kawanishi, M.: Field-based assist-as-needed control schemes for rehabilitation robots. IEEE/ASME Transactions on Mechatronics 25, 2100–2111 (2020) Dominijanni et al. [2023] Dominijanni, G., Pinheiro, D.L., Pollina, L., Orset, B., Gini, M., Anselmino, E., Pierella, C., Olivier, J., Shokur, S., Micera, S.: Human motor augmentation with an extra robotic arm without functional interference. Science Robotics 8 (2023) Losey et al. [2018] Losey, D.P., Mcdonald, C.G., Battaglia, E., O’Malley, M.: A review of intent detection, arbitration, and communication aspects of shared control for physical human-robot interaction. Applied Mechanics Reviews 70 (2018) https://doi.org/10.1115/1.4039145 Jackson and Collins [2019] Jackson, R.W., Collins, S.H.: Heuristic-based ankle exoskeleton control for co-adaptive assistance of human locomotion. IEEE Transactions on Neural Systems and Rehabilitation Engineering 27, 2059–2069 (2019) Banala et al. [2007] Banala, S.K., Agrawal, S.K., Scholz, J.P.: Active leg exoskeleton (alex) for gait rehabilitation of motor-impaired patients. In: 2007 IEEE 10th International Conference on Rehabilitation Robotics, pp. 401–407 (2007). 2007 IEEE 10th International Conference on Rehabilitation Robotics Dinovitzer et al. [2023a] Dinovitzer, H., Shushtari, M., Arami, A.: Feedforward control of lower limb exoskeletons: which torque profile should we use? IEEE Robotics and Automation Letters (2023) Dinovitzer et al. [2023b] Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Pinto-Fernandez, D., Diego, T., Carmen Sanchez-Villamanan, M., Aller, F., Mombaur, K., Conti, R., Vitiello, N., Moreno, J.C., Pons, J.L.: Performance evaluation of lower limb exoskeletons: A systematic review. IEEE Transactions on Neural Systems and Rehabilitation Engineering 28, 1573–1583 (2020) Slade et al. [2022] Slade, P., Kochenderfer, M.J., Delp, S.L., Collins, S.H.: Personalizing exoskeleton assistance while walking in the real world. Nature 610, 277–282 (2022) Medina et al. [2015] Medina, J.R., Lorenz, T., Hirche, S.: Synthesizing anticipatory haptic assistance considering human behavior uncertainty. IEEE Transactions on Robotics 31, 180–190 (2015) Martinez et al. [2018] Martinez, A., Lawson, B., Durrough, C., Goldfarb, M.: A velocity-field-based controller for assisting leg movement during walking with a bilateral hip and knee lower limb exoskeleton. IEEE Transactions on Robotics 35, 307–316 (2018) Shushtari et al. [2021] Shushtari, M., Nasiri, R., Arami, A.: Online reference trajectory adaptation: A personalized control strategy for lower limb exoskeletons. IEEE Robotics and Automation Letters 7, 128–134 (2021) Asl et al. [2020] Asl, H.J., Yamashita, M., Narikiyo, T., Kawanishi, M.: Field-based assist-as-needed control schemes for rehabilitation robots. IEEE/ASME Transactions on Mechatronics 25, 2100–2111 (2020) Dominijanni et al. [2023] Dominijanni, G., Pinheiro, D.L., Pollina, L., Orset, B., Gini, M., Anselmino, E., Pierella, C., Olivier, J., Shokur, S., Micera, S.: Human motor augmentation with an extra robotic arm without functional interference. Science Robotics 8 (2023) Losey et al. [2018] Losey, D.P., Mcdonald, C.G., Battaglia, E., O’Malley, M.: A review of intent detection, arbitration, and communication aspects of shared control for physical human-robot interaction. Applied Mechanics Reviews 70 (2018) https://doi.org/10.1115/1.4039145 Jackson and Collins [2019] Jackson, R.W., Collins, S.H.: Heuristic-based ankle exoskeleton control for co-adaptive assistance of human locomotion. IEEE Transactions on Neural Systems and Rehabilitation Engineering 27, 2059–2069 (2019) Banala et al. [2007] Banala, S.K., Agrawal, S.K., Scholz, J.P.: Active leg exoskeleton (alex) for gait rehabilitation of motor-impaired patients. In: 2007 IEEE 10th International Conference on Rehabilitation Robotics, pp. 401–407 (2007). 2007 IEEE 10th International Conference on Rehabilitation Robotics Dinovitzer et al. [2023a] Dinovitzer, H., Shushtari, M., Arami, A.: Feedforward control of lower limb exoskeletons: which torque profile should we use? IEEE Robotics and Automation Letters (2023) Dinovitzer et al. [2023b] Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Slade, P., Kochenderfer, M.J., Delp, S.L., Collins, S.H.: Personalizing exoskeleton assistance while walking in the real world. Nature 610, 277–282 (2022) Medina et al. [2015] Medina, J.R., Lorenz, T., Hirche, S.: Synthesizing anticipatory haptic assistance considering human behavior uncertainty. IEEE Transactions on Robotics 31, 180–190 (2015) Martinez et al. [2018] Martinez, A., Lawson, B., Durrough, C., Goldfarb, M.: A velocity-field-based controller for assisting leg movement during walking with a bilateral hip and knee lower limb exoskeleton. IEEE Transactions on Robotics 35, 307–316 (2018) Shushtari et al. [2021] Shushtari, M., Nasiri, R., Arami, A.: Online reference trajectory adaptation: A personalized control strategy for lower limb exoskeletons. IEEE Robotics and Automation Letters 7, 128–134 (2021) Asl et al. [2020] Asl, H.J., Yamashita, M., Narikiyo, T., Kawanishi, M.: Field-based assist-as-needed control schemes for rehabilitation robots. IEEE/ASME Transactions on Mechatronics 25, 2100–2111 (2020) Dominijanni et al. [2023] Dominijanni, G., Pinheiro, D.L., Pollina, L., Orset, B., Gini, M., Anselmino, E., Pierella, C., Olivier, J., Shokur, S., Micera, S.: Human motor augmentation with an extra robotic arm without functional interference. Science Robotics 8 (2023) Losey et al. [2018] Losey, D.P., Mcdonald, C.G., Battaglia, E., O’Malley, M.: A review of intent detection, arbitration, and communication aspects of shared control for physical human-robot interaction. Applied Mechanics Reviews 70 (2018) https://doi.org/10.1115/1.4039145 Jackson and Collins [2019] Jackson, R.W., Collins, S.H.: Heuristic-based ankle exoskeleton control for co-adaptive assistance of human locomotion. IEEE Transactions on Neural Systems and Rehabilitation Engineering 27, 2059–2069 (2019) Banala et al. [2007] Banala, S.K., Agrawal, S.K., Scholz, J.P.: Active leg exoskeleton (alex) for gait rehabilitation of motor-impaired patients. In: 2007 IEEE 10th International Conference on Rehabilitation Robotics, pp. 401–407 (2007). 2007 IEEE 10th International Conference on Rehabilitation Robotics Dinovitzer et al. [2023a] Dinovitzer, H., Shushtari, M., Arami, A.: Feedforward control of lower limb exoskeletons: which torque profile should we use? IEEE Robotics and Automation Letters (2023) Dinovitzer et al. [2023b] Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Medina, J.R., Lorenz, T., Hirche, S.: Synthesizing anticipatory haptic assistance considering human behavior uncertainty. IEEE Transactions on Robotics 31, 180–190 (2015) Martinez et al. [2018] Martinez, A., Lawson, B., Durrough, C., Goldfarb, M.: A velocity-field-based controller for assisting leg movement during walking with a bilateral hip and knee lower limb exoskeleton. IEEE Transactions on Robotics 35, 307–316 (2018) Shushtari et al. [2021] Shushtari, M., Nasiri, R., Arami, A.: Online reference trajectory adaptation: A personalized control strategy for lower limb exoskeletons. IEEE Robotics and Automation Letters 7, 128–134 (2021) Asl et al. [2020] Asl, H.J., Yamashita, M., Narikiyo, T., Kawanishi, M.: Field-based assist-as-needed control schemes for rehabilitation robots. IEEE/ASME Transactions on Mechatronics 25, 2100–2111 (2020) Dominijanni et al. [2023] Dominijanni, G., Pinheiro, D.L., Pollina, L., Orset, B., Gini, M., Anselmino, E., Pierella, C., Olivier, J., Shokur, S., Micera, S.: Human motor augmentation with an extra robotic arm without functional interference. Science Robotics 8 (2023) Losey et al. [2018] Losey, D.P., Mcdonald, C.G., Battaglia, E., O’Malley, M.: A review of intent detection, arbitration, and communication aspects of shared control for physical human-robot interaction. Applied Mechanics Reviews 70 (2018) https://doi.org/10.1115/1.4039145 Jackson and Collins [2019] Jackson, R.W., Collins, S.H.: Heuristic-based ankle exoskeleton control for co-adaptive assistance of human locomotion. IEEE Transactions on Neural Systems and Rehabilitation Engineering 27, 2059–2069 (2019) Banala et al. [2007] Banala, S.K., Agrawal, S.K., Scholz, J.P.: Active leg exoskeleton (alex) for gait rehabilitation of motor-impaired patients. In: 2007 IEEE 10th International Conference on Rehabilitation Robotics, pp. 401–407 (2007). 2007 IEEE 10th International Conference on Rehabilitation Robotics Dinovitzer et al. [2023a] Dinovitzer, H., Shushtari, M., Arami, A.: Feedforward control of lower limb exoskeletons: which torque profile should we use? IEEE Robotics and Automation Letters (2023) Dinovitzer et al. [2023b] Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Martinez, A., Lawson, B., Durrough, C., Goldfarb, M.: A velocity-field-based controller for assisting leg movement during walking with a bilateral hip and knee lower limb exoskeleton. IEEE Transactions on Robotics 35, 307–316 (2018) Shushtari et al. [2021] Shushtari, M., Nasiri, R., Arami, A.: Online reference trajectory adaptation: A personalized control strategy for lower limb exoskeletons. IEEE Robotics and Automation Letters 7, 128–134 (2021) Asl et al. [2020] Asl, H.J., Yamashita, M., Narikiyo, T., Kawanishi, M.: Field-based assist-as-needed control schemes for rehabilitation robots. IEEE/ASME Transactions on Mechatronics 25, 2100–2111 (2020) Dominijanni et al. [2023] Dominijanni, G., Pinheiro, D.L., Pollina, L., Orset, B., Gini, M., Anselmino, E., Pierella, C., Olivier, J., Shokur, S., Micera, S.: Human motor augmentation with an extra robotic arm without functional interference. Science Robotics 8 (2023) Losey et al. [2018] Losey, D.P., Mcdonald, C.G., Battaglia, E., O’Malley, M.: A review of intent detection, arbitration, and communication aspects of shared control for physical human-robot interaction. Applied Mechanics Reviews 70 (2018) https://doi.org/10.1115/1.4039145 Jackson and Collins [2019] Jackson, R.W., Collins, S.H.: Heuristic-based ankle exoskeleton control for co-adaptive assistance of human locomotion. IEEE Transactions on Neural Systems and Rehabilitation Engineering 27, 2059–2069 (2019) Banala et al. [2007] Banala, S.K., Agrawal, S.K., Scholz, J.P.: Active leg exoskeleton (alex) for gait rehabilitation of motor-impaired patients. In: 2007 IEEE 10th International Conference on Rehabilitation Robotics, pp. 401–407 (2007). 2007 IEEE 10th International Conference on Rehabilitation Robotics Dinovitzer et al. [2023a] Dinovitzer, H., Shushtari, M., Arami, A.: Feedforward control of lower limb exoskeletons: which torque profile should we use? IEEE Robotics and Automation Letters (2023) Dinovitzer et al. [2023b] Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Shushtari, M., Nasiri, R., Arami, A.: Online reference trajectory adaptation: A personalized control strategy for lower limb exoskeletons. IEEE Robotics and Automation Letters 7, 128–134 (2021) Asl et al. [2020] Asl, H.J., Yamashita, M., Narikiyo, T., Kawanishi, M.: Field-based assist-as-needed control schemes for rehabilitation robots. IEEE/ASME Transactions on Mechatronics 25, 2100–2111 (2020) Dominijanni et al. [2023] Dominijanni, G., Pinheiro, D.L., Pollina, L., Orset, B., Gini, M., Anselmino, E., Pierella, C., Olivier, J., Shokur, S., Micera, S.: Human motor augmentation with an extra robotic arm without functional interference. Science Robotics 8 (2023) Losey et al. [2018] Losey, D.P., Mcdonald, C.G., Battaglia, E., O’Malley, M.: A review of intent detection, arbitration, and communication aspects of shared control for physical human-robot interaction. Applied Mechanics Reviews 70 (2018) https://doi.org/10.1115/1.4039145 Jackson and Collins [2019] Jackson, R.W., Collins, S.H.: Heuristic-based ankle exoskeleton control for co-adaptive assistance of human locomotion. IEEE Transactions on Neural Systems and Rehabilitation Engineering 27, 2059–2069 (2019) Banala et al. [2007] Banala, S.K., Agrawal, S.K., Scholz, J.P.: Active leg exoskeleton (alex) for gait rehabilitation of motor-impaired patients. In: 2007 IEEE 10th International Conference on Rehabilitation Robotics, pp. 401–407 (2007). 2007 IEEE 10th International Conference on Rehabilitation Robotics Dinovitzer et al. [2023a] Dinovitzer, H., Shushtari, M., Arami, A.: Feedforward control of lower limb exoskeletons: which torque profile should we use? IEEE Robotics and Automation Letters (2023) Dinovitzer et al. [2023b] Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Asl, H.J., Yamashita, M., Narikiyo, T., Kawanishi, M.: Field-based assist-as-needed control schemes for rehabilitation robots. IEEE/ASME Transactions on Mechatronics 25, 2100–2111 (2020) Dominijanni et al. [2023] Dominijanni, G., Pinheiro, D.L., Pollina, L., Orset, B., Gini, M., Anselmino, E., Pierella, C., Olivier, J., Shokur, S., Micera, S.: Human motor augmentation with an extra robotic arm without functional interference. Science Robotics 8 (2023) Losey et al. [2018] Losey, D.P., Mcdonald, C.G., Battaglia, E., O’Malley, M.: A review of intent detection, arbitration, and communication aspects of shared control for physical human-robot interaction. Applied Mechanics Reviews 70 (2018) https://doi.org/10.1115/1.4039145 Jackson and Collins [2019] Jackson, R.W., Collins, S.H.: Heuristic-based ankle exoskeleton control for co-adaptive assistance of human locomotion. IEEE Transactions on Neural Systems and Rehabilitation Engineering 27, 2059–2069 (2019) Banala et al. [2007] Banala, S.K., Agrawal, S.K., Scholz, J.P.: Active leg exoskeleton (alex) for gait rehabilitation of motor-impaired patients. In: 2007 IEEE 10th International Conference on Rehabilitation Robotics, pp. 401–407 (2007). 2007 IEEE 10th International Conference on Rehabilitation Robotics Dinovitzer et al. [2023a] Dinovitzer, H., Shushtari, M., Arami, A.: Feedforward control of lower limb exoskeletons: which torque profile should we use? IEEE Robotics and Automation Letters (2023) Dinovitzer et al. [2023b] Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Dominijanni, G., Pinheiro, D.L., Pollina, L., Orset, B., Gini, M., Anselmino, E., Pierella, C., Olivier, J., Shokur, S., Micera, S.: Human motor augmentation with an extra robotic arm without functional interference. Science Robotics 8 (2023) Losey et al. [2018] Losey, D.P., Mcdonald, C.G., Battaglia, E., O’Malley, M.: A review of intent detection, arbitration, and communication aspects of shared control for physical human-robot interaction. Applied Mechanics Reviews 70 (2018) https://doi.org/10.1115/1.4039145 Jackson and Collins [2019] Jackson, R.W., Collins, S.H.: Heuristic-based ankle exoskeleton control for co-adaptive assistance of human locomotion. IEEE Transactions on Neural Systems and Rehabilitation Engineering 27, 2059–2069 (2019) Banala et al. [2007] Banala, S.K., Agrawal, S.K., Scholz, J.P.: Active leg exoskeleton (alex) for gait rehabilitation of motor-impaired patients. In: 2007 IEEE 10th International Conference on Rehabilitation Robotics, pp. 401–407 (2007). 2007 IEEE 10th International Conference on Rehabilitation Robotics Dinovitzer et al. [2023a] Dinovitzer, H., Shushtari, M., Arami, A.: Feedforward control of lower limb exoskeletons: which torque profile should we use? IEEE Robotics and Automation Letters (2023) Dinovitzer et al. [2023b] Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Losey, D.P., Mcdonald, C.G., Battaglia, E., O’Malley, M.: A review of intent detection, arbitration, and communication aspects of shared control for physical human-robot interaction. Applied Mechanics Reviews 70 (2018) https://doi.org/10.1115/1.4039145 Jackson and Collins [2019] Jackson, R.W., Collins, S.H.: Heuristic-based ankle exoskeleton control for co-adaptive assistance of human locomotion. IEEE Transactions on Neural Systems and Rehabilitation Engineering 27, 2059–2069 (2019) Banala et al. [2007] Banala, S.K., Agrawal, S.K., Scholz, J.P.: Active leg exoskeleton (alex) for gait rehabilitation of motor-impaired patients. In: 2007 IEEE 10th International Conference on Rehabilitation Robotics, pp. 401–407 (2007). 2007 IEEE 10th International Conference on Rehabilitation Robotics Dinovitzer et al. [2023a] Dinovitzer, H., Shushtari, M., Arami, A.: Feedforward control of lower limb exoskeletons: which torque profile should we use? IEEE Robotics and Automation Letters (2023) Dinovitzer et al. [2023b] Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Jackson, R.W., Collins, S.H.: Heuristic-based ankle exoskeleton control for co-adaptive assistance of human locomotion. IEEE Transactions on Neural Systems and Rehabilitation Engineering 27, 2059–2069 (2019) Banala et al. [2007] Banala, S.K., Agrawal, S.K., Scholz, J.P.: Active leg exoskeleton (alex) for gait rehabilitation of motor-impaired patients. In: 2007 IEEE 10th International Conference on Rehabilitation Robotics, pp. 401–407 (2007). 2007 IEEE 10th International Conference on Rehabilitation Robotics Dinovitzer et al. [2023a] Dinovitzer, H., Shushtari, M., Arami, A.: Feedforward control of lower limb exoskeletons: which torque profile should we use? IEEE Robotics and Automation Letters (2023) Dinovitzer et al. [2023b] Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Banala, S.K., Agrawal, S.K., Scholz, J.P.: Active leg exoskeleton (alex) for gait rehabilitation of motor-impaired patients. In: 2007 IEEE 10th International Conference on Rehabilitation Robotics, pp. 401–407 (2007). 2007 IEEE 10th International Conference on Rehabilitation Robotics Dinovitzer et al. [2023a] Dinovitzer, H., Shushtari, M., Arami, A.: Feedforward control of lower limb exoskeletons: which torque profile should we use? IEEE Robotics and Automation Letters (2023) Dinovitzer et al. [2023b] Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Dinovitzer, H., Shushtari, M., Arami, A.: Feedforward control of lower limb exoskeletons: which torque profile should we use? IEEE Robotics and Automation Letters (2023) Dinovitzer et al. [2023b] Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017)
  5. Poggensee, K.L., Collins, S.H.: How adaptation, training, and customization contribute to benefits from exoskeleton assistance. Science Robotics 6 (2021) Nuckols et al. [2021] Nuckols, R.W., Lee, S., Swaminathan, K., Orzel, D., Howe, R.D., Walsh, C.J.: Individualization of exosuit assistance based on measured muscle dynamics during versatile walking. Science robotics 6 (2021) Lee et al. [2023] Lee, U.H., Shetty, V.S., Franks, P.W., Tan, J., Evangelopoulos, G., Ha, S., Rouse, E.J.: User preference optimization for control of ankle exoskeletons using sample efficient active learning. Science Robotics 8 (2023) Postol et al. [2020] Postol, N., Lamond, S., Galloway, M., Palazzi, K., Bivard, A., Spratt, N.J., Marquez, J.: The metabolic cost of exercising with a robotic exoskeleton: A comparison of healthy and neurologically impaired people. IEEE Transactions on Neural Systems and Rehabilitation Engineering 28, 3031–3039 (2020) Witte et al. [2020] Witte, K.A., Fiers, P., Sheets-Singer, A.L., Collins, S.H.: Improving the energy economy of human running with powered and unpowered ankle exoskeleton assistance. Science Robotics 5 (2020) Zhu et al. [2021] Zhu, F., Kern, M., Fowkes, E., Afzal, T., Contreras-Vidal, J.-L., Francisco, G.E., Chang, S.-H.: Effects of an exoskeleton-assisted gait training on post-stroke lower-limb muscle coordination. Journal of Neural Engineering 18, 046039 (2021) Küçüktabak et al. [2024] Küçüktabak, E.B., Wen, Y., Kim, S.J., Short, M., Ludvig, D., Hargrove, L., Perreault, E., Lynch, K., Pons, J.: Haptic transparency and interaction force control for a lower-limb exoskeleton. IEEE Transactions on Robotics (2024) Eva and Grizzle [2020] Eva, M.M., Grizzle, J.W.: Feedback control design for robust comfortable sit-to-stand motions of 3d lower-limb exoskeletons. IEEE Access 9, 122–161 (2020) Masengo et al. [2023] Masengo, G., Zhang, X., Dong, R., , A.B.A., Hamza, K., Mudaheranwa, E.: Lower limb exoskeleton robot and its cooperative control: A review, trends, and challenges for future research. Frontiers in Neurorobotics 16, 1–25 (2023) Ingraham et al. [2022] Ingraham, K.A., Remy, C.D., Rouse, E.J.: The role of user preference in the customized control of robotic exoskeletons. Science robotics 7 (2022) Pinto-Fernandez et al. [2020] Pinto-Fernandez, D., Diego, T., Carmen Sanchez-Villamanan, M., Aller, F., Mombaur, K., Conti, R., Vitiello, N., Moreno, J.C., Pons, J.L.: Performance evaluation of lower limb exoskeletons: A systematic review. IEEE Transactions on Neural Systems and Rehabilitation Engineering 28, 1573–1583 (2020) Slade et al. [2022] Slade, P., Kochenderfer, M.J., Delp, S.L., Collins, S.H.: Personalizing exoskeleton assistance while walking in the real world. Nature 610, 277–282 (2022) Medina et al. [2015] Medina, J.R., Lorenz, T., Hirche, S.: Synthesizing anticipatory haptic assistance considering human behavior uncertainty. IEEE Transactions on Robotics 31, 180–190 (2015) Martinez et al. [2018] Martinez, A., Lawson, B., Durrough, C., Goldfarb, M.: A velocity-field-based controller for assisting leg movement during walking with a bilateral hip and knee lower limb exoskeleton. IEEE Transactions on Robotics 35, 307–316 (2018) Shushtari et al. [2021] Shushtari, M., Nasiri, R., Arami, A.: Online reference trajectory adaptation: A personalized control strategy for lower limb exoskeletons. IEEE Robotics and Automation Letters 7, 128–134 (2021) Asl et al. [2020] Asl, H.J., Yamashita, M., Narikiyo, T., Kawanishi, M.: Field-based assist-as-needed control schemes for rehabilitation robots. IEEE/ASME Transactions on Mechatronics 25, 2100–2111 (2020) Dominijanni et al. [2023] Dominijanni, G., Pinheiro, D.L., Pollina, L., Orset, B., Gini, M., Anselmino, E., Pierella, C., Olivier, J., Shokur, S., Micera, S.: Human motor augmentation with an extra robotic arm without functional interference. Science Robotics 8 (2023) Losey et al. [2018] Losey, D.P., Mcdonald, C.G., Battaglia, E., O’Malley, M.: A review of intent detection, arbitration, and communication aspects of shared control for physical human-robot interaction. Applied Mechanics Reviews 70 (2018) https://doi.org/10.1115/1.4039145 Jackson and Collins [2019] Jackson, R.W., Collins, S.H.: Heuristic-based ankle exoskeleton control for co-adaptive assistance of human locomotion. IEEE Transactions on Neural Systems and Rehabilitation Engineering 27, 2059–2069 (2019) Banala et al. [2007] Banala, S.K., Agrawal, S.K., Scholz, J.P.: Active leg exoskeleton (alex) for gait rehabilitation of motor-impaired patients. In: 2007 IEEE 10th International Conference on Rehabilitation Robotics, pp. 401–407 (2007). 2007 IEEE 10th International Conference on Rehabilitation Robotics Dinovitzer et al. [2023a] Dinovitzer, H., Shushtari, M., Arami, A.: Feedforward control of lower limb exoskeletons: which torque profile should we use? IEEE Robotics and Automation Letters (2023) Dinovitzer et al. [2023b] Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Nuckols, R.W., Lee, S., Swaminathan, K., Orzel, D., Howe, R.D., Walsh, C.J.: Individualization of exosuit assistance based on measured muscle dynamics during versatile walking. Science robotics 6 (2021) Lee et al. [2023] Lee, U.H., Shetty, V.S., Franks, P.W., Tan, J., Evangelopoulos, G., Ha, S., Rouse, E.J.: User preference optimization for control of ankle exoskeletons using sample efficient active learning. Science Robotics 8 (2023) Postol et al. [2020] Postol, N., Lamond, S., Galloway, M., Palazzi, K., Bivard, A., Spratt, N.J., Marquez, J.: The metabolic cost of exercising with a robotic exoskeleton: A comparison of healthy and neurologically impaired people. IEEE Transactions on Neural Systems and Rehabilitation Engineering 28, 3031–3039 (2020) Witte et al. [2020] Witte, K.A., Fiers, P., Sheets-Singer, A.L., Collins, S.H.: Improving the energy economy of human running with powered and unpowered ankle exoskeleton assistance. Science Robotics 5 (2020) Zhu et al. [2021] Zhu, F., Kern, M., Fowkes, E., Afzal, T., Contreras-Vidal, J.-L., Francisco, G.E., Chang, S.-H.: Effects of an exoskeleton-assisted gait training on post-stroke lower-limb muscle coordination. Journal of Neural Engineering 18, 046039 (2021) Küçüktabak et al. [2024] Küçüktabak, E.B., Wen, Y., Kim, S.J., Short, M., Ludvig, D., Hargrove, L., Perreault, E., Lynch, K., Pons, J.: Haptic transparency and interaction force control for a lower-limb exoskeleton. IEEE Transactions on Robotics (2024) Eva and Grizzle [2020] Eva, M.M., Grizzle, J.W.: Feedback control design for robust comfortable sit-to-stand motions of 3d lower-limb exoskeletons. IEEE Access 9, 122–161 (2020) Masengo et al. [2023] Masengo, G., Zhang, X., Dong, R., , A.B.A., Hamza, K., Mudaheranwa, E.: Lower limb exoskeleton robot and its cooperative control: A review, trends, and challenges for future research. Frontiers in Neurorobotics 16, 1–25 (2023) Ingraham et al. [2022] Ingraham, K.A., Remy, C.D., Rouse, E.J.: The role of user preference in the customized control of robotic exoskeletons. Science robotics 7 (2022) Pinto-Fernandez et al. [2020] Pinto-Fernandez, D., Diego, T., Carmen Sanchez-Villamanan, M., Aller, F., Mombaur, K., Conti, R., Vitiello, N., Moreno, J.C., Pons, J.L.: Performance evaluation of lower limb exoskeletons: A systematic review. IEEE Transactions on Neural Systems and Rehabilitation Engineering 28, 1573–1583 (2020) Slade et al. [2022] Slade, P., Kochenderfer, M.J., Delp, S.L., Collins, S.H.: Personalizing exoskeleton assistance while walking in the real world. Nature 610, 277–282 (2022) Medina et al. [2015] Medina, J.R., Lorenz, T., Hirche, S.: Synthesizing anticipatory haptic assistance considering human behavior uncertainty. IEEE Transactions on Robotics 31, 180–190 (2015) Martinez et al. [2018] Martinez, A., Lawson, B., Durrough, C., Goldfarb, M.: A velocity-field-based controller for assisting leg movement during walking with a bilateral hip and knee lower limb exoskeleton. IEEE Transactions on Robotics 35, 307–316 (2018) Shushtari et al. [2021] Shushtari, M., Nasiri, R., Arami, A.: Online reference trajectory adaptation: A personalized control strategy for lower limb exoskeletons. IEEE Robotics and Automation Letters 7, 128–134 (2021) Asl et al. [2020] Asl, H.J., Yamashita, M., Narikiyo, T., Kawanishi, M.: Field-based assist-as-needed control schemes for rehabilitation robots. IEEE/ASME Transactions on Mechatronics 25, 2100–2111 (2020) Dominijanni et al. [2023] Dominijanni, G., Pinheiro, D.L., Pollina, L., Orset, B., Gini, M., Anselmino, E., Pierella, C., Olivier, J., Shokur, S., Micera, S.: Human motor augmentation with an extra robotic arm without functional interference. Science Robotics 8 (2023) Losey et al. [2018] Losey, D.P., Mcdonald, C.G., Battaglia, E., O’Malley, M.: A review of intent detection, arbitration, and communication aspects of shared control for physical human-robot interaction. Applied Mechanics Reviews 70 (2018) https://doi.org/10.1115/1.4039145 Jackson and Collins [2019] Jackson, R.W., Collins, S.H.: Heuristic-based ankle exoskeleton control for co-adaptive assistance of human locomotion. IEEE Transactions on Neural Systems and Rehabilitation Engineering 27, 2059–2069 (2019) Banala et al. [2007] Banala, S.K., Agrawal, S.K., Scholz, J.P.: Active leg exoskeleton (alex) for gait rehabilitation of motor-impaired patients. In: 2007 IEEE 10th International Conference on Rehabilitation Robotics, pp. 401–407 (2007). 2007 IEEE 10th International Conference on Rehabilitation Robotics Dinovitzer et al. [2023a] Dinovitzer, H., Shushtari, M., Arami, A.: Feedforward control of lower limb exoskeletons: which torque profile should we use? IEEE Robotics and Automation Letters (2023) Dinovitzer et al. [2023b] Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Lee, U.H., Shetty, V.S., Franks, P.W., Tan, J., Evangelopoulos, G., Ha, S., Rouse, E.J.: User preference optimization for control of ankle exoskeletons using sample efficient active learning. Science Robotics 8 (2023) Postol et al. [2020] Postol, N., Lamond, S., Galloway, M., Palazzi, K., Bivard, A., Spratt, N.J., Marquez, J.: The metabolic cost of exercising with a robotic exoskeleton: A comparison of healthy and neurologically impaired people. IEEE Transactions on Neural Systems and Rehabilitation Engineering 28, 3031–3039 (2020) Witte et al. [2020] Witte, K.A., Fiers, P., Sheets-Singer, A.L., Collins, S.H.: Improving the energy economy of human running with powered and unpowered ankle exoskeleton assistance. Science Robotics 5 (2020) Zhu et al. [2021] Zhu, F., Kern, M., Fowkes, E., Afzal, T., Contreras-Vidal, J.-L., Francisco, G.E., Chang, S.-H.: Effects of an exoskeleton-assisted gait training on post-stroke lower-limb muscle coordination. Journal of Neural Engineering 18, 046039 (2021) Küçüktabak et al. [2024] Küçüktabak, E.B., Wen, Y., Kim, S.J., Short, M., Ludvig, D., Hargrove, L., Perreault, E., Lynch, K., Pons, J.: Haptic transparency and interaction force control for a lower-limb exoskeleton. IEEE Transactions on Robotics (2024) Eva and Grizzle [2020] Eva, M.M., Grizzle, J.W.: Feedback control design for robust comfortable sit-to-stand motions of 3d lower-limb exoskeletons. IEEE Access 9, 122–161 (2020) Masengo et al. [2023] Masengo, G., Zhang, X., Dong, R., , A.B.A., Hamza, K., Mudaheranwa, E.: Lower limb exoskeleton robot and its cooperative control: A review, trends, and challenges for future research. Frontiers in Neurorobotics 16, 1–25 (2023) Ingraham et al. [2022] Ingraham, K.A., Remy, C.D., Rouse, E.J.: The role of user preference in the customized control of robotic exoskeletons. Science robotics 7 (2022) Pinto-Fernandez et al. [2020] Pinto-Fernandez, D., Diego, T., Carmen Sanchez-Villamanan, M., Aller, F., Mombaur, K., Conti, R., Vitiello, N., Moreno, J.C., Pons, J.L.: Performance evaluation of lower limb exoskeletons: A systematic review. IEEE Transactions on Neural Systems and Rehabilitation Engineering 28, 1573–1583 (2020) Slade et al. [2022] Slade, P., Kochenderfer, M.J., Delp, S.L., Collins, S.H.: Personalizing exoskeleton assistance while walking in the real world. Nature 610, 277–282 (2022) Medina et al. [2015] Medina, J.R., Lorenz, T., Hirche, S.: Synthesizing anticipatory haptic assistance considering human behavior uncertainty. IEEE Transactions on Robotics 31, 180–190 (2015) Martinez et al. [2018] Martinez, A., Lawson, B., Durrough, C., Goldfarb, M.: A velocity-field-based controller for assisting leg movement during walking with a bilateral hip and knee lower limb exoskeleton. IEEE Transactions on Robotics 35, 307–316 (2018) Shushtari et al. [2021] Shushtari, M., Nasiri, R., Arami, A.: Online reference trajectory adaptation: A personalized control strategy for lower limb exoskeletons. IEEE Robotics and Automation Letters 7, 128–134 (2021) Asl et al. [2020] Asl, H.J., Yamashita, M., Narikiyo, T., Kawanishi, M.: Field-based assist-as-needed control schemes for rehabilitation robots. IEEE/ASME Transactions on Mechatronics 25, 2100–2111 (2020) Dominijanni et al. [2023] Dominijanni, G., Pinheiro, D.L., Pollina, L., Orset, B., Gini, M., Anselmino, E., Pierella, C., Olivier, J., Shokur, S., Micera, S.: Human motor augmentation with an extra robotic arm without functional interference. Science Robotics 8 (2023) Losey et al. [2018] Losey, D.P., Mcdonald, C.G., Battaglia, E., O’Malley, M.: A review of intent detection, arbitration, and communication aspects of shared control for physical human-robot interaction. Applied Mechanics Reviews 70 (2018) https://doi.org/10.1115/1.4039145 Jackson and Collins [2019] Jackson, R.W., Collins, S.H.: Heuristic-based ankle exoskeleton control for co-adaptive assistance of human locomotion. IEEE Transactions on Neural Systems and Rehabilitation Engineering 27, 2059–2069 (2019) Banala et al. [2007] Banala, S.K., Agrawal, S.K., Scholz, J.P.: Active leg exoskeleton (alex) for gait rehabilitation of motor-impaired patients. In: 2007 IEEE 10th International Conference on Rehabilitation Robotics, pp. 401–407 (2007). 2007 IEEE 10th International Conference on Rehabilitation Robotics Dinovitzer et al. [2023a] Dinovitzer, H., Shushtari, M., Arami, A.: Feedforward control of lower limb exoskeletons: which torque profile should we use? IEEE Robotics and Automation Letters (2023) Dinovitzer et al. [2023b] Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Postol, N., Lamond, S., Galloway, M., Palazzi, K., Bivard, A., Spratt, N.J., Marquez, J.: The metabolic cost of exercising with a robotic exoskeleton: A comparison of healthy and neurologically impaired people. IEEE Transactions on Neural Systems and Rehabilitation Engineering 28, 3031–3039 (2020) Witte et al. [2020] Witte, K.A., Fiers, P., Sheets-Singer, A.L., Collins, S.H.: Improving the energy economy of human running with powered and unpowered ankle exoskeleton assistance. Science Robotics 5 (2020) Zhu et al. [2021] Zhu, F., Kern, M., Fowkes, E., Afzal, T., Contreras-Vidal, J.-L., Francisco, G.E., Chang, S.-H.: Effects of an exoskeleton-assisted gait training on post-stroke lower-limb muscle coordination. Journal of Neural Engineering 18, 046039 (2021) Küçüktabak et al. [2024] Küçüktabak, E.B., Wen, Y., Kim, S.J., Short, M., Ludvig, D., Hargrove, L., Perreault, E., Lynch, K., Pons, J.: Haptic transparency and interaction force control for a lower-limb exoskeleton. IEEE Transactions on Robotics (2024) Eva and Grizzle [2020] Eva, M.M., Grizzle, J.W.: Feedback control design for robust comfortable sit-to-stand motions of 3d lower-limb exoskeletons. IEEE Access 9, 122–161 (2020) Masengo et al. [2023] Masengo, G., Zhang, X., Dong, R., , A.B.A., Hamza, K., Mudaheranwa, E.: Lower limb exoskeleton robot and its cooperative control: A review, trends, and challenges for future research. Frontiers in Neurorobotics 16, 1–25 (2023) Ingraham et al. [2022] Ingraham, K.A., Remy, C.D., Rouse, E.J.: The role of user preference in the customized control of robotic exoskeletons. Science robotics 7 (2022) Pinto-Fernandez et al. [2020] Pinto-Fernandez, D., Diego, T., Carmen Sanchez-Villamanan, M., Aller, F., Mombaur, K., Conti, R., Vitiello, N., Moreno, J.C., Pons, J.L.: Performance evaluation of lower limb exoskeletons: A systematic review. IEEE Transactions on Neural Systems and Rehabilitation Engineering 28, 1573–1583 (2020) Slade et al. [2022] Slade, P., Kochenderfer, M.J., Delp, S.L., Collins, S.H.: Personalizing exoskeleton assistance while walking in the real world. Nature 610, 277–282 (2022) Medina et al. [2015] Medina, J.R., Lorenz, T., Hirche, S.: Synthesizing anticipatory haptic assistance considering human behavior uncertainty. IEEE Transactions on Robotics 31, 180–190 (2015) Martinez et al. [2018] Martinez, A., Lawson, B., Durrough, C., Goldfarb, M.: A velocity-field-based controller for assisting leg movement during walking with a bilateral hip and knee lower limb exoskeleton. IEEE Transactions on Robotics 35, 307–316 (2018) Shushtari et al. [2021] Shushtari, M., Nasiri, R., Arami, A.: Online reference trajectory adaptation: A personalized control strategy for lower limb exoskeletons. IEEE Robotics and Automation Letters 7, 128–134 (2021) Asl et al. [2020] Asl, H.J., Yamashita, M., Narikiyo, T., Kawanishi, M.: Field-based assist-as-needed control schemes for rehabilitation robots. IEEE/ASME Transactions on Mechatronics 25, 2100–2111 (2020) Dominijanni et al. [2023] Dominijanni, G., Pinheiro, D.L., Pollina, L., Orset, B., Gini, M., Anselmino, E., Pierella, C., Olivier, J., Shokur, S., Micera, S.: Human motor augmentation with an extra robotic arm without functional interference. Science Robotics 8 (2023) Losey et al. [2018] Losey, D.P., Mcdonald, C.G., Battaglia, E., O’Malley, M.: A review of intent detection, arbitration, and communication aspects of shared control for physical human-robot interaction. Applied Mechanics Reviews 70 (2018) https://doi.org/10.1115/1.4039145 Jackson and Collins [2019] Jackson, R.W., Collins, S.H.: Heuristic-based ankle exoskeleton control for co-adaptive assistance of human locomotion. IEEE Transactions on Neural Systems and Rehabilitation Engineering 27, 2059–2069 (2019) Banala et al. [2007] Banala, S.K., Agrawal, S.K., Scholz, J.P.: Active leg exoskeleton (alex) for gait rehabilitation of motor-impaired patients. In: 2007 IEEE 10th International Conference on Rehabilitation Robotics, pp. 401–407 (2007). 2007 IEEE 10th International Conference on Rehabilitation Robotics Dinovitzer et al. [2023a] Dinovitzer, H., Shushtari, M., Arami, A.: Feedforward control of lower limb exoskeletons: which torque profile should we use? IEEE Robotics and Automation Letters (2023) Dinovitzer et al. [2023b] Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Witte, K.A., Fiers, P., Sheets-Singer, A.L., Collins, S.H.: Improving the energy economy of human running with powered and unpowered ankle exoskeleton assistance. Science Robotics 5 (2020) Zhu et al. [2021] Zhu, F., Kern, M., Fowkes, E., Afzal, T., Contreras-Vidal, J.-L., Francisco, G.E., Chang, S.-H.: Effects of an exoskeleton-assisted gait training on post-stroke lower-limb muscle coordination. Journal of Neural Engineering 18, 046039 (2021) Küçüktabak et al. [2024] Küçüktabak, E.B., Wen, Y., Kim, S.J., Short, M., Ludvig, D., Hargrove, L., Perreault, E., Lynch, K., Pons, J.: Haptic transparency and interaction force control for a lower-limb exoskeleton. IEEE Transactions on Robotics (2024) Eva and Grizzle [2020] Eva, M.M., Grizzle, J.W.: Feedback control design for robust comfortable sit-to-stand motions of 3d lower-limb exoskeletons. IEEE Access 9, 122–161 (2020) Masengo et al. [2023] Masengo, G., Zhang, X., Dong, R., , A.B.A., Hamza, K., Mudaheranwa, E.: Lower limb exoskeleton robot and its cooperative control: A review, trends, and challenges for future research. Frontiers in Neurorobotics 16, 1–25 (2023) Ingraham et al. [2022] Ingraham, K.A., Remy, C.D., Rouse, E.J.: The role of user preference in the customized control of robotic exoskeletons. Science robotics 7 (2022) Pinto-Fernandez et al. [2020] Pinto-Fernandez, D., Diego, T., Carmen Sanchez-Villamanan, M., Aller, F., Mombaur, K., Conti, R., Vitiello, N., Moreno, J.C., Pons, J.L.: Performance evaluation of lower limb exoskeletons: A systematic review. IEEE Transactions on Neural Systems and Rehabilitation Engineering 28, 1573–1583 (2020) Slade et al. [2022] Slade, P., Kochenderfer, M.J., Delp, S.L., Collins, S.H.: Personalizing exoskeleton assistance while walking in the real world. Nature 610, 277–282 (2022) Medina et al. [2015] Medina, J.R., Lorenz, T., Hirche, S.: Synthesizing anticipatory haptic assistance considering human behavior uncertainty. IEEE Transactions on Robotics 31, 180–190 (2015) Martinez et al. [2018] Martinez, A., Lawson, B., Durrough, C., Goldfarb, M.: A velocity-field-based controller for assisting leg movement during walking with a bilateral hip and knee lower limb exoskeleton. IEEE Transactions on Robotics 35, 307–316 (2018) Shushtari et al. [2021] Shushtari, M., Nasiri, R., Arami, A.: Online reference trajectory adaptation: A personalized control strategy for lower limb exoskeletons. IEEE Robotics and Automation Letters 7, 128–134 (2021) Asl et al. [2020] Asl, H.J., Yamashita, M., Narikiyo, T., Kawanishi, M.: Field-based assist-as-needed control schemes for rehabilitation robots. IEEE/ASME Transactions on Mechatronics 25, 2100–2111 (2020) Dominijanni et al. [2023] Dominijanni, G., Pinheiro, D.L., Pollina, L., Orset, B., Gini, M., Anselmino, E., Pierella, C., Olivier, J., Shokur, S., Micera, S.: Human motor augmentation with an extra robotic arm without functional interference. Science Robotics 8 (2023) Losey et al. [2018] Losey, D.P., Mcdonald, C.G., Battaglia, E., O’Malley, M.: A review of intent detection, arbitration, and communication aspects of shared control for physical human-robot interaction. Applied Mechanics Reviews 70 (2018) https://doi.org/10.1115/1.4039145 Jackson and Collins [2019] Jackson, R.W., Collins, S.H.: Heuristic-based ankle exoskeleton control for co-adaptive assistance of human locomotion. IEEE Transactions on Neural Systems and Rehabilitation Engineering 27, 2059–2069 (2019) Banala et al. [2007] Banala, S.K., Agrawal, S.K., Scholz, J.P.: Active leg exoskeleton (alex) for gait rehabilitation of motor-impaired patients. In: 2007 IEEE 10th International Conference on Rehabilitation Robotics, pp. 401–407 (2007). 2007 IEEE 10th International Conference on Rehabilitation Robotics Dinovitzer et al. [2023a] Dinovitzer, H., Shushtari, M., Arami, A.: Feedforward control of lower limb exoskeletons: which torque profile should we use? IEEE Robotics and Automation Letters (2023) Dinovitzer et al. [2023b] Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Zhu, F., Kern, M., Fowkes, E., Afzal, T., Contreras-Vidal, J.-L., Francisco, G.E., Chang, S.-H.: Effects of an exoskeleton-assisted gait training on post-stroke lower-limb muscle coordination. Journal of Neural Engineering 18, 046039 (2021) Küçüktabak et al. [2024] Küçüktabak, E.B., Wen, Y., Kim, S.J., Short, M., Ludvig, D., Hargrove, L., Perreault, E., Lynch, K., Pons, J.: Haptic transparency and interaction force control for a lower-limb exoskeleton. IEEE Transactions on Robotics (2024) Eva and Grizzle [2020] Eva, M.M., Grizzle, J.W.: Feedback control design for robust comfortable sit-to-stand motions of 3d lower-limb exoskeletons. IEEE Access 9, 122–161 (2020) Masengo et al. [2023] Masengo, G., Zhang, X., Dong, R., , A.B.A., Hamza, K., Mudaheranwa, E.: Lower limb exoskeleton robot and its cooperative control: A review, trends, and challenges for future research. Frontiers in Neurorobotics 16, 1–25 (2023) Ingraham et al. [2022] Ingraham, K.A., Remy, C.D., Rouse, E.J.: The role of user preference in the customized control of robotic exoskeletons. Science robotics 7 (2022) Pinto-Fernandez et al. [2020] Pinto-Fernandez, D., Diego, T., Carmen Sanchez-Villamanan, M., Aller, F., Mombaur, K., Conti, R., Vitiello, N., Moreno, J.C., Pons, J.L.: Performance evaluation of lower limb exoskeletons: A systematic review. IEEE Transactions on Neural Systems and Rehabilitation Engineering 28, 1573–1583 (2020) Slade et al. [2022] Slade, P., Kochenderfer, M.J., Delp, S.L., Collins, S.H.: Personalizing exoskeleton assistance while walking in the real world. Nature 610, 277–282 (2022) Medina et al. [2015] Medina, J.R., Lorenz, T., Hirche, S.: Synthesizing anticipatory haptic assistance considering human behavior uncertainty. IEEE Transactions on Robotics 31, 180–190 (2015) Martinez et al. [2018] Martinez, A., Lawson, B., Durrough, C., Goldfarb, M.: A velocity-field-based controller for assisting leg movement during walking with a bilateral hip and knee lower limb exoskeleton. IEEE Transactions on Robotics 35, 307–316 (2018) Shushtari et al. [2021] Shushtari, M., Nasiri, R., Arami, A.: Online reference trajectory adaptation: A personalized control strategy for lower limb exoskeletons. IEEE Robotics and Automation Letters 7, 128–134 (2021) Asl et al. [2020] Asl, H.J., Yamashita, M., Narikiyo, T., Kawanishi, M.: Field-based assist-as-needed control schemes for rehabilitation robots. IEEE/ASME Transactions on Mechatronics 25, 2100–2111 (2020) Dominijanni et al. [2023] Dominijanni, G., Pinheiro, D.L., Pollina, L., Orset, B., Gini, M., Anselmino, E., Pierella, C., Olivier, J., Shokur, S., Micera, S.: Human motor augmentation with an extra robotic arm without functional interference. Science Robotics 8 (2023) Losey et al. [2018] Losey, D.P., Mcdonald, C.G., Battaglia, E., O’Malley, M.: A review of intent detection, arbitration, and communication aspects of shared control for physical human-robot interaction. Applied Mechanics Reviews 70 (2018) https://doi.org/10.1115/1.4039145 Jackson and Collins [2019] Jackson, R.W., Collins, S.H.: Heuristic-based ankle exoskeleton control for co-adaptive assistance of human locomotion. IEEE Transactions on Neural Systems and Rehabilitation Engineering 27, 2059–2069 (2019) Banala et al. [2007] Banala, S.K., Agrawal, S.K., Scholz, J.P.: Active leg exoskeleton (alex) for gait rehabilitation of motor-impaired patients. In: 2007 IEEE 10th International Conference on Rehabilitation Robotics, pp. 401–407 (2007). 2007 IEEE 10th International Conference on Rehabilitation Robotics Dinovitzer et al. [2023a] Dinovitzer, H., Shushtari, M., Arami, A.: Feedforward control of lower limb exoskeletons: which torque profile should we use? IEEE Robotics and Automation Letters (2023) Dinovitzer et al. [2023b] Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Küçüktabak, E.B., Wen, Y., Kim, S.J., Short, M., Ludvig, D., Hargrove, L., Perreault, E., Lynch, K., Pons, J.: Haptic transparency and interaction force control for a lower-limb exoskeleton. IEEE Transactions on Robotics (2024) Eva and Grizzle [2020] Eva, M.M., Grizzle, J.W.: Feedback control design for robust comfortable sit-to-stand motions of 3d lower-limb exoskeletons. IEEE Access 9, 122–161 (2020) Masengo et al. [2023] Masengo, G., Zhang, X., Dong, R., , A.B.A., Hamza, K., Mudaheranwa, E.: Lower limb exoskeleton robot and its cooperative control: A review, trends, and challenges for future research. Frontiers in Neurorobotics 16, 1–25 (2023) Ingraham et al. [2022] Ingraham, K.A., Remy, C.D., Rouse, E.J.: The role of user preference in the customized control of robotic exoskeletons. Science robotics 7 (2022) Pinto-Fernandez et al. [2020] Pinto-Fernandez, D., Diego, T., Carmen Sanchez-Villamanan, M., Aller, F., Mombaur, K., Conti, R., Vitiello, N., Moreno, J.C., Pons, J.L.: Performance evaluation of lower limb exoskeletons: A systematic review. IEEE Transactions on Neural Systems and Rehabilitation Engineering 28, 1573–1583 (2020) Slade et al. [2022] Slade, P., Kochenderfer, M.J., Delp, S.L., Collins, S.H.: Personalizing exoskeleton assistance while walking in the real world. Nature 610, 277–282 (2022) Medina et al. [2015] Medina, J.R., Lorenz, T., Hirche, S.: Synthesizing anticipatory haptic assistance considering human behavior uncertainty. IEEE Transactions on Robotics 31, 180–190 (2015) Martinez et al. [2018] Martinez, A., Lawson, B., Durrough, C., Goldfarb, M.: A velocity-field-based controller for assisting leg movement during walking with a bilateral hip and knee lower limb exoskeleton. IEEE Transactions on Robotics 35, 307–316 (2018) Shushtari et al. [2021] Shushtari, M., Nasiri, R., Arami, A.: Online reference trajectory adaptation: A personalized control strategy for lower limb exoskeletons. IEEE Robotics and Automation Letters 7, 128–134 (2021) Asl et al. [2020] Asl, H.J., Yamashita, M., Narikiyo, T., Kawanishi, M.: Field-based assist-as-needed control schemes for rehabilitation robots. IEEE/ASME Transactions on Mechatronics 25, 2100–2111 (2020) Dominijanni et al. [2023] Dominijanni, G., Pinheiro, D.L., Pollina, L., Orset, B., Gini, M., Anselmino, E., Pierella, C., Olivier, J., Shokur, S., Micera, S.: Human motor augmentation with an extra robotic arm without functional interference. Science Robotics 8 (2023) Losey et al. [2018] Losey, D.P., Mcdonald, C.G., Battaglia, E., O’Malley, M.: A review of intent detection, arbitration, and communication aspects of shared control for physical human-robot interaction. Applied Mechanics Reviews 70 (2018) https://doi.org/10.1115/1.4039145 Jackson and Collins [2019] Jackson, R.W., Collins, S.H.: Heuristic-based ankle exoskeleton control for co-adaptive assistance of human locomotion. IEEE Transactions on Neural Systems and Rehabilitation Engineering 27, 2059–2069 (2019) Banala et al. [2007] Banala, S.K., Agrawal, S.K., Scholz, J.P.: Active leg exoskeleton (alex) for gait rehabilitation of motor-impaired patients. In: 2007 IEEE 10th International Conference on Rehabilitation Robotics, pp. 401–407 (2007). 2007 IEEE 10th International Conference on Rehabilitation Robotics Dinovitzer et al. [2023a] Dinovitzer, H., Shushtari, M., Arami, A.: Feedforward control of lower limb exoskeletons: which torque profile should we use? IEEE Robotics and Automation Letters (2023) Dinovitzer et al. [2023b] Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Eva, M.M., Grizzle, J.W.: Feedback control design for robust comfortable sit-to-stand motions of 3d lower-limb exoskeletons. IEEE Access 9, 122–161 (2020) Masengo et al. [2023] Masengo, G., Zhang, X., Dong, R., , A.B.A., Hamza, K., Mudaheranwa, E.: Lower limb exoskeleton robot and its cooperative control: A review, trends, and challenges for future research. Frontiers in Neurorobotics 16, 1–25 (2023) Ingraham et al. [2022] Ingraham, K.A., Remy, C.D., Rouse, E.J.: The role of user preference in the customized control of robotic exoskeletons. Science robotics 7 (2022) Pinto-Fernandez et al. [2020] Pinto-Fernandez, D., Diego, T., Carmen Sanchez-Villamanan, M., Aller, F., Mombaur, K., Conti, R., Vitiello, N., Moreno, J.C., Pons, J.L.: Performance evaluation of lower limb exoskeletons: A systematic review. IEEE Transactions on Neural Systems and Rehabilitation Engineering 28, 1573–1583 (2020) Slade et al. [2022] Slade, P., Kochenderfer, M.J., Delp, S.L., Collins, S.H.: Personalizing exoskeleton assistance while walking in the real world. Nature 610, 277–282 (2022) Medina et al. [2015] Medina, J.R., Lorenz, T., Hirche, S.: Synthesizing anticipatory haptic assistance considering human behavior uncertainty. IEEE Transactions on Robotics 31, 180–190 (2015) Martinez et al. [2018] Martinez, A., Lawson, B., Durrough, C., Goldfarb, M.: A velocity-field-based controller for assisting leg movement during walking with a bilateral hip and knee lower limb exoskeleton. IEEE Transactions on Robotics 35, 307–316 (2018) Shushtari et al. [2021] Shushtari, M., Nasiri, R., Arami, A.: Online reference trajectory adaptation: A personalized control strategy for lower limb exoskeletons. IEEE Robotics and Automation Letters 7, 128–134 (2021) Asl et al. [2020] Asl, H.J., Yamashita, M., Narikiyo, T., Kawanishi, M.: Field-based assist-as-needed control schemes for rehabilitation robots. IEEE/ASME Transactions on Mechatronics 25, 2100–2111 (2020) Dominijanni et al. [2023] Dominijanni, G., Pinheiro, D.L., Pollina, L., Orset, B., Gini, M., Anselmino, E., Pierella, C., Olivier, J., Shokur, S., Micera, S.: Human motor augmentation with an extra robotic arm without functional interference. Science Robotics 8 (2023) Losey et al. [2018] Losey, D.P., Mcdonald, C.G., Battaglia, E., O’Malley, M.: A review of intent detection, arbitration, and communication aspects of shared control for physical human-robot interaction. Applied Mechanics Reviews 70 (2018) https://doi.org/10.1115/1.4039145 Jackson and Collins [2019] Jackson, R.W., Collins, S.H.: Heuristic-based ankle exoskeleton control for co-adaptive assistance of human locomotion. IEEE Transactions on Neural Systems and Rehabilitation Engineering 27, 2059–2069 (2019) Banala et al. [2007] Banala, S.K., Agrawal, S.K., Scholz, J.P.: Active leg exoskeleton (alex) for gait rehabilitation of motor-impaired patients. In: 2007 IEEE 10th International Conference on Rehabilitation Robotics, pp. 401–407 (2007). 2007 IEEE 10th International Conference on Rehabilitation Robotics Dinovitzer et al. [2023a] Dinovitzer, H., Shushtari, M., Arami, A.: Feedforward control of lower limb exoskeletons: which torque profile should we use? IEEE Robotics and Automation Letters (2023) Dinovitzer et al. [2023b] Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Masengo, G., Zhang, X., Dong, R., , A.B.A., Hamza, K., Mudaheranwa, E.: Lower limb exoskeleton robot and its cooperative control: A review, trends, and challenges for future research. Frontiers in Neurorobotics 16, 1–25 (2023) Ingraham et al. [2022] Ingraham, K.A., Remy, C.D., Rouse, E.J.: The role of user preference in the customized control of robotic exoskeletons. Science robotics 7 (2022) Pinto-Fernandez et al. [2020] Pinto-Fernandez, D., Diego, T., Carmen Sanchez-Villamanan, M., Aller, F., Mombaur, K., Conti, R., Vitiello, N., Moreno, J.C., Pons, J.L.: Performance evaluation of lower limb exoskeletons: A systematic review. IEEE Transactions on Neural Systems and Rehabilitation Engineering 28, 1573–1583 (2020) Slade et al. [2022] Slade, P., Kochenderfer, M.J., Delp, S.L., Collins, S.H.: Personalizing exoskeleton assistance while walking in the real world. Nature 610, 277–282 (2022) Medina et al. [2015] Medina, J.R., Lorenz, T., Hirche, S.: Synthesizing anticipatory haptic assistance considering human behavior uncertainty. IEEE Transactions on Robotics 31, 180–190 (2015) Martinez et al. [2018] Martinez, A., Lawson, B., Durrough, C., Goldfarb, M.: A velocity-field-based controller for assisting leg movement during walking with a bilateral hip and knee lower limb exoskeleton. IEEE Transactions on Robotics 35, 307–316 (2018) Shushtari et al. [2021] Shushtari, M., Nasiri, R., Arami, A.: Online reference trajectory adaptation: A personalized control strategy for lower limb exoskeletons. IEEE Robotics and Automation Letters 7, 128–134 (2021) Asl et al. [2020] Asl, H.J., Yamashita, M., Narikiyo, T., Kawanishi, M.: Field-based assist-as-needed control schemes for rehabilitation robots. IEEE/ASME Transactions on Mechatronics 25, 2100–2111 (2020) Dominijanni et al. [2023] Dominijanni, G., Pinheiro, D.L., Pollina, L., Orset, B., Gini, M., Anselmino, E., Pierella, C., Olivier, J., Shokur, S., Micera, S.: Human motor augmentation with an extra robotic arm without functional interference. Science Robotics 8 (2023) Losey et al. [2018] Losey, D.P., Mcdonald, C.G., Battaglia, E., O’Malley, M.: A review of intent detection, arbitration, and communication aspects of shared control for physical human-robot interaction. Applied Mechanics Reviews 70 (2018) https://doi.org/10.1115/1.4039145 Jackson and Collins [2019] Jackson, R.W., Collins, S.H.: Heuristic-based ankle exoskeleton control for co-adaptive assistance of human locomotion. IEEE Transactions on Neural Systems and Rehabilitation Engineering 27, 2059–2069 (2019) Banala et al. [2007] Banala, S.K., Agrawal, S.K., Scholz, J.P.: Active leg exoskeleton (alex) for gait rehabilitation of motor-impaired patients. In: 2007 IEEE 10th International Conference on Rehabilitation Robotics, pp. 401–407 (2007). 2007 IEEE 10th International Conference on Rehabilitation Robotics Dinovitzer et al. [2023a] Dinovitzer, H., Shushtari, M., Arami, A.: Feedforward control of lower limb exoskeletons: which torque profile should we use? IEEE Robotics and Automation Letters (2023) Dinovitzer et al. [2023b] Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Ingraham, K.A., Remy, C.D., Rouse, E.J.: The role of user preference in the customized control of robotic exoskeletons. Science robotics 7 (2022) Pinto-Fernandez et al. [2020] Pinto-Fernandez, D., Diego, T., Carmen Sanchez-Villamanan, M., Aller, F., Mombaur, K., Conti, R., Vitiello, N., Moreno, J.C., Pons, J.L.: Performance evaluation of lower limb exoskeletons: A systematic review. IEEE Transactions on Neural Systems and Rehabilitation Engineering 28, 1573–1583 (2020) Slade et al. [2022] Slade, P., Kochenderfer, M.J., Delp, S.L., Collins, S.H.: Personalizing exoskeleton assistance while walking in the real world. Nature 610, 277–282 (2022) Medina et al. [2015] Medina, J.R., Lorenz, T., Hirche, S.: Synthesizing anticipatory haptic assistance considering human behavior uncertainty. IEEE Transactions on Robotics 31, 180–190 (2015) Martinez et al. [2018] Martinez, A., Lawson, B., Durrough, C., Goldfarb, M.: A velocity-field-based controller for assisting leg movement during walking with a bilateral hip and knee lower limb exoskeleton. IEEE Transactions on Robotics 35, 307–316 (2018) Shushtari et al. [2021] Shushtari, M., Nasiri, R., Arami, A.: Online reference trajectory adaptation: A personalized control strategy for lower limb exoskeletons. IEEE Robotics and Automation Letters 7, 128–134 (2021) Asl et al. [2020] Asl, H.J., Yamashita, M., Narikiyo, T., Kawanishi, M.: Field-based assist-as-needed control schemes for rehabilitation robots. IEEE/ASME Transactions on Mechatronics 25, 2100–2111 (2020) Dominijanni et al. [2023] Dominijanni, G., Pinheiro, D.L., Pollina, L., Orset, B., Gini, M., Anselmino, E., Pierella, C., Olivier, J., Shokur, S., Micera, S.: Human motor augmentation with an extra robotic arm without functional interference. Science Robotics 8 (2023) Losey et al. [2018] Losey, D.P., Mcdonald, C.G., Battaglia, E., O’Malley, M.: A review of intent detection, arbitration, and communication aspects of shared control for physical human-robot interaction. Applied Mechanics Reviews 70 (2018) https://doi.org/10.1115/1.4039145 Jackson and Collins [2019] Jackson, R.W., Collins, S.H.: Heuristic-based ankle exoskeleton control for co-adaptive assistance of human locomotion. IEEE Transactions on Neural Systems and Rehabilitation Engineering 27, 2059–2069 (2019) Banala et al. [2007] Banala, S.K., Agrawal, S.K., Scholz, J.P.: Active leg exoskeleton (alex) for gait rehabilitation of motor-impaired patients. In: 2007 IEEE 10th International Conference on Rehabilitation Robotics, pp. 401–407 (2007). 2007 IEEE 10th International Conference on Rehabilitation Robotics Dinovitzer et al. [2023a] Dinovitzer, H., Shushtari, M., Arami, A.: Feedforward control of lower limb exoskeletons: which torque profile should we use? IEEE Robotics and Automation Letters (2023) Dinovitzer et al. [2023b] Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Pinto-Fernandez, D., Diego, T., Carmen Sanchez-Villamanan, M., Aller, F., Mombaur, K., Conti, R., Vitiello, N., Moreno, J.C., Pons, J.L.: Performance evaluation of lower limb exoskeletons: A systematic review. IEEE Transactions on Neural Systems and Rehabilitation Engineering 28, 1573–1583 (2020) Slade et al. [2022] Slade, P., Kochenderfer, M.J., Delp, S.L., Collins, S.H.: Personalizing exoskeleton assistance while walking in the real world. Nature 610, 277–282 (2022) Medina et al. [2015] Medina, J.R., Lorenz, T., Hirche, S.: Synthesizing anticipatory haptic assistance considering human behavior uncertainty. IEEE Transactions on Robotics 31, 180–190 (2015) Martinez et al. [2018] Martinez, A., Lawson, B., Durrough, C., Goldfarb, M.: A velocity-field-based controller for assisting leg movement during walking with a bilateral hip and knee lower limb exoskeleton. IEEE Transactions on Robotics 35, 307–316 (2018) Shushtari et al. [2021] Shushtari, M., Nasiri, R., Arami, A.: Online reference trajectory adaptation: A personalized control strategy for lower limb exoskeletons. IEEE Robotics and Automation Letters 7, 128–134 (2021) Asl et al. [2020] Asl, H.J., Yamashita, M., Narikiyo, T., Kawanishi, M.: Field-based assist-as-needed control schemes for rehabilitation robots. IEEE/ASME Transactions on Mechatronics 25, 2100–2111 (2020) Dominijanni et al. [2023] Dominijanni, G., Pinheiro, D.L., Pollina, L., Orset, B., Gini, M., Anselmino, E., Pierella, C., Olivier, J., Shokur, S., Micera, S.: Human motor augmentation with an extra robotic arm without functional interference. Science Robotics 8 (2023) Losey et al. [2018] Losey, D.P., Mcdonald, C.G., Battaglia, E., O’Malley, M.: A review of intent detection, arbitration, and communication aspects of shared control for physical human-robot interaction. Applied Mechanics Reviews 70 (2018) https://doi.org/10.1115/1.4039145 Jackson and Collins [2019] Jackson, R.W., Collins, S.H.: Heuristic-based ankle exoskeleton control for co-adaptive assistance of human locomotion. IEEE Transactions on Neural Systems and Rehabilitation Engineering 27, 2059–2069 (2019) Banala et al. [2007] Banala, S.K., Agrawal, S.K., Scholz, J.P.: Active leg exoskeleton (alex) for gait rehabilitation of motor-impaired patients. In: 2007 IEEE 10th International Conference on Rehabilitation Robotics, pp. 401–407 (2007). 2007 IEEE 10th International Conference on Rehabilitation Robotics Dinovitzer et al. [2023a] Dinovitzer, H., Shushtari, M., Arami, A.: Feedforward control of lower limb exoskeletons: which torque profile should we use? IEEE Robotics and Automation Letters (2023) Dinovitzer et al. [2023b] Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Slade, P., Kochenderfer, M.J., Delp, S.L., Collins, S.H.: Personalizing exoskeleton assistance while walking in the real world. Nature 610, 277–282 (2022) Medina et al. [2015] Medina, J.R., Lorenz, T., Hirche, S.: Synthesizing anticipatory haptic assistance considering human behavior uncertainty. IEEE Transactions on Robotics 31, 180–190 (2015) Martinez et al. [2018] Martinez, A., Lawson, B., Durrough, C., Goldfarb, M.: A velocity-field-based controller for assisting leg movement during walking with a bilateral hip and knee lower limb exoskeleton. IEEE Transactions on Robotics 35, 307–316 (2018) Shushtari et al. [2021] Shushtari, M., Nasiri, R., Arami, A.: Online reference trajectory adaptation: A personalized control strategy for lower limb exoskeletons. IEEE Robotics and Automation Letters 7, 128–134 (2021) Asl et al. [2020] Asl, H.J., Yamashita, M., Narikiyo, T., Kawanishi, M.: Field-based assist-as-needed control schemes for rehabilitation robots. IEEE/ASME Transactions on Mechatronics 25, 2100–2111 (2020) Dominijanni et al. [2023] Dominijanni, G., Pinheiro, D.L., Pollina, L., Orset, B., Gini, M., Anselmino, E., Pierella, C., Olivier, J., Shokur, S., Micera, S.: Human motor augmentation with an extra robotic arm without functional interference. Science Robotics 8 (2023) Losey et al. [2018] Losey, D.P., Mcdonald, C.G., Battaglia, E., O’Malley, M.: A review of intent detection, arbitration, and communication aspects of shared control for physical human-robot interaction. Applied Mechanics Reviews 70 (2018) https://doi.org/10.1115/1.4039145 Jackson and Collins [2019] Jackson, R.W., Collins, S.H.: Heuristic-based ankle exoskeleton control for co-adaptive assistance of human locomotion. IEEE Transactions on Neural Systems and Rehabilitation Engineering 27, 2059–2069 (2019) Banala et al. [2007] Banala, S.K., Agrawal, S.K., Scholz, J.P.: Active leg exoskeleton (alex) for gait rehabilitation of motor-impaired patients. In: 2007 IEEE 10th International Conference on Rehabilitation Robotics, pp. 401–407 (2007). 2007 IEEE 10th International Conference on Rehabilitation Robotics Dinovitzer et al. [2023a] Dinovitzer, H., Shushtari, M., Arami, A.: Feedforward control of lower limb exoskeletons: which torque profile should we use? IEEE Robotics and Automation Letters (2023) Dinovitzer et al. [2023b] Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Medina, J.R., Lorenz, T., Hirche, S.: Synthesizing anticipatory haptic assistance considering human behavior uncertainty. IEEE Transactions on Robotics 31, 180–190 (2015) Martinez et al. [2018] Martinez, A., Lawson, B., Durrough, C., Goldfarb, M.: A velocity-field-based controller for assisting leg movement during walking with a bilateral hip and knee lower limb exoskeleton. IEEE Transactions on Robotics 35, 307–316 (2018) Shushtari et al. [2021] Shushtari, M., Nasiri, R., Arami, A.: Online reference trajectory adaptation: A personalized control strategy for lower limb exoskeletons. IEEE Robotics and Automation Letters 7, 128–134 (2021) Asl et al. [2020] Asl, H.J., Yamashita, M., Narikiyo, T., Kawanishi, M.: Field-based assist-as-needed control schemes for rehabilitation robots. IEEE/ASME Transactions on Mechatronics 25, 2100–2111 (2020) Dominijanni et al. [2023] Dominijanni, G., Pinheiro, D.L., Pollina, L., Orset, B., Gini, M., Anselmino, E., Pierella, C., Olivier, J., Shokur, S., Micera, S.: Human motor augmentation with an extra robotic arm without functional interference. Science Robotics 8 (2023) Losey et al. [2018] Losey, D.P., Mcdonald, C.G., Battaglia, E., O’Malley, M.: A review of intent detection, arbitration, and communication aspects of shared control for physical human-robot interaction. Applied Mechanics Reviews 70 (2018) https://doi.org/10.1115/1.4039145 Jackson and Collins [2019] Jackson, R.W., Collins, S.H.: Heuristic-based ankle exoskeleton control for co-adaptive assistance of human locomotion. IEEE Transactions on Neural Systems and Rehabilitation Engineering 27, 2059–2069 (2019) Banala et al. [2007] Banala, S.K., Agrawal, S.K., Scholz, J.P.: Active leg exoskeleton (alex) for gait rehabilitation of motor-impaired patients. In: 2007 IEEE 10th International Conference on Rehabilitation Robotics, pp. 401–407 (2007). 2007 IEEE 10th International Conference on Rehabilitation Robotics Dinovitzer et al. [2023a] Dinovitzer, H., Shushtari, M., Arami, A.: Feedforward control of lower limb exoskeletons: which torque profile should we use? IEEE Robotics and Automation Letters (2023) Dinovitzer et al. [2023b] Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Martinez, A., Lawson, B., Durrough, C., Goldfarb, M.: A velocity-field-based controller for assisting leg movement during walking with a bilateral hip and knee lower limb exoskeleton. IEEE Transactions on Robotics 35, 307–316 (2018) Shushtari et al. [2021] Shushtari, M., Nasiri, R., Arami, A.: Online reference trajectory adaptation: A personalized control strategy for lower limb exoskeletons. IEEE Robotics and Automation Letters 7, 128–134 (2021) Asl et al. [2020] Asl, H.J., Yamashita, M., Narikiyo, T., Kawanishi, M.: Field-based assist-as-needed control schemes for rehabilitation robots. IEEE/ASME Transactions on Mechatronics 25, 2100–2111 (2020) Dominijanni et al. [2023] Dominijanni, G., Pinheiro, D.L., Pollina, L., Orset, B., Gini, M., Anselmino, E., Pierella, C., Olivier, J., Shokur, S., Micera, S.: Human motor augmentation with an extra robotic arm without functional interference. Science Robotics 8 (2023) Losey et al. [2018] Losey, D.P., Mcdonald, C.G., Battaglia, E., O’Malley, M.: A review of intent detection, arbitration, and communication aspects of shared control for physical human-robot interaction. Applied Mechanics Reviews 70 (2018) https://doi.org/10.1115/1.4039145 Jackson and Collins [2019] Jackson, R.W., Collins, S.H.: Heuristic-based ankle exoskeleton control for co-adaptive assistance of human locomotion. IEEE Transactions on Neural Systems and Rehabilitation Engineering 27, 2059–2069 (2019) Banala et al. [2007] Banala, S.K., Agrawal, S.K., Scholz, J.P.: Active leg exoskeleton (alex) for gait rehabilitation of motor-impaired patients. In: 2007 IEEE 10th International Conference on Rehabilitation Robotics, pp. 401–407 (2007). 2007 IEEE 10th International Conference on Rehabilitation Robotics Dinovitzer et al. [2023a] Dinovitzer, H., Shushtari, M., Arami, A.: Feedforward control of lower limb exoskeletons: which torque profile should we use? IEEE Robotics and Automation Letters (2023) Dinovitzer et al. [2023b] Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Shushtari, M., Nasiri, R., Arami, A.: Online reference trajectory adaptation: A personalized control strategy for lower limb exoskeletons. IEEE Robotics and Automation Letters 7, 128–134 (2021) Asl et al. [2020] Asl, H.J., Yamashita, M., Narikiyo, T., Kawanishi, M.: Field-based assist-as-needed control schemes for rehabilitation robots. IEEE/ASME Transactions on Mechatronics 25, 2100–2111 (2020) Dominijanni et al. [2023] Dominijanni, G., Pinheiro, D.L., Pollina, L., Orset, B., Gini, M., Anselmino, E., Pierella, C., Olivier, J., Shokur, S., Micera, S.: Human motor augmentation with an extra robotic arm without functional interference. Science Robotics 8 (2023) Losey et al. [2018] Losey, D.P., Mcdonald, C.G., Battaglia, E., O’Malley, M.: A review of intent detection, arbitration, and communication aspects of shared control for physical human-robot interaction. Applied Mechanics Reviews 70 (2018) https://doi.org/10.1115/1.4039145 Jackson and Collins [2019] Jackson, R.W., Collins, S.H.: Heuristic-based ankle exoskeleton control for co-adaptive assistance of human locomotion. IEEE Transactions on Neural Systems and Rehabilitation Engineering 27, 2059–2069 (2019) Banala et al. [2007] Banala, S.K., Agrawal, S.K., Scholz, J.P.: Active leg exoskeleton (alex) for gait rehabilitation of motor-impaired patients. In: 2007 IEEE 10th International Conference on Rehabilitation Robotics, pp. 401–407 (2007). 2007 IEEE 10th International Conference on Rehabilitation Robotics Dinovitzer et al. [2023a] Dinovitzer, H., Shushtari, M., Arami, A.: Feedforward control of lower limb exoskeletons: which torque profile should we use? IEEE Robotics and Automation Letters (2023) Dinovitzer et al. [2023b] Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Asl, H.J., Yamashita, M., Narikiyo, T., Kawanishi, M.: Field-based assist-as-needed control schemes for rehabilitation robots. IEEE/ASME Transactions on Mechatronics 25, 2100–2111 (2020) Dominijanni et al. [2023] Dominijanni, G., Pinheiro, D.L., Pollina, L., Orset, B., Gini, M., Anselmino, E., Pierella, C., Olivier, J., Shokur, S., Micera, S.: Human motor augmentation with an extra robotic arm without functional interference. Science Robotics 8 (2023) Losey et al. [2018] Losey, D.P., Mcdonald, C.G., Battaglia, E., O’Malley, M.: A review of intent detection, arbitration, and communication aspects of shared control for physical human-robot interaction. Applied Mechanics Reviews 70 (2018) https://doi.org/10.1115/1.4039145 Jackson and Collins [2019] Jackson, R.W., Collins, S.H.: Heuristic-based ankle exoskeleton control for co-adaptive assistance of human locomotion. IEEE Transactions on Neural Systems and Rehabilitation Engineering 27, 2059–2069 (2019) Banala et al. [2007] Banala, S.K., Agrawal, S.K., Scholz, J.P.: Active leg exoskeleton (alex) for gait rehabilitation of motor-impaired patients. In: 2007 IEEE 10th International Conference on Rehabilitation Robotics, pp. 401–407 (2007). 2007 IEEE 10th International Conference on Rehabilitation Robotics Dinovitzer et al. [2023a] Dinovitzer, H., Shushtari, M., Arami, A.: Feedforward control of lower limb exoskeletons: which torque profile should we use? IEEE Robotics and Automation Letters (2023) Dinovitzer et al. [2023b] Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Dominijanni, G., Pinheiro, D.L., Pollina, L., Orset, B., Gini, M., Anselmino, E., Pierella, C., Olivier, J., Shokur, S., Micera, S.: Human motor augmentation with an extra robotic arm without functional interference. Science Robotics 8 (2023) Losey et al. [2018] Losey, D.P., Mcdonald, C.G., Battaglia, E., O’Malley, M.: A review of intent detection, arbitration, and communication aspects of shared control for physical human-robot interaction. Applied Mechanics Reviews 70 (2018) https://doi.org/10.1115/1.4039145 Jackson and Collins [2019] Jackson, R.W., Collins, S.H.: Heuristic-based ankle exoskeleton control for co-adaptive assistance of human locomotion. IEEE Transactions on Neural Systems and Rehabilitation Engineering 27, 2059–2069 (2019) Banala et al. [2007] Banala, S.K., Agrawal, S.K., Scholz, J.P.: Active leg exoskeleton (alex) for gait rehabilitation of motor-impaired patients. In: 2007 IEEE 10th International Conference on Rehabilitation Robotics, pp. 401–407 (2007). 2007 IEEE 10th International Conference on Rehabilitation Robotics Dinovitzer et al. [2023a] Dinovitzer, H., Shushtari, M., Arami, A.: Feedforward control of lower limb exoskeletons: which torque profile should we use? IEEE Robotics and Automation Letters (2023) Dinovitzer et al. [2023b] Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Losey, D.P., Mcdonald, C.G., Battaglia, E., O’Malley, M.: A review of intent detection, arbitration, and communication aspects of shared control for physical human-robot interaction. Applied Mechanics Reviews 70 (2018) https://doi.org/10.1115/1.4039145 Jackson and Collins [2019] Jackson, R.W., Collins, S.H.: Heuristic-based ankle exoskeleton control for co-adaptive assistance of human locomotion. IEEE Transactions on Neural Systems and Rehabilitation Engineering 27, 2059–2069 (2019) Banala et al. [2007] Banala, S.K., Agrawal, S.K., Scholz, J.P.: Active leg exoskeleton (alex) for gait rehabilitation of motor-impaired patients. In: 2007 IEEE 10th International Conference on Rehabilitation Robotics, pp. 401–407 (2007). 2007 IEEE 10th International Conference on Rehabilitation Robotics Dinovitzer et al. [2023a] Dinovitzer, H., Shushtari, M., Arami, A.: Feedforward control of lower limb exoskeletons: which torque profile should we use? IEEE Robotics and Automation Letters (2023) Dinovitzer et al. [2023b] Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Jackson, R.W., Collins, S.H.: Heuristic-based ankle exoskeleton control for co-adaptive assistance of human locomotion. IEEE Transactions on Neural Systems and Rehabilitation Engineering 27, 2059–2069 (2019) Banala et al. [2007] Banala, S.K., Agrawal, S.K., Scholz, J.P.: Active leg exoskeleton (alex) for gait rehabilitation of motor-impaired patients. In: 2007 IEEE 10th International Conference on Rehabilitation Robotics, pp. 401–407 (2007). 2007 IEEE 10th International Conference on Rehabilitation Robotics Dinovitzer et al. [2023a] Dinovitzer, H., Shushtari, M., Arami, A.: Feedforward control of lower limb exoskeletons: which torque profile should we use? IEEE Robotics and Automation Letters (2023) Dinovitzer et al. [2023b] Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Banala, S.K., Agrawal, S.K., Scholz, J.P.: Active leg exoskeleton (alex) for gait rehabilitation of motor-impaired patients. In: 2007 IEEE 10th International Conference on Rehabilitation Robotics, pp. 401–407 (2007). 2007 IEEE 10th International Conference on Rehabilitation Robotics Dinovitzer et al. [2023a] Dinovitzer, H., Shushtari, M., Arami, A.: Feedforward control of lower limb exoskeletons: which torque profile should we use? IEEE Robotics and Automation Letters (2023) Dinovitzer et al. [2023b] Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Dinovitzer, H., Shushtari, M., Arami, A.: Feedforward control of lower limb exoskeletons: which torque profile should we use? IEEE Robotics and Automation Letters (2023) Dinovitzer et al. [2023b] Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017)
  6. Nuckols, R.W., Lee, S., Swaminathan, K., Orzel, D., Howe, R.D., Walsh, C.J.: Individualization of exosuit assistance based on measured muscle dynamics during versatile walking. Science robotics 6 (2021) Lee et al. [2023] Lee, U.H., Shetty, V.S., Franks, P.W., Tan, J., Evangelopoulos, G., Ha, S., Rouse, E.J.: User preference optimization for control of ankle exoskeletons using sample efficient active learning. Science Robotics 8 (2023) Postol et al. [2020] Postol, N., Lamond, S., Galloway, M., Palazzi, K., Bivard, A., Spratt, N.J., Marquez, J.: The metabolic cost of exercising with a robotic exoskeleton: A comparison of healthy and neurologically impaired people. IEEE Transactions on Neural Systems and Rehabilitation Engineering 28, 3031–3039 (2020) Witte et al. [2020] Witte, K.A., Fiers, P., Sheets-Singer, A.L., Collins, S.H.: Improving the energy economy of human running with powered and unpowered ankle exoskeleton assistance. Science Robotics 5 (2020) Zhu et al. [2021] Zhu, F., Kern, M., Fowkes, E., Afzal, T., Contreras-Vidal, J.-L., Francisco, G.E., Chang, S.-H.: Effects of an exoskeleton-assisted gait training on post-stroke lower-limb muscle coordination. Journal of Neural Engineering 18, 046039 (2021) Küçüktabak et al. [2024] Küçüktabak, E.B., Wen, Y., Kim, S.J., Short, M., Ludvig, D., Hargrove, L., Perreault, E., Lynch, K., Pons, J.: Haptic transparency and interaction force control for a lower-limb exoskeleton. IEEE Transactions on Robotics (2024) Eva and Grizzle [2020] Eva, M.M., Grizzle, J.W.: Feedback control design for robust comfortable sit-to-stand motions of 3d lower-limb exoskeletons. IEEE Access 9, 122–161 (2020) Masengo et al. [2023] Masengo, G., Zhang, X., Dong, R., , A.B.A., Hamza, K., Mudaheranwa, E.: Lower limb exoskeleton robot and its cooperative control: A review, trends, and challenges for future research. Frontiers in Neurorobotics 16, 1–25 (2023) Ingraham et al. [2022] Ingraham, K.A., Remy, C.D., Rouse, E.J.: The role of user preference in the customized control of robotic exoskeletons. Science robotics 7 (2022) Pinto-Fernandez et al. [2020] Pinto-Fernandez, D., Diego, T., Carmen Sanchez-Villamanan, M., Aller, F., Mombaur, K., Conti, R., Vitiello, N., Moreno, J.C., Pons, J.L.: Performance evaluation of lower limb exoskeletons: A systematic review. IEEE Transactions on Neural Systems and Rehabilitation Engineering 28, 1573–1583 (2020) Slade et al. [2022] Slade, P., Kochenderfer, M.J., Delp, S.L., Collins, S.H.: Personalizing exoskeleton assistance while walking in the real world. Nature 610, 277–282 (2022) Medina et al. [2015] Medina, J.R., Lorenz, T., Hirche, S.: Synthesizing anticipatory haptic assistance considering human behavior uncertainty. IEEE Transactions on Robotics 31, 180–190 (2015) Martinez et al. [2018] Martinez, A., Lawson, B., Durrough, C., Goldfarb, M.: A velocity-field-based controller for assisting leg movement during walking with a bilateral hip and knee lower limb exoskeleton. IEEE Transactions on Robotics 35, 307–316 (2018) Shushtari et al. [2021] Shushtari, M., Nasiri, R., Arami, A.: Online reference trajectory adaptation: A personalized control strategy for lower limb exoskeletons. IEEE Robotics and Automation Letters 7, 128–134 (2021) Asl et al. [2020] Asl, H.J., Yamashita, M., Narikiyo, T., Kawanishi, M.: Field-based assist-as-needed control schemes for rehabilitation robots. IEEE/ASME Transactions on Mechatronics 25, 2100–2111 (2020) Dominijanni et al. [2023] Dominijanni, G., Pinheiro, D.L., Pollina, L., Orset, B., Gini, M., Anselmino, E., Pierella, C., Olivier, J., Shokur, S., Micera, S.: Human motor augmentation with an extra robotic arm without functional interference. Science Robotics 8 (2023) Losey et al. [2018] Losey, D.P., Mcdonald, C.G., Battaglia, E., O’Malley, M.: A review of intent detection, arbitration, and communication aspects of shared control for physical human-robot interaction. Applied Mechanics Reviews 70 (2018) https://doi.org/10.1115/1.4039145 Jackson and Collins [2019] Jackson, R.W., Collins, S.H.: Heuristic-based ankle exoskeleton control for co-adaptive assistance of human locomotion. IEEE Transactions on Neural Systems and Rehabilitation Engineering 27, 2059–2069 (2019) Banala et al. [2007] Banala, S.K., Agrawal, S.K., Scholz, J.P.: Active leg exoskeleton (alex) for gait rehabilitation of motor-impaired patients. In: 2007 IEEE 10th International Conference on Rehabilitation Robotics, pp. 401–407 (2007). 2007 IEEE 10th International Conference on Rehabilitation Robotics Dinovitzer et al. [2023a] Dinovitzer, H., Shushtari, M., Arami, A.: Feedforward control of lower limb exoskeletons: which torque profile should we use? IEEE Robotics and Automation Letters (2023) Dinovitzer et al. [2023b] Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Lee, U.H., Shetty, V.S., Franks, P.W., Tan, J., Evangelopoulos, G., Ha, S., Rouse, E.J.: User preference optimization for control of ankle exoskeletons using sample efficient active learning. Science Robotics 8 (2023) Postol et al. [2020] Postol, N., Lamond, S., Galloway, M., Palazzi, K., Bivard, A., Spratt, N.J., Marquez, J.: The metabolic cost of exercising with a robotic exoskeleton: A comparison of healthy and neurologically impaired people. IEEE Transactions on Neural Systems and Rehabilitation Engineering 28, 3031–3039 (2020) Witte et al. [2020] Witte, K.A., Fiers, P., Sheets-Singer, A.L., Collins, S.H.: Improving the energy economy of human running with powered and unpowered ankle exoskeleton assistance. Science Robotics 5 (2020) Zhu et al. [2021] Zhu, F., Kern, M., Fowkes, E., Afzal, T., Contreras-Vidal, J.-L., Francisco, G.E., Chang, S.-H.: Effects of an exoskeleton-assisted gait training on post-stroke lower-limb muscle coordination. Journal of Neural Engineering 18, 046039 (2021) Küçüktabak et al. [2024] Küçüktabak, E.B., Wen, Y., Kim, S.J., Short, M., Ludvig, D., Hargrove, L., Perreault, E., Lynch, K., Pons, J.: Haptic transparency and interaction force control for a lower-limb exoskeleton. IEEE Transactions on Robotics (2024) Eva and Grizzle [2020] Eva, M.M., Grizzle, J.W.: Feedback control design for robust comfortable sit-to-stand motions of 3d lower-limb exoskeletons. IEEE Access 9, 122–161 (2020) Masengo et al. [2023] Masengo, G., Zhang, X., Dong, R., , A.B.A., Hamza, K., Mudaheranwa, E.: Lower limb exoskeleton robot and its cooperative control: A review, trends, and challenges for future research. Frontiers in Neurorobotics 16, 1–25 (2023) Ingraham et al. [2022] Ingraham, K.A., Remy, C.D., Rouse, E.J.: The role of user preference in the customized control of robotic exoskeletons. Science robotics 7 (2022) Pinto-Fernandez et al. [2020] Pinto-Fernandez, D., Diego, T., Carmen Sanchez-Villamanan, M., Aller, F., Mombaur, K., Conti, R., Vitiello, N., Moreno, J.C., Pons, J.L.: Performance evaluation of lower limb exoskeletons: A systematic review. IEEE Transactions on Neural Systems and Rehabilitation Engineering 28, 1573–1583 (2020) Slade et al. [2022] Slade, P., Kochenderfer, M.J., Delp, S.L., Collins, S.H.: Personalizing exoskeleton assistance while walking in the real world. Nature 610, 277–282 (2022) Medina et al. [2015] Medina, J.R., Lorenz, T., Hirche, S.: Synthesizing anticipatory haptic assistance considering human behavior uncertainty. IEEE Transactions on Robotics 31, 180–190 (2015) Martinez et al. [2018] Martinez, A., Lawson, B., Durrough, C., Goldfarb, M.: A velocity-field-based controller for assisting leg movement during walking with a bilateral hip and knee lower limb exoskeleton. IEEE Transactions on Robotics 35, 307–316 (2018) Shushtari et al. [2021] Shushtari, M., Nasiri, R., Arami, A.: Online reference trajectory adaptation: A personalized control strategy for lower limb exoskeletons. IEEE Robotics and Automation Letters 7, 128–134 (2021) Asl et al. [2020] Asl, H.J., Yamashita, M., Narikiyo, T., Kawanishi, M.: Field-based assist-as-needed control schemes for rehabilitation robots. IEEE/ASME Transactions on Mechatronics 25, 2100–2111 (2020) Dominijanni et al. [2023] Dominijanni, G., Pinheiro, D.L., Pollina, L., Orset, B., Gini, M., Anselmino, E., Pierella, C., Olivier, J., Shokur, S., Micera, S.: Human motor augmentation with an extra robotic arm without functional interference. Science Robotics 8 (2023) Losey et al. [2018] Losey, D.P., Mcdonald, C.G., Battaglia, E., O’Malley, M.: A review of intent detection, arbitration, and communication aspects of shared control for physical human-robot interaction. Applied Mechanics Reviews 70 (2018) https://doi.org/10.1115/1.4039145 Jackson and Collins [2019] Jackson, R.W., Collins, S.H.: Heuristic-based ankle exoskeleton control for co-adaptive assistance of human locomotion. IEEE Transactions on Neural Systems and Rehabilitation Engineering 27, 2059–2069 (2019) Banala et al. [2007] Banala, S.K., Agrawal, S.K., Scholz, J.P.: Active leg exoskeleton (alex) for gait rehabilitation of motor-impaired patients. In: 2007 IEEE 10th International Conference on Rehabilitation Robotics, pp. 401–407 (2007). 2007 IEEE 10th International Conference on Rehabilitation Robotics Dinovitzer et al. [2023a] Dinovitzer, H., Shushtari, M., Arami, A.: Feedforward control of lower limb exoskeletons: which torque profile should we use? IEEE Robotics and Automation Letters (2023) Dinovitzer et al. [2023b] Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Postol, N., Lamond, S., Galloway, M., Palazzi, K., Bivard, A., Spratt, N.J., Marquez, J.: The metabolic cost of exercising with a robotic exoskeleton: A comparison of healthy and neurologically impaired people. IEEE Transactions on Neural Systems and Rehabilitation Engineering 28, 3031–3039 (2020) Witte et al. [2020] Witte, K.A., Fiers, P., Sheets-Singer, A.L., Collins, S.H.: Improving the energy economy of human running with powered and unpowered ankle exoskeleton assistance. Science Robotics 5 (2020) Zhu et al. [2021] Zhu, F., Kern, M., Fowkes, E., Afzal, T., Contreras-Vidal, J.-L., Francisco, G.E., Chang, S.-H.: Effects of an exoskeleton-assisted gait training on post-stroke lower-limb muscle coordination. Journal of Neural Engineering 18, 046039 (2021) Küçüktabak et al. [2024] Küçüktabak, E.B., Wen, Y., Kim, S.J., Short, M., Ludvig, D., Hargrove, L., Perreault, E., Lynch, K., Pons, J.: Haptic transparency and interaction force control for a lower-limb exoskeleton. IEEE Transactions on Robotics (2024) Eva and Grizzle [2020] Eva, M.M., Grizzle, J.W.: Feedback control design for robust comfortable sit-to-stand motions of 3d lower-limb exoskeletons. IEEE Access 9, 122–161 (2020) Masengo et al. [2023] Masengo, G., Zhang, X., Dong, R., , A.B.A., Hamza, K., Mudaheranwa, E.: Lower limb exoskeleton robot and its cooperative control: A review, trends, and challenges for future research. Frontiers in Neurorobotics 16, 1–25 (2023) Ingraham et al. [2022] Ingraham, K.A., Remy, C.D., Rouse, E.J.: The role of user preference in the customized control of robotic exoskeletons. Science robotics 7 (2022) Pinto-Fernandez et al. [2020] Pinto-Fernandez, D., Diego, T., Carmen Sanchez-Villamanan, M., Aller, F., Mombaur, K., Conti, R., Vitiello, N., Moreno, J.C., Pons, J.L.: Performance evaluation of lower limb exoskeletons: A systematic review. IEEE Transactions on Neural Systems and Rehabilitation Engineering 28, 1573–1583 (2020) Slade et al. [2022] Slade, P., Kochenderfer, M.J., Delp, S.L., Collins, S.H.: Personalizing exoskeleton assistance while walking in the real world. Nature 610, 277–282 (2022) Medina et al. [2015] Medina, J.R., Lorenz, T., Hirche, S.: Synthesizing anticipatory haptic assistance considering human behavior uncertainty. IEEE Transactions on Robotics 31, 180–190 (2015) Martinez et al. [2018] Martinez, A., Lawson, B., Durrough, C., Goldfarb, M.: A velocity-field-based controller for assisting leg movement during walking with a bilateral hip and knee lower limb exoskeleton. IEEE Transactions on Robotics 35, 307–316 (2018) Shushtari et al. [2021] Shushtari, M., Nasiri, R., Arami, A.: Online reference trajectory adaptation: A personalized control strategy for lower limb exoskeletons. IEEE Robotics and Automation Letters 7, 128–134 (2021) Asl et al. [2020] Asl, H.J., Yamashita, M., Narikiyo, T., Kawanishi, M.: Field-based assist-as-needed control schemes for rehabilitation robots. IEEE/ASME Transactions on Mechatronics 25, 2100–2111 (2020) Dominijanni et al. [2023] Dominijanni, G., Pinheiro, D.L., Pollina, L., Orset, B., Gini, M., Anselmino, E., Pierella, C., Olivier, J., Shokur, S., Micera, S.: Human motor augmentation with an extra robotic arm without functional interference. Science Robotics 8 (2023) Losey et al. [2018] Losey, D.P., Mcdonald, C.G., Battaglia, E., O’Malley, M.: A review of intent detection, arbitration, and communication aspects of shared control for physical human-robot interaction. Applied Mechanics Reviews 70 (2018) https://doi.org/10.1115/1.4039145 Jackson and Collins [2019] Jackson, R.W., Collins, S.H.: Heuristic-based ankle exoskeleton control for co-adaptive assistance of human locomotion. IEEE Transactions on Neural Systems and Rehabilitation Engineering 27, 2059–2069 (2019) Banala et al. [2007] Banala, S.K., Agrawal, S.K., Scholz, J.P.: Active leg exoskeleton (alex) for gait rehabilitation of motor-impaired patients. In: 2007 IEEE 10th International Conference on Rehabilitation Robotics, pp. 401–407 (2007). 2007 IEEE 10th International Conference on Rehabilitation Robotics Dinovitzer et al. [2023a] Dinovitzer, H., Shushtari, M., Arami, A.: Feedforward control of lower limb exoskeletons: which torque profile should we use? IEEE Robotics and Automation Letters (2023) Dinovitzer et al. [2023b] Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Witte, K.A., Fiers, P., Sheets-Singer, A.L., Collins, S.H.: Improving the energy economy of human running with powered and unpowered ankle exoskeleton assistance. Science Robotics 5 (2020) Zhu et al. [2021] Zhu, F., Kern, M., Fowkes, E., Afzal, T., Contreras-Vidal, J.-L., Francisco, G.E., Chang, S.-H.: Effects of an exoskeleton-assisted gait training on post-stroke lower-limb muscle coordination. Journal of Neural Engineering 18, 046039 (2021) Küçüktabak et al. [2024] Küçüktabak, E.B., Wen, Y., Kim, S.J., Short, M., Ludvig, D., Hargrove, L., Perreault, E., Lynch, K., Pons, J.: Haptic transparency and interaction force control for a lower-limb exoskeleton. IEEE Transactions on Robotics (2024) Eva and Grizzle [2020] Eva, M.M., Grizzle, J.W.: Feedback control design for robust comfortable sit-to-stand motions of 3d lower-limb exoskeletons. IEEE Access 9, 122–161 (2020) Masengo et al. [2023] Masengo, G., Zhang, X., Dong, R., , A.B.A., Hamza, K., Mudaheranwa, E.: Lower limb exoskeleton robot and its cooperative control: A review, trends, and challenges for future research. Frontiers in Neurorobotics 16, 1–25 (2023) Ingraham et al. [2022] Ingraham, K.A., Remy, C.D., Rouse, E.J.: The role of user preference in the customized control of robotic exoskeletons. Science robotics 7 (2022) Pinto-Fernandez et al. [2020] Pinto-Fernandez, D., Diego, T., Carmen Sanchez-Villamanan, M., Aller, F., Mombaur, K., Conti, R., Vitiello, N., Moreno, J.C., Pons, J.L.: Performance evaluation of lower limb exoskeletons: A systematic review. IEEE Transactions on Neural Systems and Rehabilitation Engineering 28, 1573–1583 (2020) Slade et al. [2022] Slade, P., Kochenderfer, M.J., Delp, S.L., Collins, S.H.: Personalizing exoskeleton assistance while walking in the real world. Nature 610, 277–282 (2022) Medina et al. [2015] Medina, J.R., Lorenz, T., Hirche, S.: Synthesizing anticipatory haptic assistance considering human behavior uncertainty. IEEE Transactions on Robotics 31, 180–190 (2015) Martinez et al. [2018] Martinez, A., Lawson, B., Durrough, C., Goldfarb, M.: A velocity-field-based controller for assisting leg movement during walking with a bilateral hip and knee lower limb exoskeleton. IEEE Transactions on Robotics 35, 307–316 (2018) Shushtari et al. [2021] Shushtari, M., Nasiri, R., Arami, A.: Online reference trajectory adaptation: A personalized control strategy for lower limb exoskeletons. IEEE Robotics and Automation Letters 7, 128–134 (2021) Asl et al. [2020] Asl, H.J., Yamashita, M., Narikiyo, T., Kawanishi, M.: Field-based assist-as-needed control schemes for rehabilitation robots. IEEE/ASME Transactions on Mechatronics 25, 2100–2111 (2020) Dominijanni et al. [2023] Dominijanni, G., Pinheiro, D.L., Pollina, L., Orset, B., Gini, M., Anselmino, E., Pierella, C., Olivier, J., Shokur, S., Micera, S.: Human motor augmentation with an extra robotic arm without functional interference. Science Robotics 8 (2023) Losey et al. [2018] Losey, D.P., Mcdonald, C.G., Battaglia, E., O’Malley, M.: A review of intent detection, arbitration, and communication aspects of shared control for physical human-robot interaction. Applied Mechanics Reviews 70 (2018) https://doi.org/10.1115/1.4039145 Jackson and Collins [2019] Jackson, R.W., Collins, S.H.: Heuristic-based ankle exoskeleton control for co-adaptive assistance of human locomotion. IEEE Transactions on Neural Systems and Rehabilitation Engineering 27, 2059–2069 (2019) Banala et al. [2007] Banala, S.K., Agrawal, S.K., Scholz, J.P.: Active leg exoskeleton (alex) for gait rehabilitation of motor-impaired patients. In: 2007 IEEE 10th International Conference on Rehabilitation Robotics, pp. 401–407 (2007). 2007 IEEE 10th International Conference on Rehabilitation Robotics Dinovitzer et al. [2023a] Dinovitzer, H., Shushtari, M., Arami, A.: Feedforward control of lower limb exoskeletons: which torque profile should we use? IEEE Robotics and Automation Letters (2023) Dinovitzer et al. [2023b] Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Zhu, F., Kern, M., Fowkes, E., Afzal, T., Contreras-Vidal, J.-L., Francisco, G.E., Chang, S.-H.: Effects of an exoskeleton-assisted gait training on post-stroke lower-limb muscle coordination. Journal of Neural Engineering 18, 046039 (2021) Küçüktabak et al. [2024] Küçüktabak, E.B., Wen, Y., Kim, S.J., Short, M., Ludvig, D., Hargrove, L., Perreault, E., Lynch, K., Pons, J.: Haptic transparency and interaction force control for a lower-limb exoskeleton. IEEE Transactions on Robotics (2024) Eva and Grizzle [2020] Eva, M.M., Grizzle, J.W.: Feedback control design for robust comfortable sit-to-stand motions of 3d lower-limb exoskeletons. IEEE Access 9, 122–161 (2020) Masengo et al. [2023] Masengo, G., Zhang, X., Dong, R., , A.B.A., Hamza, K., Mudaheranwa, E.: Lower limb exoskeleton robot and its cooperative control: A review, trends, and challenges for future research. Frontiers in Neurorobotics 16, 1–25 (2023) Ingraham et al. [2022] Ingraham, K.A., Remy, C.D., Rouse, E.J.: The role of user preference in the customized control of robotic exoskeletons. Science robotics 7 (2022) Pinto-Fernandez et al. [2020] Pinto-Fernandez, D., Diego, T., Carmen Sanchez-Villamanan, M., Aller, F., Mombaur, K., Conti, R., Vitiello, N., Moreno, J.C., Pons, J.L.: Performance evaluation of lower limb exoskeletons: A systematic review. IEEE Transactions on Neural Systems and Rehabilitation Engineering 28, 1573–1583 (2020) Slade et al. [2022] Slade, P., Kochenderfer, M.J., Delp, S.L., Collins, S.H.: Personalizing exoskeleton assistance while walking in the real world. Nature 610, 277–282 (2022) Medina et al. [2015] Medina, J.R., Lorenz, T., Hirche, S.: Synthesizing anticipatory haptic assistance considering human behavior uncertainty. IEEE Transactions on Robotics 31, 180–190 (2015) Martinez et al. [2018] Martinez, A., Lawson, B., Durrough, C., Goldfarb, M.: A velocity-field-based controller for assisting leg movement during walking with a bilateral hip and knee lower limb exoskeleton. IEEE Transactions on Robotics 35, 307–316 (2018) Shushtari et al. [2021] Shushtari, M., Nasiri, R., Arami, A.: Online reference trajectory adaptation: A personalized control strategy for lower limb exoskeletons. IEEE Robotics and Automation Letters 7, 128–134 (2021) Asl et al. [2020] Asl, H.J., Yamashita, M., Narikiyo, T., Kawanishi, M.: Field-based assist-as-needed control schemes for rehabilitation robots. IEEE/ASME Transactions on Mechatronics 25, 2100–2111 (2020) Dominijanni et al. [2023] Dominijanni, G., Pinheiro, D.L., Pollina, L., Orset, B., Gini, M., Anselmino, E., Pierella, C., Olivier, J., Shokur, S., Micera, S.: Human motor augmentation with an extra robotic arm without functional interference. Science Robotics 8 (2023) Losey et al. [2018] Losey, D.P., Mcdonald, C.G., Battaglia, E., O’Malley, M.: A review of intent detection, arbitration, and communication aspects of shared control for physical human-robot interaction. Applied Mechanics Reviews 70 (2018) https://doi.org/10.1115/1.4039145 Jackson and Collins [2019] Jackson, R.W., Collins, S.H.: Heuristic-based ankle exoskeleton control for co-adaptive assistance of human locomotion. IEEE Transactions on Neural Systems and Rehabilitation Engineering 27, 2059–2069 (2019) Banala et al. [2007] Banala, S.K., Agrawal, S.K., Scholz, J.P.: Active leg exoskeleton (alex) for gait rehabilitation of motor-impaired patients. In: 2007 IEEE 10th International Conference on Rehabilitation Robotics, pp. 401–407 (2007). 2007 IEEE 10th International Conference on Rehabilitation Robotics Dinovitzer et al. [2023a] Dinovitzer, H., Shushtari, M., Arami, A.: Feedforward control of lower limb exoskeletons: which torque profile should we use? IEEE Robotics and Automation Letters (2023) Dinovitzer et al. [2023b] Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Küçüktabak, E.B., Wen, Y., Kim, S.J., Short, M., Ludvig, D., Hargrove, L., Perreault, E., Lynch, K., Pons, J.: Haptic transparency and interaction force control for a lower-limb exoskeleton. IEEE Transactions on Robotics (2024) Eva and Grizzle [2020] Eva, M.M., Grizzle, J.W.: Feedback control design for robust comfortable sit-to-stand motions of 3d lower-limb exoskeletons. IEEE Access 9, 122–161 (2020) Masengo et al. [2023] Masengo, G., Zhang, X., Dong, R., , A.B.A., Hamza, K., Mudaheranwa, E.: Lower limb exoskeleton robot and its cooperative control: A review, trends, and challenges for future research. Frontiers in Neurorobotics 16, 1–25 (2023) Ingraham et al. [2022] Ingraham, K.A., Remy, C.D., Rouse, E.J.: The role of user preference in the customized control of robotic exoskeletons. Science robotics 7 (2022) Pinto-Fernandez et al. [2020] Pinto-Fernandez, D., Diego, T., Carmen Sanchez-Villamanan, M., Aller, F., Mombaur, K., Conti, R., Vitiello, N., Moreno, J.C., Pons, J.L.: Performance evaluation of lower limb exoskeletons: A systematic review. IEEE Transactions on Neural Systems and Rehabilitation Engineering 28, 1573–1583 (2020) Slade et al. [2022] Slade, P., Kochenderfer, M.J., Delp, S.L., Collins, S.H.: Personalizing exoskeleton assistance while walking in the real world. Nature 610, 277–282 (2022) Medina et al. [2015] Medina, J.R., Lorenz, T., Hirche, S.: Synthesizing anticipatory haptic assistance considering human behavior uncertainty. IEEE Transactions on Robotics 31, 180–190 (2015) Martinez et al. [2018] Martinez, A., Lawson, B., Durrough, C., Goldfarb, M.: A velocity-field-based controller for assisting leg movement during walking with a bilateral hip and knee lower limb exoskeleton. IEEE Transactions on Robotics 35, 307–316 (2018) Shushtari et al. [2021] Shushtari, M., Nasiri, R., Arami, A.: Online reference trajectory adaptation: A personalized control strategy for lower limb exoskeletons. IEEE Robotics and Automation Letters 7, 128–134 (2021) Asl et al. [2020] Asl, H.J., Yamashita, M., Narikiyo, T., Kawanishi, M.: Field-based assist-as-needed control schemes for rehabilitation robots. IEEE/ASME Transactions on Mechatronics 25, 2100–2111 (2020) Dominijanni et al. [2023] Dominijanni, G., Pinheiro, D.L., Pollina, L., Orset, B., Gini, M., Anselmino, E., Pierella, C., Olivier, J., Shokur, S., Micera, S.: Human motor augmentation with an extra robotic arm without functional interference. Science Robotics 8 (2023) Losey et al. [2018] Losey, D.P., Mcdonald, C.G., Battaglia, E., O’Malley, M.: A review of intent detection, arbitration, and communication aspects of shared control for physical human-robot interaction. Applied Mechanics Reviews 70 (2018) https://doi.org/10.1115/1.4039145 Jackson and Collins [2019] Jackson, R.W., Collins, S.H.: Heuristic-based ankle exoskeleton control for co-adaptive assistance of human locomotion. IEEE Transactions on Neural Systems and Rehabilitation Engineering 27, 2059–2069 (2019) Banala et al. [2007] Banala, S.K., Agrawal, S.K., Scholz, J.P.: Active leg exoskeleton (alex) for gait rehabilitation of motor-impaired patients. In: 2007 IEEE 10th International Conference on Rehabilitation Robotics, pp. 401–407 (2007). 2007 IEEE 10th International Conference on Rehabilitation Robotics Dinovitzer et al. [2023a] Dinovitzer, H., Shushtari, M., Arami, A.: Feedforward control of lower limb exoskeletons: which torque profile should we use? IEEE Robotics and Automation Letters (2023) Dinovitzer et al. [2023b] Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Eva, M.M., Grizzle, J.W.: Feedback control design for robust comfortable sit-to-stand motions of 3d lower-limb exoskeletons. IEEE Access 9, 122–161 (2020) Masengo et al. [2023] Masengo, G., Zhang, X., Dong, R., , A.B.A., Hamza, K., Mudaheranwa, E.: Lower limb exoskeleton robot and its cooperative control: A review, trends, and challenges for future research. Frontiers in Neurorobotics 16, 1–25 (2023) Ingraham et al. [2022] Ingraham, K.A., Remy, C.D., Rouse, E.J.: The role of user preference in the customized control of robotic exoskeletons. Science robotics 7 (2022) Pinto-Fernandez et al. [2020] Pinto-Fernandez, D., Diego, T., Carmen Sanchez-Villamanan, M., Aller, F., Mombaur, K., Conti, R., Vitiello, N., Moreno, J.C., Pons, J.L.: Performance evaluation of lower limb exoskeletons: A systematic review. IEEE Transactions on Neural Systems and Rehabilitation Engineering 28, 1573–1583 (2020) Slade et al. [2022] Slade, P., Kochenderfer, M.J., Delp, S.L., Collins, S.H.: Personalizing exoskeleton assistance while walking in the real world. Nature 610, 277–282 (2022) Medina et al. [2015] Medina, J.R., Lorenz, T., Hirche, S.: Synthesizing anticipatory haptic assistance considering human behavior uncertainty. IEEE Transactions on Robotics 31, 180–190 (2015) Martinez et al. [2018] Martinez, A., Lawson, B., Durrough, C., Goldfarb, M.: A velocity-field-based controller for assisting leg movement during walking with a bilateral hip and knee lower limb exoskeleton. IEEE Transactions on Robotics 35, 307–316 (2018) Shushtari et al. [2021] Shushtari, M., Nasiri, R., Arami, A.: Online reference trajectory adaptation: A personalized control strategy for lower limb exoskeletons. IEEE Robotics and Automation Letters 7, 128–134 (2021) Asl et al. [2020] Asl, H.J., Yamashita, M., Narikiyo, T., Kawanishi, M.: Field-based assist-as-needed control schemes for rehabilitation robots. IEEE/ASME Transactions on Mechatronics 25, 2100–2111 (2020) Dominijanni et al. [2023] Dominijanni, G., Pinheiro, D.L., Pollina, L., Orset, B., Gini, M., Anselmino, E., Pierella, C., Olivier, J., Shokur, S., Micera, S.: Human motor augmentation with an extra robotic arm without functional interference. Science Robotics 8 (2023) Losey et al. [2018] Losey, D.P., Mcdonald, C.G., Battaglia, E., O’Malley, M.: A review of intent detection, arbitration, and communication aspects of shared control for physical human-robot interaction. Applied Mechanics Reviews 70 (2018) https://doi.org/10.1115/1.4039145 Jackson and Collins [2019] Jackson, R.W., Collins, S.H.: Heuristic-based ankle exoskeleton control for co-adaptive assistance of human locomotion. IEEE Transactions on Neural Systems and Rehabilitation Engineering 27, 2059–2069 (2019) Banala et al. [2007] Banala, S.K., Agrawal, S.K., Scholz, J.P.: Active leg exoskeleton (alex) for gait rehabilitation of motor-impaired patients. In: 2007 IEEE 10th International Conference on Rehabilitation Robotics, pp. 401–407 (2007). 2007 IEEE 10th International Conference on Rehabilitation Robotics Dinovitzer et al. [2023a] Dinovitzer, H., Shushtari, M., Arami, A.: Feedforward control of lower limb exoskeletons: which torque profile should we use? IEEE Robotics and Automation Letters (2023) Dinovitzer et al. [2023b] Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Masengo, G., Zhang, X., Dong, R., , A.B.A., Hamza, K., Mudaheranwa, E.: Lower limb exoskeleton robot and its cooperative control: A review, trends, and challenges for future research. Frontiers in Neurorobotics 16, 1–25 (2023) Ingraham et al. [2022] Ingraham, K.A., Remy, C.D., Rouse, E.J.: The role of user preference in the customized control of robotic exoskeletons. Science robotics 7 (2022) Pinto-Fernandez et al. [2020] Pinto-Fernandez, D., Diego, T., Carmen Sanchez-Villamanan, M., Aller, F., Mombaur, K., Conti, R., Vitiello, N., Moreno, J.C., Pons, J.L.: Performance evaluation of lower limb exoskeletons: A systematic review. IEEE Transactions on Neural Systems and Rehabilitation Engineering 28, 1573–1583 (2020) Slade et al. [2022] Slade, P., Kochenderfer, M.J., Delp, S.L., Collins, S.H.: Personalizing exoskeleton assistance while walking in the real world. Nature 610, 277–282 (2022) Medina et al. [2015] Medina, J.R., Lorenz, T., Hirche, S.: Synthesizing anticipatory haptic assistance considering human behavior uncertainty. IEEE Transactions on Robotics 31, 180–190 (2015) Martinez et al. [2018] Martinez, A., Lawson, B., Durrough, C., Goldfarb, M.: A velocity-field-based controller for assisting leg movement during walking with a bilateral hip and knee lower limb exoskeleton. IEEE Transactions on Robotics 35, 307–316 (2018) Shushtari et al. [2021] Shushtari, M., Nasiri, R., Arami, A.: Online reference trajectory adaptation: A personalized control strategy for lower limb exoskeletons. IEEE Robotics and Automation Letters 7, 128–134 (2021) Asl et al. [2020] Asl, H.J., Yamashita, M., Narikiyo, T., Kawanishi, M.: Field-based assist-as-needed control schemes for rehabilitation robots. IEEE/ASME Transactions on Mechatronics 25, 2100–2111 (2020) Dominijanni et al. [2023] Dominijanni, G., Pinheiro, D.L., Pollina, L., Orset, B., Gini, M., Anselmino, E., Pierella, C., Olivier, J., Shokur, S., Micera, S.: Human motor augmentation with an extra robotic arm without functional interference. Science Robotics 8 (2023) Losey et al. [2018] Losey, D.P., Mcdonald, C.G., Battaglia, E., O’Malley, M.: A review of intent detection, arbitration, and communication aspects of shared control for physical human-robot interaction. Applied Mechanics Reviews 70 (2018) https://doi.org/10.1115/1.4039145 Jackson and Collins [2019] Jackson, R.W., Collins, S.H.: Heuristic-based ankle exoskeleton control for co-adaptive assistance of human locomotion. IEEE Transactions on Neural Systems and Rehabilitation Engineering 27, 2059–2069 (2019) Banala et al. [2007] Banala, S.K., Agrawal, S.K., Scholz, J.P.: Active leg exoskeleton (alex) for gait rehabilitation of motor-impaired patients. In: 2007 IEEE 10th International Conference on Rehabilitation Robotics, pp. 401–407 (2007). 2007 IEEE 10th International Conference on Rehabilitation Robotics Dinovitzer et al. [2023a] Dinovitzer, H., Shushtari, M., Arami, A.: Feedforward control of lower limb exoskeletons: which torque profile should we use? IEEE Robotics and Automation Letters (2023) Dinovitzer et al. [2023b] Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Ingraham, K.A., Remy, C.D., Rouse, E.J.: The role of user preference in the customized control of robotic exoskeletons. Science robotics 7 (2022) Pinto-Fernandez et al. [2020] Pinto-Fernandez, D., Diego, T., Carmen Sanchez-Villamanan, M., Aller, F., Mombaur, K., Conti, R., Vitiello, N., Moreno, J.C., Pons, J.L.: Performance evaluation of lower limb exoskeletons: A systematic review. IEEE Transactions on Neural Systems and Rehabilitation Engineering 28, 1573–1583 (2020) Slade et al. [2022] Slade, P., Kochenderfer, M.J., Delp, S.L., Collins, S.H.: Personalizing exoskeleton assistance while walking in the real world. Nature 610, 277–282 (2022) Medina et al. [2015] Medina, J.R., Lorenz, T., Hirche, S.: Synthesizing anticipatory haptic assistance considering human behavior uncertainty. IEEE Transactions on Robotics 31, 180–190 (2015) Martinez et al. [2018] Martinez, A., Lawson, B., Durrough, C., Goldfarb, M.: A velocity-field-based controller for assisting leg movement during walking with a bilateral hip and knee lower limb exoskeleton. IEEE Transactions on Robotics 35, 307–316 (2018) Shushtari et al. [2021] Shushtari, M., Nasiri, R., Arami, A.: Online reference trajectory adaptation: A personalized control strategy for lower limb exoskeletons. IEEE Robotics and Automation Letters 7, 128–134 (2021) Asl et al. [2020] Asl, H.J., Yamashita, M., Narikiyo, T., Kawanishi, M.: Field-based assist-as-needed control schemes for rehabilitation robots. IEEE/ASME Transactions on Mechatronics 25, 2100–2111 (2020) Dominijanni et al. [2023] Dominijanni, G., Pinheiro, D.L., Pollina, L., Orset, B., Gini, M., Anselmino, E., Pierella, C., Olivier, J., Shokur, S., Micera, S.: Human motor augmentation with an extra robotic arm without functional interference. Science Robotics 8 (2023) Losey et al. [2018] Losey, D.P., Mcdonald, C.G., Battaglia, E., O’Malley, M.: A review of intent detection, arbitration, and communication aspects of shared control for physical human-robot interaction. Applied Mechanics Reviews 70 (2018) https://doi.org/10.1115/1.4039145 Jackson and Collins [2019] Jackson, R.W., Collins, S.H.: Heuristic-based ankle exoskeleton control for co-adaptive assistance of human locomotion. IEEE Transactions on Neural Systems and Rehabilitation Engineering 27, 2059–2069 (2019) Banala et al. [2007] Banala, S.K., Agrawal, S.K., Scholz, J.P.: Active leg exoskeleton (alex) for gait rehabilitation of motor-impaired patients. In: 2007 IEEE 10th International Conference on Rehabilitation Robotics, pp. 401–407 (2007). 2007 IEEE 10th International Conference on Rehabilitation Robotics Dinovitzer et al. [2023a] Dinovitzer, H., Shushtari, M., Arami, A.: Feedforward control of lower limb exoskeletons: which torque profile should we use? IEEE Robotics and Automation Letters (2023) Dinovitzer et al. [2023b] Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Pinto-Fernandez, D., Diego, T., Carmen Sanchez-Villamanan, M., Aller, F., Mombaur, K., Conti, R., Vitiello, N., Moreno, J.C., Pons, J.L.: Performance evaluation of lower limb exoskeletons: A systematic review. IEEE Transactions on Neural Systems and Rehabilitation Engineering 28, 1573–1583 (2020) Slade et al. [2022] Slade, P., Kochenderfer, M.J., Delp, S.L., Collins, S.H.: Personalizing exoskeleton assistance while walking in the real world. Nature 610, 277–282 (2022) Medina et al. [2015] Medina, J.R., Lorenz, T., Hirche, S.: Synthesizing anticipatory haptic assistance considering human behavior uncertainty. IEEE Transactions on Robotics 31, 180–190 (2015) Martinez et al. [2018] Martinez, A., Lawson, B., Durrough, C., Goldfarb, M.: A velocity-field-based controller for assisting leg movement during walking with a bilateral hip and knee lower limb exoskeleton. IEEE Transactions on Robotics 35, 307–316 (2018) Shushtari et al. [2021] Shushtari, M., Nasiri, R., Arami, A.: Online reference trajectory adaptation: A personalized control strategy for lower limb exoskeletons. IEEE Robotics and Automation Letters 7, 128–134 (2021) Asl et al. [2020] Asl, H.J., Yamashita, M., Narikiyo, T., Kawanishi, M.: Field-based assist-as-needed control schemes for rehabilitation robots. IEEE/ASME Transactions on Mechatronics 25, 2100–2111 (2020) Dominijanni et al. [2023] Dominijanni, G., Pinheiro, D.L., Pollina, L., Orset, B., Gini, M., Anselmino, E., Pierella, C., Olivier, J., Shokur, S., Micera, S.: Human motor augmentation with an extra robotic arm without functional interference. Science Robotics 8 (2023) Losey et al. [2018] Losey, D.P., Mcdonald, C.G., Battaglia, E., O’Malley, M.: A review of intent detection, arbitration, and communication aspects of shared control for physical human-robot interaction. Applied Mechanics Reviews 70 (2018) https://doi.org/10.1115/1.4039145 Jackson and Collins [2019] Jackson, R.W., Collins, S.H.: Heuristic-based ankle exoskeleton control for co-adaptive assistance of human locomotion. IEEE Transactions on Neural Systems and Rehabilitation Engineering 27, 2059–2069 (2019) Banala et al. [2007] Banala, S.K., Agrawal, S.K., Scholz, J.P.: Active leg exoskeleton (alex) for gait rehabilitation of motor-impaired patients. In: 2007 IEEE 10th International Conference on Rehabilitation Robotics, pp. 401–407 (2007). 2007 IEEE 10th International Conference on Rehabilitation Robotics Dinovitzer et al. [2023a] Dinovitzer, H., Shushtari, M., Arami, A.: Feedforward control of lower limb exoskeletons: which torque profile should we use? IEEE Robotics and Automation Letters (2023) Dinovitzer et al. [2023b] Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Slade, P., Kochenderfer, M.J., Delp, S.L., Collins, S.H.: Personalizing exoskeleton assistance while walking in the real world. Nature 610, 277–282 (2022) Medina et al. [2015] Medina, J.R., Lorenz, T., Hirche, S.: Synthesizing anticipatory haptic assistance considering human behavior uncertainty. IEEE Transactions on Robotics 31, 180–190 (2015) Martinez et al. [2018] Martinez, A., Lawson, B., Durrough, C., Goldfarb, M.: A velocity-field-based controller for assisting leg movement during walking with a bilateral hip and knee lower limb exoskeleton. IEEE Transactions on Robotics 35, 307–316 (2018) Shushtari et al. [2021] Shushtari, M., Nasiri, R., Arami, A.: Online reference trajectory adaptation: A personalized control strategy for lower limb exoskeletons. IEEE Robotics and Automation Letters 7, 128–134 (2021) Asl et al. [2020] Asl, H.J., Yamashita, M., Narikiyo, T., Kawanishi, M.: Field-based assist-as-needed control schemes for rehabilitation robots. IEEE/ASME Transactions on Mechatronics 25, 2100–2111 (2020) Dominijanni et al. [2023] Dominijanni, G., Pinheiro, D.L., Pollina, L., Orset, B., Gini, M., Anselmino, E., Pierella, C., Olivier, J., Shokur, S., Micera, S.: Human motor augmentation with an extra robotic arm without functional interference. Science Robotics 8 (2023) Losey et al. [2018] Losey, D.P., Mcdonald, C.G., Battaglia, E., O’Malley, M.: A review of intent detection, arbitration, and communication aspects of shared control for physical human-robot interaction. Applied Mechanics Reviews 70 (2018) https://doi.org/10.1115/1.4039145 Jackson and Collins [2019] Jackson, R.W., Collins, S.H.: Heuristic-based ankle exoskeleton control for co-adaptive assistance of human locomotion. IEEE Transactions on Neural Systems and Rehabilitation Engineering 27, 2059–2069 (2019) Banala et al. [2007] Banala, S.K., Agrawal, S.K., Scholz, J.P.: Active leg exoskeleton (alex) for gait rehabilitation of motor-impaired patients. In: 2007 IEEE 10th International Conference on Rehabilitation Robotics, pp. 401–407 (2007). 2007 IEEE 10th International Conference on Rehabilitation Robotics Dinovitzer et al. [2023a] Dinovitzer, H., Shushtari, M., Arami, A.: Feedforward control of lower limb exoskeletons: which torque profile should we use? IEEE Robotics and Automation Letters (2023) Dinovitzer et al. [2023b] Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Medina, J.R., Lorenz, T., Hirche, S.: Synthesizing anticipatory haptic assistance considering human behavior uncertainty. IEEE Transactions on Robotics 31, 180–190 (2015) Martinez et al. [2018] Martinez, A., Lawson, B., Durrough, C., Goldfarb, M.: A velocity-field-based controller for assisting leg movement during walking with a bilateral hip and knee lower limb exoskeleton. IEEE Transactions on Robotics 35, 307–316 (2018) Shushtari et al. [2021] Shushtari, M., Nasiri, R., Arami, A.: Online reference trajectory adaptation: A personalized control strategy for lower limb exoskeletons. IEEE Robotics and Automation Letters 7, 128–134 (2021) Asl et al. [2020] Asl, H.J., Yamashita, M., Narikiyo, T., Kawanishi, M.: Field-based assist-as-needed control schemes for rehabilitation robots. IEEE/ASME Transactions on Mechatronics 25, 2100–2111 (2020) Dominijanni et al. [2023] Dominijanni, G., Pinheiro, D.L., Pollina, L., Orset, B., Gini, M., Anselmino, E., Pierella, C., Olivier, J., Shokur, S., Micera, S.: Human motor augmentation with an extra robotic arm without functional interference. Science Robotics 8 (2023) Losey et al. [2018] Losey, D.P., Mcdonald, C.G., Battaglia, E., O’Malley, M.: A review of intent detection, arbitration, and communication aspects of shared control for physical human-robot interaction. Applied Mechanics Reviews 70 (2018) https://doi.org/10.1115/1.4039145 Jackson and Collins [2019] Jackson, R.W., Collins, S.H.: Heuristic-based ankle exoskeleton control for co-adaptive assistance of human locomotion. IEEE Transactions on Neural Systems and Rehabilitation Engineering 27, 2059–2069 (2019) Banala et al. [2007] Banala, S.K., Agrawal, S.K., Scholz, J.P.: Active leg exoskeleton (alex) for gait rehabilitation of motor-impaired patients. In: 2007 IEEE 10th International Conference on Rehabilitation Robotics, pp. 401–407 (2007). 2007 IEEE 10th International Conference on Rehabilitation Robotics Dinovitzer et al. [2023a] Dinovitzer, H., Shushtari, M., Arami, A.: Feedforward control of lower limb exoskeletons: which torque profile should we use? IEEE Robotics and Automation Letters (2023) Dinovitzer et al. [2023b] Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Martinez, A., Lawson, B., Durrough, C., Goldfarb, M.: A velocity-field-based controller for assisting leg movement during walking with a bilateral hip and knee lower limb exoskeleton. IEEE Transactions on Robotics 35, 307–316 (2018) Shushtari et al. [2021] Shushtari, M., Nasiri, R., Arami, A.: Online reference trajectory adaptation: A personalized control strategy for lower limb exoskeletons. IEEE Robotics and Automation Letters 7, 128–134 (2021) Asl et al. [2020] Asl, H.J., Yamashita, M., Narikiyo, T., Kawanishi, M.: Field-based assist-as-needed control schemes for rehabilitation robots. IEEE/ASME Transactions on Mechatronics 25, 2100–2111 (2020) Dominijanni et al. [2023] Dominijanni, G., Pinheiro, D.L., Pollina, L., Orset, B., Gini, M., Anselmino, E., Pierella, C., Olivier, J., Shokur, S., Micera, S.: Human motor augmentation with an extra robotic arm without functional interference. Science Robotics 8 (2023) Losey et al. [2018] Losey, D.P., Mcdonald, C.G., Battaglia, E., O’Malley, M.: A review of intent detection, arbitration, and communication aspects of shared control for physical human-robot interaction. Applied Mechanics Reviews 70 (2018) https://doi.org/10.1115/1.4039145 Jackson and Collins [2019] Jackson, R.W., Collins, S.H.: Heuristic-based ankle exoskeleton control for co-adaptive assistance of human locomotion. IEEE Transactions on Neural Systems and Rehabilitation Engineering 27, 2059–2069 (2019) Banala et al. [2007] Banala, S.K., Agrawal, S.K., Scholz, J.P.: Active leg exoskeleton (alex) for gait rehabilitation of motor-impaired patients. In: 2007 IEEE 10th International Conference on Rehabilitation Robotics, pp. 401–407 (2007). 2007 IEEE 10th International Conference on Rehabilitation Robotics Dinovitzer et al. [2023a] Dinovitzer, H., Shushtari, M., Arami, A.: Feedforward control of lower limb exoskeletons: which torque profile should we use? IEEE Robotics and Automation Letters (2023) Dinovitzer et al. [2023b] Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Shushtari, M., Nasiri, R., Arami, A.: Online reference trajectory adaptation: A personalized control strategy for lower limb exoskeletons. IEEE Robotics and Automation Letters 7, 128–134 (2021) Asl et al. [2020] Asl, H.J., Yamashita, M., Narikiyo, T., Kawanishi, M.: Field-based assist-as-needed control schemes for rehabilitation robots. IEEE/ASME Transactions on Mechatronics 25, 2100–2111 (2020) Dominijanni et al. [2023] Dominijanni, G., Pinheiro, D.L., Pollina, L., Orset, B., Gini, M., Anselmino, E., Pierella, C., Olivier, J., Shokur, S., Micera, S.: Human motor augmentation with an extra robotic arm without functional interference. Science Robotics 8 (2023) Losey et al. [2018] Losey, D.P., Mcdonald, C.G., Battaglia, E., O’Malley, M.: A review of intent detection, arbitration, and communication aspects of shared control for physical human-robot interaction. Applied Mechanics Reviews 70 (2018) https://doi.org/10.1115/1.4039145 Jackson and Collins [2019] Jackson, R.W., Collins, S.H.: Heuristic-based ankle exoskeleton control for co-adaptive assistance of human locomotion. IEEE Transactions on Neural Systems and Rehabilitation Engineering 27, 2059–2069 (2019) Banala et al. [2007] Banala, S.K., Agrawal, S.K., Scholz, J.P.: Active leg exoskeleton (alex) for gait rehabilitation of motor-impaired patients. In: 2007 IEEE 10th International Conference on Rehabilitation Robotics, pp. 401–407 (2007). 2007 IEEE 10th International Conference on Rehabilitation Robotics Dinovitzer et al. [2023a] Dinovitzer, H., Shushtari, M., Arami, A.: Feedforward control of lower limb exoskeletons: which torque profile should we use? IEEE Robotics and Automation Letters (2023) Dinovitzer et al. [2023b] Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Asl, H.J., Yamashita, M., Narikiyo, T., Kawanishi, M.: Field-based assist-as-needed control schemes for rehabilitation robots. IEEE/ASME Transactions on Mechatronics 25, 2100–2111 (2020) Dominijanni et al. [2023] Dominijanni, G., Pinheiro, D.L., Pollina, L., Orset, B., Gini, M., Anselmino, E., Pierella, C., Olivier, J., Shokur, S., Micera, S.: Human motor augmentation with an extra robotic arm without functional interference. Science Robotics 8 (2023) Losey et al. [2018] Losey, D.P., Mcdonald, C.G., Battaglia, E., O’Malley, M.: A review of intent detection, arbitration, and communication aspects of shared control for physical human-robot interaction. Applied Mechanics Reviews 70 (2018) https://doi.org/10.1115/1.4039145 Jackson and Collins [2019] Jackson, R.W., Collins, S.H.: Heuristic-based ankle exoskeleton control for co-adaptive assistance of human locomotion. IEEE Transactions on Neural Systems and Rehabilitation Engineering 27, 2059–2069 (2019) Banala et al. [2007] Banala, S.K., Agrawal, S.K., Scholz, J.P.: Active leg exoskeleton (alex) for gait rehabilitation of motor-impaired patients. In: 2007 IEEE 10th International Conference on Rehabilitation Robotics, pp. 401–407 (2007). 2007 IEEE 10th International Conference on Rehabilitation Robotics Dinovitzer et al. [2023a] Dinovitzer, H., Shushtari, M., Arami, A.: Feedforward control of lower limb exoskeletons: which torque profile should we use? IEEE Robotics and Automation Letters (2023) Dinovitzer et al. [2023b] Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Dominijanni, G., Pinheiro, D.L., Pollina, L., Orset, B., Gini, M., Anselmino, E., Pierella, C., Olivier, J., Shokur, S., Micera, S.: Human motor augmentation with an extra robotic arm without functional interference. Science Robotics 8 (2023) Losey et al. [2018] Losey, D.P., Mcdonald, C.G., Battaglia, E., O’Malley, M.: A review of intent detection, arbitration, and communication aspects of shared control for physical human-robot interaction. Applied Mechanics Reviews 70 (2018) https://doi.org/10.1115/1.4039145 Jackson and Collins [2019] Jackson, R.W., Collins, S.H.: Heuristic-based ankle exoskeleton control for co-adaptive assistance of human locomotion. IEEE Transactions on Neural Systems and Rehabilitation Engineering 27, 2059–2069 (2019) Banala et al. [2007] Banala, S.K., Agrawal, S.K., Scholz, J.P.: Active leg exoskeleton (alex) for gait rehabilitation of motor-impaired patients. In: 2007 IEEE 10th International Conference on Rehabilitation Robotics, pp. 401–407 (2007). 2007 IEEE 10th International Conference on Rehabilitation Robotics Dinovitzer et al. [2023a] Dinovitzer, H., Shushtari, M., Arami, A.: Feedforward control of lower limb exoskeletons: which torque profile should we use? IEEE Robotics and Automation Letters (2023) Dinovitzer et al. [2023b] Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Losey, D.P., Mcdonald, C.G., Battaglia, E., O’Malley, M.: A review of intent detection, arbitration, and communication aspects of shared control for physical human-robot interaction. Applied Mechanics Reviews 70 (2018) https://doi.org/10.1115/1.4039145 Jackson and Collins [2019] Jackson, R.W., Collins, S.H.: Heuristic-based ankle exoskeleton control for co-adaptive assistance of human locomotion. IEEE Transactions on Neural Systems and Rehabilitation Engineering 27, 2059–2069 (2019) Banala et al. [2007] Banala, S.K., Agrawal, S.K., Scholz, J.P.: Active leg exoskeleton (alex) for gait rehabilitation of motor-impaired patients. In: 2007 IEEE 10th International Conference on Rehabilitation Robotics, pp. 401–407 (2007). 2007 IEEE 10th International Conference on Rehabilitation Robotics Dinovitzer et al. [2023a] Dinovitzer, H., Shushtari, M., Arami, A.: Feedforward control of lower limb exoskeletons: which torque profile should we use? IEEE Robotics and Automation Letters (2023) Dinovitzer et al. [2023b] Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Jackson, R.W., Collins, S.H.: Heuristic-based ankle exoskeleton control for co-adaptive assistance of human locomotion. IEEE Transactions on Neural Systems and Rehabilitation Engineering 27, 2059–2069 (2019) Banala et al. [2007] Banala, S.K., Agrawal, S.K., Scholz, J.P.: Active leg exoskeleton (alex) for gait rehabilitation of motor-impaired patients. In: 2007 IEEE 10th International Conference on Rehabilitation Robotics, pp. 401–407 (2007). 2007 IEEE 10th International Conference on Rehabilitation Robotics Dinovitzer et al. [2023a] Dinovitzer, H., Shushtari, M., Arami, A.: Feedforward control of lower limb exoskeletons: which torque profile should we use? IEEE Robotics and Automation Letters (2023) Dinovitzer et al. [2023b] Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Banala, S.K., Agrawal, S.K., Scholz, J.P.: Active leg exoskeleton (alex) for gait rehabilitation of motor-impaired patients. In: 2007 IEEE 10th International Conference on Rehabilitation Robotics, pp. 401–407 (2007). 2007 IEEE 10th International Conference on Rehabilitation Robotics Dinovitzer et al. [2023a] Dinovitzer, H., Shushtari, M., Arami, A.: Feedforward control of lower limb exoskeletons: which torque profile should we use? IEEE Robotics and Automation Letters (2023) Dinovitzer et al. [2023b] Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Dinovitzer, H., Shushtari, M., Arami, A.: Feedforward control of lower limb exoskeletons: which torque profile should we use? IEEE Robotics and Automation Letters (2023) Dinovitzer et al. [2023b] Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017)
  7. Lee, U.H., Shetty, V.S., Franks, P.W., Tan, J., Evangelopoulos, G., Ha, S., Rouse, E.J.: User preference optimization for control of ankle exoskeletons using sample efficient active learning. Science Robotics 8 (2023) Postol et al. [2020] Postol, N., Lamond, S., Galloway, M., Palazzi, K., Bivard, A., Spratt, N.J., Marquez, J.: The metabolic cost of exercising with a robotic exoskeleton: A comparison of healthy and neurologically impaired people. IEEE Transactions on Neural Systems and Rehabilitation Engineering 28, 3031–3039 (2020) Witte et al. [2020] Witte, K.A., Fiers, P., Sheets-Singer, A.L., Collins, S.H.: Improving the energy economy of human running with powered and unpowered ankle exoskeleton assistance. Science Robotics 5 (2020) Zhu et al. [2021] Zhu, F., Kern, M., Fowkes, E., Afzal, T., Contreras-Vidal, J.-L., Francisco, G.E., Chang, S.-H.: Effects of an exoskeleton-assisted gait training on post-stroke lower-limb muscle coordination. Journal of Neural Engineering 18, 046039 (2021) Küçüktabak et al. [2024] Küçüktabak, E.B., Wen, Y., Kim, S.J., Short, M., Ludvig, D., Hargrove, L., Perreault, E., Lynch, K., Pons, J.: Haptic transparency and interaction force control for a lower-limb exoskeleton. IEEE Transactions on Robotics (2024) Eva and Grizzle [2020] Eva, M.M., Grizzle, J.W.: Feedback control design for robust comfortable sit-to-stand motions of 3d lower-limb exoskeletons. IEEE Access 9, 122–161 (2020) Masengo et al. [2023] Masengo, G., Zhang, X., Dong, R., , A.B.A., Hamza, K., Mudaheranwa, E.: Lower limb exoskeleton robot and its cooperative control: A review, trends, and challenges for future research. Frontiers in Neurorobotics 16, 1–25 (2023) Ingraham et al. [2022] Ingraham, K.A., Remy, C.D., Rouse, E.J.: The role of user preference in the customized control of robotic exoskeletons. Science robotics 7 (2022) Pinto-Fernandez et al. [2020] Pinto-Fernandez, D., Diego, T., Carmen Sanchez-Villamanan, M., Aller, F., Mombaur, K., Conti, R., Vitiello, N., Moreno, J.C., Pons, J.L.: Performance evaluation of lower limb exoskeletons: A systematic review. IEEE Transactions on Neural Systems and Rehabilitation Engineering 28, 1573–1583 (2020) Slade et al. [2022] Slade, P., Kochenderfer, M.J., Delp, S.L., Collins, S.H.: Personalizing exoskeleton assistance while walking in the real world. Nature 610, 277–282 (2022) Medina et al. [2015] Medina, J.R., Lorenz, T., Hirche, S.: Synthesizing anticipatory haptic assistance considering human behavior uncertainty. IEEE Transactions on Robotics 31, 180–190 (2015) Martinez et al. [2018] Martinez, A., Lawson, B., Durrough, C., Goldfarb, M.: A velocity-field-based controller for assisting leg movement during walking with a bilateral hip and knee lower limb exoskeleton. IEEE Transactions on Robotics 35, 307–316 (2018) Shushtari et al. [2021] Shushtari, M., Nasiri, R., Arami, A.: Online reference trajectory adaptation: A personalized control strategy for lower limb exoskeletons. IEEE Robotics and Automation Letters 7, 128–134 (2021) Asl et al. [2020] Asl, H.J., Yamashita, M., Narikiyo, T., Kawanishi, M.: Field-based assist-as-needed control schemes for rehabilitation robots. IEEE/ASME Transactions on Mechatronics 25, 2100–2111 (2020) Dominijanni et al. [2023] Dominijanni, G., Pinheiro, D.L., Pollina, L., Orset, B., Gini, M., Anselmino, E., Pierella, C., Olivier, J., Shokur, S., Micera, S.: Human motor augmentation with an extra robotic arm without functional interference. Science Robotics 8 (2023) Losey et al. [2018] Losey, D.P., Mcdonald, C.G., Battaglia, E., O’Malley, M.: A review of intent detection, arbitration, and communication aspects of shared control for physical human-robot interaction. Applied Mechanics Reviews 70 (2018) https://doi.org/10.1115/1.4039145 Jackson and Collins [2019] Jackson, R.W., Collins, S.H.: Heuristic-based ankle exoskeleton control for co-adaptive assistance of human locomotion. IEEE Transactions on Neural Systems and Rehabilitation Engineering 27, 2059–2069 (2019) Banala et al. [2007] Banala, S.K., Agrawal, S.K., Scholz, J.P.: Active leg exoskeleton (alex) for gait rehabilitation of motor-impaired patients. In: 2007 IEEE 10th International Conference on Rehabilitation Robotics, pp. 401–407 (2007). 2007 IEEE 10th International Conference on Rehabilitation Robotics Dinovitzer et al. [2023a] Dinovitzer, H., Shushtari, M., Arami, A.: Feedforward control of lower limb exoskeletons: which torque profile should we use? IEEE Robotics and Automation Letters (2023) Dinovitzer et al. [2023b] Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Postol, N., Lamond, S., Galloway, M., Palazzi, K., Bivard, A., Spratt, N.J., Marquez, J.: The metabolic cost of exercising with a robotic exoskeleton: A comparison of healthy and neurologically impaired people. IEEE Transactions on Neural Systems and Rehabilitation Engineering 28, 3031–3039 (2020) Witte et al. [2020] Witte, K.A., Fiers, P., Sheets-Singer, A.L., Collins, S.H.: Improving the energy economy of human running with powered and unpowered ankle exoskeleton assistance. Science Robotics 5 (2020) Zhu et al. [2021] Zhu, F., Kern, M., Fowkes, E., Afzal, T., Contreras-Vidal, J.-L., Francisco, G.E., Chang, S.-H.: Effects of an exoskeleton-assisted gait training on post-stroke lower-limb muscle coordination. Journal of Neural Engineering 18, 046039 (2021) Küçüktabak et al. [2024] Küçüktabak, E.B., Wen, Y., Kim, S.J., Short, M., Ludvig, D., Hargrove, L., Perreault, E., Lynch, K., Pons, J.: Haptic transparency and interaction force control for a lower-limb exoskeleton. IEEE Transactions on Robotics (2024) Eva and Grizzle [2020] Eva, M.M., Grizzle, J.W.: Feedback control design for robust comfortable sit-to-stand motions of 3d lower-limb exoskeletons. IEEE Access 9, 122–161 (2020) Masengo et al. [2023] Masengo, G., Zhang, X., Dong, R., , A.B.A., Hamza, K., Mudaheranwa, E.: Lower limb exoskeleton robot and its cooperative control: A review, trends, and challenges for future research. Frontiers in Neurorobotics 16, 1–25 (2023) Ingraham et al. [2022] Ingraham, K.A., Remy, C.D., Rouse, E.J.: The role of user preference in the customized control of robotic exoskeletons. Science robotics 7 (2022) Pinto-Fernandez et al. [2020] Pinto-Fernandez, D., Diego, T., Carmen Sanchez-Villamanan, M., Aller, F., Mombaur, K., Conti, R., Vitiello, N., Moreno, J.C., Pons, J.L.: Performance evaluation of lower limb exoskeletons: A systematic review. IEEE Transactions on Neural Systems and Rehabilitation Engineering 28, 1573–1583 (2020) Slade et al. [2022] Slade, P., Kochenderfer, M.J., Delp, S.L., Collins, S.H.: Personalizing exoskeleton assistance while walking in the real world. Nature 610, 277–282 (2022) Medina et al. [2015] Medina, J.R., Lorenz, T., Hirche, S.: Synthesizing anticipatory haptic assistance considering human behavior uncertainty. IEEE Transactions on Robotics 31, 180–190 (2015) Martinez et al. [2018] Martinez, A., Lawson, B., Durrough, C., Goldfarb, M.: A velocity-field-based controller for assisting leg movement during walking with a bilateral hip and knee lower limb exoskeleton. IEEE Transactions on Robotics 35, 307–316 (2018) Shushtari et al. [2021] Shushtari, M., Nasiri, R., Arami, A.: Online reference trajectory adaptation: A personalized control strategy for lower limb exoskeletons. IEEE Robotics and Automation Letters 7, 128–134 (2021) Asl et al. [2020] Asl, H.J., Yamashita, M., Narikiyo, T., Kawanishi, M.: Field-based assist-as-needed control schemes for rehabilitation robots. IEEE/ASME Transactions on Mechatronics 25, 2100–2111 (2020) Dominijanni et al. [2023] Dominijanni, G., Pinheiro, D.L., Pollina, L., Orset, B., Gini, M., Anselmino, E., Pierella, C., Olivier, J., Shokur, S., Micera, S.: Human motor augmentation with an extra robotic arm without functional interference. Science Robotics 8 (2023) Losey et al. [2018] Losey, D.P., Mcdonald, C.G., Battaglia, E., O’Malley, M.: A review of intent detection, arbitration, and communication aspects of shared control for physical human-robot interaction. Applied Mechanics Reviews 70 (2018) https://doi.org/10.1115/1.4039145 Jackson and Collins [2019] Jackson, R.W., Collins, S.H.: Heuristic-based ankle exoskeleton control for co-adaptive assistance of human locomotion. IEEE Transactions on Neural Systems and Rehabilitation Engineering 27, 2059–2069 (2019) Banala et al. [2007] Banala, S.K., Agrawal, S.K., Scholz, J.P.: Active leg exoskeleton (alex) for gait rehabilitation of motor-impaired patients. In: 2007 IEEE 10th International Conference on Rehabilitation Robotics, pp. 401–407 (2007). 2007 IEEE 10th International Conference on Rehabilitation Robotics Dinovitzer et al. [2023a] Dinovitzer, H., Shushtari, M., Arami, A.: Feedforward control of lower limb exoskeletons: which torque profile should we use? IEEE Robotics and Automation Letters (2023) Dinovitzer et al. [2023b] Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Witte, K.A., Fiers, P., Sheets-Singer, A.L., Collins, S.H.: Improving the energy economy of human running with powered and unpowered ankle exoskeleton assistance. Science Robotics 5 (2020) Zhu et al. [2021] Zhu, F., Kern, M., Fowkes, E., Afzal, T., Contreras-Vidal, J.-L., Francisco, G.E., Chang, S.-H.: Effects of an exoskeleton-assisted gait training on post-stroke lower-limb muscle coordination. Journal of Neural Engineering 18, 046039 (2021) Küçüktabak et al. [2024] Küçüktabak, E.B., Wen, Y., Kim, S.J., Short, M., Ludvig, D., Hargrove, L., Perreault, E., Lynch, K., Pons, J.: Haptic transparency and interaction force control for a lower-limb exoskeleton. IEEE Transactions on Robotics (2024) Eva and Grizzle [2020] Eva, M.M., Grizzle, J.W.: Feedback control design for robust comfortable sit-to-stand motions of 3d lower-limb exoskeletons. IEEE Access 9, 122–161 (2020) Masengo et al. [2023] Masengo, G., Zhang, X., Dong, R., , A.B.A., Hamza, K., Mudaheranwa, E.: Lower limb exoskeleton robot and its cooperative control: A review, trends, and challenges for future research. Frontiers in Neurorobotics 16, 1–25 (2023) Ingraham et al. [2022] Ingraham, K.A., Remy, C.D., Rouse, E.J.: The role of user preference in the customized control of robotic exoskeletons. Science robotics 7 (2022) Pinto-Fernandez et al. [2020] Pinto-Fernandez, D., Diego, T., Carmen Sanchez-Villamanan, M., Aller, F., Mombaur, K., Conti, R., Vitiello, N., Moreno, J.C., Pons, J.L.: Performance evaluation of lower limb exoskeletons: A systematic review. IEEE Transactions on Neural Systems and Rehabilitation Engineering 28, 1573–1583 (2020) Slade et al. [2022] Slade, P., Kochenderfer, M.J., Delp, S.L., Collins, S.H.: Personalizing exoskeleton assistance while walking in the real world. Nature 610, 277–282 (2022) Medina et al. [2015] Medina, J.R., Lorenz, T., Hirche, S.: Synthesizing anticipatory haptic assistance considering human behavior uncertainty. IEEE Transactions on Robotics 31, 180–190 (2015) Martinez et al. [2018] Martinez, A., Lawson, B., Durrough, C., Goldfarb, M.: A velocity-field-based controller for assisting leg movement during walking with a bilateral hip and knee lower limb exoskeleton. IEEE Transactions on Robotics 35, 307–316 (2018) Shushtari et al. [2021] Shushtari, M., Nasiri, R., Arami, A.: Online reference trajectory adaptation: A personalized control strategy for lower limb exoskeletons. IEEE Robotics and Automation Letters 7, 128–134 (2021) Asl et al. [2020] Asl, H.J., Yamashita, M., Narikiyo, T., Kawanishi, M.: Field-based assist-as-needed control schemes for rehabilitation robots. IEEE/ASME Transactions on Mechatronics 25, 2100–2111 (2020) Dominijanni et al. [2023] Dominijanni, G., Pinheiro, D.L., Pollina, L., Orset, B., Gini, M., Anselmino, E., Pierella, C., Olivier, J., Shokur, S., Micera, S.: Human motor augmentation with an extra robotic arm without functional interference. Science Robotics 8 (2023) Losey et al. [2018] Losey, D.P., Mcdonald, C.G., Battaglia, E., O’Malley, M.: A review of intent detection, arbitration, and communication aspects of shared control for physical human-robot interaction. Applied Mechanics Reviews 70 (2018) https://doi.org/10.1115/1.4039145 Jackson and Collins [2019] Jackson, R.W., Collins, S.H.: Heuristic-based ankle exoskeleton control for co-adaptive assistance of human locomotion. IEEE Transactions on Neural Systems and Rehabilitation Engineering 27, 2059–2069 (2019) Banala et al. [2007] Banala, S.K., Agrawal, S.K., Scholz, J.P.: Active leg exoskeleton (alex) for gait rehabilitation of motor-impaired patients. In: 2007 IEEE 10th International Conference on Rehabilitation Robotics, pp. 401–407 (2007). 2007 IEEE 10th International Conference on Rehabilitation Robotics Dinovitzer et al. [2023a] Dinovitzer, H., Shushtari, M., Arami, A.: Feedforward control of lower limb exoskeletons: which torque profile should we use? IEEE Robotics and Automation Letters (2023) Dinovitzer et al. [2023b] Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Zhu, F., Kern, M., Fowkes, E., Afzal, T., Contreras-Vidal, J.-L., Francisco, G.E., Chang, S.-H.: Effects of an exoskeleton-assisted gait training on post-stroke lower-limb muscle coordination. Journal of Neural Engineering 18, 046039 (2021) Küçüktabak et al. [2024] Küçüktabak, E.B., Wen, Y., Kim, S.J., Short, M., Ludvig, D., Hargrove, L., Perreault, E., Lynch, K., Pons, J.: Haptic transparency and interaction force control for a lower-limb exoskeleton. IEEE Transactions on Robotics (2024) Eva and Grizzle [2020] Eva, M.M., Grizzle, J.W.: Feedback control design for robust comfortable sit-to-stand motions of 3d lower-limb exoskeletons. IEEE Access 9, 122–161 (2020) Masengo et al. [2023] Masengo, G., Zhang, X., Dong, R., , A.B.A., Hamza, K., Mudaheranwa, E.: Lower limb exoskeleton robot and its cooperative control: A review, trends, and challenges for future research. Frontiers in Neurorobotics 16, 1–25 (2023) Ingraham et al. [2022] Ingraham, K.A., Remy, C.D., Rouse, E.J.: The role of user preference in the customized control of robotic exoskeletons. Science robotics 7 (2022) Pinto-Fernandez et al. [2020] Pinto-Fernandez, D., Diego, T., Carmen Sanchez-Villamanan, M., Aller, F., Mombaur, K., Conti, R., Vitiello, N., Moreno, J.C., Pons, J.L.: Performance evaluation of lower limb exoskeletons: A systematic review. IEEE Transactions on Neural Systems and Rehabilitation Engineering 28, 1573–1583 (2020) Slade et al. [2022] Slade, P., Kochenderfer, M.J., Delp, S.L., Collins, S.H.: Personalizing exoskeleton assistance while walking in the real world. Nature 610, 277–282 (2022) Medina et al. [2015] Medina, J.R., Lorenz, T., Hirche, S.: Synthesizing anticipatory haptic assistance considering human behavior uncertainty. IEEE Transactions on Robotics 31, 180–190 (2015) Martinez et al. [2018] Martinez, A., Lawson, B., Durrough, C., Goldfarb, M.: A velocity-field-based controller for assisting leg movement during walking with a bilateral hip and knee lower limb exoskeleton. IEEE Transactions on Robotics 35, 307–316 (2018) Shushtari et al. [2021] Shushtari, M., Nasiri, R., Arami, A.: Online reference trajectory adaptation: A personalized control strategy for lower limb exoskeletons. IEEE Robotics and Automation Letters 7, 128–134 (2021) Asl et al. [2020] Asl, H.J., Yamashita, M., Narikiyo, T., Kawanishi, M.: Field-based assist-as-needed control schemes for rehabilitation robots. IEEE/ASME Transactions on Mechatronics 25, 2100–2111 (2020) Dominijanni et al. [2023] Dominijanni, G., Pinheiro, D.L., Pollina, L., Orset, B., Gini, M., Anselmino, E., Pierella, C., Olivier, J., Shokur, S., Micera, S.: Human motor augmentation with an extra robotic arm without functional interference. Science Robotics 8 (2023) Losey et al. [2018] Losey, D.P., Mcdonald, C.G., Battaglia, E., O’Malley, M.: A review of intent detection, arbitration, and communication aspects of shared control for physical human-robot interaction. Applied Mechanics Reviews 70 (2018) https://doi.org/10.1115/1.4039145 Jackson and Collins [2019] Jackson, R.W., Collins, S.H.: Heuristic-based ankle exoskeleton control for co-adaptive assistance of human locomotion. IEEE Transactions on Neural Systems and Rehabilitation Engineering 27, 2059–2069 (2019) Banala et al. [2007] Banala, S.K., Agrawal, S.K., Scholz, J.P.: Active leg exoskeleton (alex) for gait rehabilitation of motor-impaired patients. In: 2007 IEEE 10th International Conference on Rehabilitation Robotics, pp. 401–407 (2007). 2007 IEEE 10th International Conference on Rehabilitation Robotics Dinovitzer et al. [2023a] Dinovitzer, H., Shushtari, M., Arami, A.: Feedforward control of lower limb exoskeletons: which torque profile should we use? IEEE Robotics and Automation Letters (2023) Dinovitzer et al. [2023b] Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Küçüktabak, E.B., Wen, Y., Kim, S.J., Short, M., Ludvig, D., Hargrove, L., Perreault, E., Lynch, K., Pons, J.: Haptic transparency and interaction force control for a lower-limb exoskeleton. IEEE Transactions on Robotics (2024) Eva and Grizzle [2020] Eva, M.M., Grizzle, J.W.: Feedback control design for robust comfortable sit-to-stand motions of 3d lower-limb exoskeletons. IEEE Access 9, 122–161 (2020) Masengo et al. [2023] Masengo, G., Zhang, X., Dong, R., , A.B.A., Hamza, K., Mudaheranwa, E.: Lower limb exoskeleton robot and its cooperative control: A review, trends, and challenges for future research. Frontiers in Neurorobotics 16, 1–25 (2023) Ingraham et al. [2022] Ingraham, K.A., Remy, C.D., Rouse, E.J.: The role of user preference in the customized control of robotic exoskeletons. Science robotics 7 (2022) Pinto-Fernandez et al. [2020] Pinto-Fernandez, D., Diego, T., Carmen Sanchez-Villamanan, M., Aller, F., Mombaur, K., Conti, R., Vitiello, N., Moreno, J.C., Pons, J.L.: Performance evaluation of lower limb exoskeletons: A systematic review. IEEE Transactions on Neural Systems and Rehabilitation Engineering 28, 1573–1583 (2020) Slade et al. [2022] Slade, P., Kochenderfer, M.J., Delp, S.L., Collins, S.H.: Personalizing exoskeleton assistance while walking in the real world. Nature 610, 277–282 (2022) Medina et al. [2015] Medina, J.R., Lorenz, T., Hirche, S.: Synthesizing anticipatory haptic assistance considering human behavior uncertainty. IEEE Transactions on Robotics 31, 180–190 (2015) Martinez et al. [2018] Martinez, A., Lawson, B., Durrough, C., Goldfarb, M.: A velocity-field-based controller for assisting leg movement during walking with a bilateral hip and knee lower limb exoskeleton. IEEE Transactions on Robotics 35, 307–316 (2018) Shushtari et al. [2021] Shushtari, M., Nasiri, R., Arami, A.: Online reference trajectory adaptation: A personalized control strategy for lower limb exoskeletons. IEEE Robotics and Automation Letters 7, 128–134 (2021) Asl et al. [2020] Asl, H.J., Yamashita, M., Narikiyo, T., Kawanishi, M.: Field-based assist-as-needed control schemes for rehabilitation robots. IEEE/ASME Transactions on Mechatronics 25, 2100–2111 (2020) Dominijanni et al. [2023] Dominijanni, G., Pinheiro, D.L., Pollina, L., Orset, B., Gini, M., Anselmino, E., Pierella, C., Olivier, J., Shokur, S., Micera, S.: Human motor augmentation with an extra robotic arm without functional interference. Science Robotics 8 (2023) Losey et al. [2018] Losey, D.P., Mcdonald, C.G., Battaglia, E., O’Malley, M.: A review of intent detection, arbitration, and communication aspects of shared control for physical human-robot interaction. Applied Mechanics Reviews 70 (2018) https://doi.org/10.1115/1.4039145 Jackson and Collins [2019] Jackson, R.W., Collins, S.H.: Heuristic-based ankle exoskeleton control for co-adaptive assistance of human locomotion. IEEE Transactions on Neural Systems and Rehabilitation Engineering 27, 2059–2069 (2019) Banala et al. [2007] Banala, S.K., Agrawal, S.K., Scholz, J.P.: Active leg exoskeleton (alex) for gait rehabilitation of motor-impaired patients. In: 2007 IEEE 10th International Conference on Rehabilitation Robotics, pp. 401–407 (2007). 2007 IEEE 10th International Conference on Rehabilitation Robotics Dinovitzer et al. [2023a] Dinovitzer, H., Shushtari, M., Arami, A.: Feedforward control of lower limb exoskeletons: which torque profile should we use? IEEE Robotics and Automation Letters (2023) Dinovitzer et al. [2023b] Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Eva, M.M., Grizzle, J.W.: Feedback control design for robust comfortable sit-to-stand motions of 3d lower-limb exoskeletons. IEEE Access 9, 122–161 (2020) Masengo et al. [2023] Masengo, G., Zhang, X., Dong, R., , A.B.A., Hamza, K., Mudaheranwa, E.: Lower limb exoskeleton robot and its cooperative control: A review, trends, and challenges for future research. Frontiers in Neurorobotics 16, 1–25 (2023) Ingraham et al. [2022] Ingraham, K.A., Remy, C.D., Rouse, E.J.: The role of user preference in the customized control of robotic exoskeletons. Science robotics 7 (2022) Pinto-Fernandez et al. [2020] Pinto-Fernandez, D., Diego, T., Carmen Sanchez-Villamanan, M., Aller, F., Mombaur, K., Conti, R., Vitiello, N., Moreno, J.C., Pons, J.L.: Performance evaluation of lower limb exoskeletons: A systematic review. IEEE Transactions on Neural Systems and Rehabilitation Engineering 28, 1573–1583 (2020) Slade et al. [2022] Slade, P., Kochenderfer, M.J., Delp, S.L., Collins, S.H.: Personalizing exoskeleton assistance while walking in the real world. Nature 610, 277–282 (2022) Medina et al. [2015] Medina, J.R., Lorenz, T., Hirche, S.: Synthesizing anticipatory haptic assistance considering human behavior uncertainty. IEEE Transactions on Robotics 31, 180–190 (2015) Martinez et al. [2018] Martinez, A., Lawson, B., Durrough, C., Goldfarb, M.: A velocity-field-based controller for assisting leg movement during walking with a bilateral hip and knee lower limb exoskeleton. IEEE Transactions on Robotics 35, 307–316 (2018) Shushtari et al. [2021] Shushtari, M., Nasiri, R., Arami, A.: Online reference trajectory adaptation: A personalized control strategy for lower limb exoskeletons. IEEE Robotics and Automation Letters 7, 128–134 (2021) Asl et al. [2020] Asl, H.J., Yamashita, M., Narikiyo, T., Kawanishi, M.: Field-based assist-as-needed control schemes for rehabilitation robots. IEEE/ASME Transactions on Mechatronics 25, 2100–2111 (2020) Dominijanni et al. [2023] Dominijanni, G., Pinheiro, D.L., Pollina, L., Orset, B., Gini, M., Anselmino, E., Pierella, C., Olivier, J., Shokur, S., Micera, S.: Human motor augmentation with an extra robotic arm without functional interference. Science Robotics 8 (2023) Losey et al. [2018] Losey, D.P., Mcdonald, C.G., Battaglia, E., O’Malley, M.: A review of intent detection, arbitration, and communication aspects of shared control for physical human-robot interaction. Applied Mechanics Reviews 70 (2018) https://doi.org/10.1115/1.4039145 Jackson and Collins [2019] Jackson, R.W., Collins, S.H.: Heuristic-based ankle exoskeleton control for co-adaptive assistance of human locomotion. IEEE Transactions on Neural Systems and Rehabilitation Engineering 27, 2059–2069 (2019) Banala et al. [2007] Banala, S.K., Agrawal, S.K., Scholz, J.P.: Active leg exoskeleton (alex) for gait rehabilitation of motor-impaired patients. In: 2007 IEEE 10th International Conference on Rehabilitation Robotics, pp. 401–407 (2007). 2007 IEEE 10th International Conference on Rehabilitation Robotics Dinovitzer et al. [2023a] Dinovitzer, H., Shushtari, M., Arami, A.: Feedforward control of lower limb exoskeletons: which torque profile should we use? IEEE Robotics and Automation Letters (2023) Dinovitzer et al. [2023b] Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Masengo, G., Zhang, X., Dong, R., , A.B.A., Hamza, K., Mudaheranwa, E.: Lower limb exoskeleton robot and its cooperative control: A review, trends, and challenges for future research. Frontiers in Neurorobotics 16, 1–25 (2023) Ingraham et al. [2022] Ingraham, K.A., Remy, C.D., Rouse, E.J.: The role of user preference in the customized control of robotic exoskeletons. Science robotics 7 (2022) Pinto-Fernandez et al. [2020] Pinto-Fernandez, D., Diego, T., Carmen Sanchez-Villamanan, M., Aller, F., Mombaur, K., Conti, R., Vitiello, N., Moreno, J.C., Pons, J.L.: Performance evaluation of lower limb exoskeletons: A systematic review. IEEE Transactions on Neural Systems and Rehabilitation Engineering 28, 1573–1583 (2020) Slade et al. [2022] Slade, P., Kochenderfer, M.J., Delp, S.L., Collins, S.H.: Personalizing exoskeleton assistance while walking in the real world. Nature 610, 277–282 (2022) Medina et al. [2015] Medina, J.R., Lorenz, T., Hirche, S.: Synthesizing anticipatory haptic assistance considering human behavior uncertainty. IEEE Transactions on Robotics 31, 180–190 (2015) Martinez et al. [2018] Martinez, A., Lawson, B., Durrough, C., Goldfarb, M.: A velocity-field-based controller for assisting leg movement during walking with a bilateral hip and knee lower limb exoskeleton. IEEE Transactions on Robotics 35, 307–316 (2018) Shushtari et al. [2021] Shushtari, M., Nasiri, R., Arami, A.: Online reference trajectory adaptation: A personalized control strategy for lower limb exoskeletons. IEEE Robotics and Automation Letters 7, 128–134 (2021) Asl et al. [2020] Asl, H.J., Yamashita, M., Narikiyo, T., Kawanishi, M.: Field-based assist-as-needed control schemes for rehabilitation robots. IEEE/ASME Transactions on Mechatronics 25, 2100–2111 (2020) Dominijanni et al. [2023] Dominijanni, G., Pinheiro, D.L., Pollina, L., Orset, B., Gini, M., Anselmino, E., Pierella, C., Olivier, J., Shokur, S., Micera, S.: Human motor augmentation with an extra robotic arm without functional interference. Science Robotics 8 (2023) Losey et al. [2018] Losey, D.P., Mcdonald, C.G., Battaglia, E., O’Malley, M.: A review of intent detection, arbitration, and communication aspects of shared control for physical human-robot interaction. Applied Mechanics Reviews 70 (2018) https://doi.org/10.1115/1.4039145 Jackson and Collins [2019] Jackson, R.W., Collins, S.H.: Heuristic-based ankle exoskeleton control for co-adaptive assistance of human locomotion. IEEE Transactions on Neural Systems and Rehabilitation Engineering 27, 2059–2069 (2019) Banala et al. [2007] Banala, S.K., Agrawal, S.K., Scholz, J.P.: Active leg exoskeleton (alex) for gait rehabilitation of motor-impaired patients. In: 2007 IEEE 10th International Conference on Rehabilitation Robotics, pp. 401–407 (2007). 2007 IEEE 10th International Conference on Rehabilitation Robotics Dinovitzer et al. [2023a] Dinovitzer, H., Shushtari, M., Arami, A.: Feedforward control of lower limb exoskeletons: which torque profile should we use? IEEE Robotics and Automation Letters (2023) Dinovitzer et al. [2023b] Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Ingraham, K.A., Remy, C.D., Rouse, E.J.: The role of user preference in the customized control of robotic exoskeletons. Science robotics 7 (2022) Pinto-Fernandez et al. [2020] Pinto-Fernandez, D., Diego, T., Carmen Sanchez-Villamanan, M., Aller, F., Mombaur, K., Conti, R., Vitiello, N., Moreno, J.C., Pons, J.L.: Performance evaluation of lower limb exoskeletons: A systematic review. IEEE Transactions on Neural Systems and Rehabilitation Engineering 28, 1573–1583 (2020) Slade et al. [2022] Slade, P., Kochenderfer, M.J., Delp, S.L., Collins, S.H.: Personalizing exoskeleton assistance while walking in the real world. Nature 610, 277–282 (2022) Medina et al. [2015] Medina, J.R., Lorenz, T., Hirche, S.: Synthesizing anticipatory haptic assistance considering human behavior uncertainty. IEEE Transactions on Robotics 31, 180–190 (2015) Martinez et al. [2018] Martinez, A., Lawson, B., Durrough, C., Goldfarb, M.: A velocity-field-based controller for assisting leg movement during walking with a bilateral hip and knee lower limb exoskeleton. IEEE Transactions on Robotics 35, 307–316 (2018) Shushtari et al. [2021] Shushtari, M., Nasiri, R., Arami, A.: Online reference trajectory adaptation: A personalized control strategy for lower limb exoskeletons. IEEE Robotics and Automation Letters 7, 128–134 (2021) Asl et al. [2020] Asl, H.J., Yamashita, M., Narikiyo, T., Kawanishi, M.: Field-based assist-as-needed control schemes for rehabilitation robots. IEEE/ASME Transactions on Mechatronics 25, 2100–2111 (2020) Dominijanni et al. [2023] Dominijanni, G., Pinheiro, D.L., Pollina, L., Orset, B., Gini, M., Anselmino, E., Pierella, C., Olivier, J., Shokur, S., Micera, S.: Human motor augmentation with an extra robotic arm without functional interference. Science Robotics 8 (2023) Losey et al. [2018] Losey, D.P., Mcdonald, C.G., Battaglia, E., O’Malley, M.: A review of intent detection, arbitration, and communication aspects of shared control for physical human-robot interaction. Applied Mechanics Reviews 70 (2018) https://doi.org/10.1115/1.4039145 Jackson and Collins [2019] Jackson, R.W., Collins, S.H.: Heuristic-based ankle exoskeleton control for co-adaptive assistance of human locomotion. IEEE Transactions on Neural Systems and Rehabilitation Engineering 27, 2059–2069 (2019) Banala et al. [2007] Banala, S.K., Agrawal, S.K., Scholz, J.P.: Active leg exoskeleton (alex) for gait rehabilitation of motor-impaired patients. In: 2007 IEEE 10th International Conference on Rehabilitation Robotics, pp. 401–407 (2007). 2007 IEEE 10th International Conference on Rehabilitation Robotics Dinovitzer et al. [2023a] Dinovitzer, H., Shushtari, M., Arami, A.: Feedforward control of lower limb exoskeletons: which torque profile should we use? IEEE Robotics and Automation Letters (2023) Dinovitzer et al. [2023b] Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Pinto-Fernandez, D., Diego, T., Carmen Sanchez-Villamanan, M., Aller, F., Mombaur, K., Conti, R., Vitiello, N., Moreno, J.C., Pons, J.L.: Performance evaluation of lower limb exoskeletons: A systematic review. IEEE Transactions on Neural Systems and Rehabilitation Engineering 28, 1573–1583 (2020) Slade et al. [2022] Slade, P., Kochenderfer, M.J., Delp, S.L., Collins, S.H.: Personalizing exoskeleton assistance while walking in the real world. Nature 610, 277–282 (2022) Medina et al. [2015] Medina, J.R., Lorenz, T., Hirche, S.: Synthesizing anticipatory haptic assistance considering human behavior uncertainty. IEEE Transactions on Robotics 31, 180–190 (2015) Martinez et al. [2018] Martinez, A., Lawson, B., Durrough, C., Goldfarb, M.: A velocity-field-based controller for assisting leg movement during walking with a bilateral hip and knee lower limb exoskeleton. IEEE Transactions on Robotics 35, 307–316 (2018) Shushtari et al. [2021] Shushtari, M., Nasiri, R., Arami, A.: Online reference trajectory adaptation: A personalized control strategy for lower limb exoskeletons. IEEE Robotics and Automation Letters 7, 128–134 (2021) Asl et al. [2020] Asl, H.J., Yamashita, M., Narikiyo, T., Kawanishi, M.: Field-based assist-as-needed control schemes for rehabilitation robots. IEEE/ASME Transactions on Mechatronics 25, 2100–2111 (2020) Dominijanni et al. [2023] Dominijanni, G., Pinheiro, D.L., Pollina, L., Orset, B., Gini, M., Anselmino, E., Pierella, C., Olivier, J., Shokur, S., Micera, S.: Human motor augmentation with an extra robotic arm without functional interference. Science Robotics 8 (2023) Losey et al. [2018] Losey, D.P., Mcdonald, C.G., Battaglia, E., O’Malley, M.: A review of intent detection, arbitration, and communication aspects of shared control for physical human-robot interaction. Applied Mechanics Reviews 70 (2018) https://doi.org/10.1115/1.4039145 Jackson and Collins [2019] Jackson, R.W., Collins, S.H.: Heuristic-based ankle exoskeleton control for co-adaptive assistance of human locomotion. IEEE Transactions on Neural Systems and Rehabilitation Engineering 27, 2059–2069 (2019) Banala et al. [2007] Banala, S.K., Agrawal, S.K., Scholz, J.P.: Active leg exoskeleton (alex) for gait rehabilitation of motor-impaired patients. In: 2007 IEEE 10th International Conference on Rehabilitation Robotics, pp. 401–407 (2007). 2007 IEEE 10th International Conference on Rehabilitation Robotics Dinovitzer et al. [2023a] Dinovitzer, H., Shushtari, M., Arami, A.: Feedforward control of lower limb exoskeletons: which torque profile should we use? IEEE Robotics and Automation Letters (2023) Dinovitzer et al. [2023b] Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Slade, P., Kochenderfer, M.J., Delp, S.L., Collins, S.H.: Personalizing exoskeleton assistance while walking in the real world. Nature 610, 277–282 (2022) Medina et al. [2015] Medina, J.R., Lorenz, T., Hirche, S.: Synthesizing anticipatory haptic assistance considering human behavior uncertainty. IEEE Transactions on Robotics 31, 180–190 (2015) Martinez et al. [2018] Martinez, A., Lawson, B., Durrough, C., Goldfarb, M.: A velocity-field-based controller for assisting leg movement during walking with a bilateral hip and knee lower limb exoskeleton. IEEE Transactions on Robotics 35, 307–316 (2018) Shushtari et al. [2021] Shushtari, M., Nasiri, R., Arami, A.: Online reference trajectory adaptation: A personalized control strategy for lower limb exoskeletons. IEEE Robotics and Automation Letters 7, 128–134 (2021) Asl et al. [2020] Asl, H.J., Yamashita, M., Narikiyo, T., Kawanishi, M.: Field-based assist-as-needed control schemes for rehabilitation robots. IEEE/ASME Transactions on Mechatronics 25, 2100–2111 (2020) Dominijanni et al. [2023] Dominijanni, G., Pinheiro, D.L., Pollina, L., Orset, B., Gini, M., Anselmino, E., Pierella, C., Olivier, J., Shokur, S., Micera, S.: Human motor augmentation with an extra robotic arm without functional interference. Science Robotics 8 (2023) Losey et al. [2018] Losey, D.P., Mcdonald, C.G., Battaglia, E., O’Malley, M.: A review of intent detection, arbitration, and communication aspects of shared control for physical human-robot interaction. Applied Mechanics Reviews 70 (2018) https://doi.org/10.1115/1.4039145 Jackson and Collins [2019] Jackson, R.W., Collins, S.H.: Heuristic-based ankle exoskeleton control for co-adaptive assistance of human locomotion. IEEE Transactions on Neural Systems and Rehabilitation Engineering 27, 2059–2069 (2019) Banala et al. [2007] Banala, S.K., Agrawal, S.K., Scholz, J.P.: Active leg exoskeleton (alex) for gait rehabilitation of motor-impaired patients. In: 2007 IEEE 10th International Conference on Rehabilitation Robotics, pp. 401–407 (2007). 2007 IEEE 10th International Conference on Rehabilitation Robotics Dinovitzer et al. [2023a] Dinovitzer, H., Shushtari, M., Arami, A.: Feedforward control of lower limb exoskeletons: which torque profile should we use? IEEE Robotics and Automation Letters (2023) Dinovitzer et al. [2023b] Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Medina, J.R., Lorenz, T., Hirche, S.: Synthesizing anticipatory haptic assistance considering human behavior uncertainty. IEEE Transactions on Robotics 31, 180–190 (2015) Martinez et al. [2018] Martinez, A., Lawson, B., Durrough, C., Goldfarb, M.: A velocity-field-based controller for assisting leg movement during walking with a bilateral hip and knee lower limb exoskeleton. IEEE Transactions on Robotics 35, 307–316 (2018) Shushtari et al. [2021] Shushtari, M., Nasiri, R., Arami, A.: Online reference trajectory adaptation: A personalized control strategy for lower limb exoskeletons. IEEE Robotics and Automation Letters 7, 128–134 (2021) Asl et al. [2020] Asl, H.J., Yamashita, M., Narikiyo, T., Kawanishi, M.: Field-based assist-as-needed control schemes for rehabilitation robots. IEEE/ASME Transactions on Mechatronics 25, 2100–2111 (2020) Dominijanni et al. [2023] Dominijanni, G., Pinheiro, D.L., Pollina, L., Orset, B., Gini, M., Anselmino, E., Pierella, C., Olivier, J., Shokur, S., Micera, S.: Human motor augmentation with an extra robotic arm without functional interference. Science Robotics 8 (2023) Losey et al. [2018] Losey, D.P., Mcdonald, C.G., Battaglia, E., O’Malley, M.: A review of intent detection, arbitration, and communication aspects of shared control for physical human-robot interaction. Applied Mechanics Reviews 70 (2018) https://doi.org/10.1115/1.4039145 Jackson and Collins [2019] Jackson, R.W., Collins, S.H.: Heuristic-based ankle exoskeleton control for co-adaptive assistance of human locomotion. IEEE Transactions on Neural Systems and Rehabilitation Engineering 27, 2059–2069 (2019) Banala et al. [2007] Banala, S.K., Agrawal, S.K., Scholz, J.P.: Active leg exoskeleton (alex) for gait rehabilitation of motor-impaired patients. In: 2007 IEEE 10th International Conference on Rehabilitation Robotics, pp. 401–407 (2007). 2007 IEEE 10th International Conference on Rehabilitation Robotics Dinovitzer et al. [2023a] Dinovitzer, H., Shushtari, M., Arami, A.: Feedforward control of lower limb exoskeletons: which torque profile should we use? IEEE Robotics and Automation Letters (2023) Dinovitzer et al. [2023b] Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Martinez, A., Lawson, B., Durrough, C., Goldfarb, M.: A velocity-field-based controller for assisting leg movement during walking with a bilateral hip and knee lower limb exoskeleton. IEEE Transactions on Robotics 35, 307–316 (2018) Shushtari et al. [2021] Shushtari, M., Nasiri, R., Arami, A.: Online reference trajectory adaptation: A personalized control strategy for lower limb exoskeletons. IEEE Robotics and Automation Letters 7, 128–134 (2021) Asl et al. [2020] Asl, H.J., Yamashita, M., Narikiyo, T., Kawanishi, M.: Field-based assist-as-needed control schemes for rehabilitation robots. IEEE/ASME Transactions on Mechatronics 25, 2100–2111 (2020) Dominijanni et al. [2023] Dominijanni, G., Pinheiro, D.L., Pollina, L., Orset, B., Gini, M., Anselmino, E., Pierella, C., Olivier, J., Shokur, S., Micera, S.: Human motor augmentation with an extra robotic arm without functional interference. Science Robotics 8 (2023) Losey et al. [2018] Losey, D.P., Mcdonald, C.G., Battaglia, E., O’Malley, M.: A review of intent detection, arbitration, and communication aspects of shared control for physical human-robot interaction. Applied Mechanics Reviews 70 (2018) https://doi.org/10.1115/1.4039145 Jackson and Collins [2019] Jackson, R.W., Collins, S.H.: Heuristic-based ankle exoskeleton control for co-adaptive assistance of human locomotion. IEEE Transactions on Neural Systems and Rehabilitation Engineering 27, 2059–2069 (2019) Banala et al. [2007] Banala, S.K., Agrawal, S.K., Scholz, J.P.: Active leg exoskeleton (alex) for gait rehabilitation of motor-impaired patients. In: 2007 IEEE 10th International Conference on Rehabilitation Robotics, pp. 401–407 (2007). 2007 IEEE 10th International Conference on Rehabilitation Robotics Dinovitzer et al. [2023a] Dinovitzer, H., Shushtari, M., Arami, A.: Feedforward control of lower limb exoskeletons: which torque profile should we use? IEEE Robotics and Automation Letters (2023) Dinovitzer et al. [2023b] Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Shushtari, M., Nasiri, R., Arami, A.: Online reference trajectory adaptation: A personalized control strategy for lower limb exoskeletons. IEEE Robotics and Automation Letters 7, 128–134 (2021) Asl et al. [2020] Asl, H.J., Yamashita, M., Narikiyo, T., Kawanishi, M.: Field-based assist-as-needed control schemes for rehabilitation robots. IEEE/ASME Transactions on Mechatronics 25, 2100–2111 (2020) Dominijanni et al. [2023] Dominijanni, G., Pinheiro, D.L., Pollina, L., Orset, B., Gini, M., Anselmino, E., Pierella, C., Olivier, J., Shokur, S., Micera, S.: Human motor augmentation with an extra robotic arm without functional interference. Science Robotics 8 (2023) Losey et al. [2018] Losey, D.P., Mcdonald, C.G., Battaglia, E., O’Malley, M.: A review of intent detection, arbitration, and communication aspects of shared control for physical human-robot interaction. Applied Mechanics Reviews 70 (2018) https://doi.org/10.1115/1.4039145 Jackson and Collins [2019] Jackson, R.W., Collins, S.H.: Heuristic-based ankle exoskeleton control for co-adaptive assistance of human locomotion. IEEE Transactions on Neural Systems and Rehabilitation Engineering 27, 2059–2069 (2019) Banala et al. [2007] Banala, S.K., Agrawal, S.K., Scholz, J.P.: Active leg exoskeleton (alex) for gait rehabilitation of motor-impaired patients. In: 2007 IEEE 10th International Conference on Rehabilitation Robotics, pp. 401–407 (2007). 2007 IEEE 10th International Conference on Rehabilitation Robotics Dinovitzer et al. [2023a] Dinovitzer, H., Shushtari, M., Arami, A.: Feedforward control of lower limb exoskeletons: which torque profile should we use? IEEE Robotics and Automation Letters (2023) Dinovitzer et al. [2023b] Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Asl, H.J., Yamashita, M., Narikiyo, T., Kawanishi, M.: Field-based assist-as-needed control schemes for rehabilitation robots. IEEE/ASME Transactions on Mechatronics 25, 2100–2111 (2020) Dominijanni et al. [2023] Dominijanni, G., Pinheiro, D.L., Pollina, L., Orset, B., Gini, M., Anselmino, E., Pierella, C., Olivier, J., Shokur, S., Micera, S.: Human motor augmentation with an extra robotic arm without functional interference. Science Robotics 8 (2023) Losey et al. [2018] Losey, D.P., Mcdonald, C.G., Battaglia, E., O’Malley, M.: A review of intent detection, arbitration, and communication aspects of shared control for physical human-robot interaction. Applied Mechanics Reviews 70 (2018) https://doi.org/10.1115/1.4039145 Jackson and Collins [2019] Jackson, R.W., Collins, S.H.: Heuristic-based ankle exoskeleton control for co-adaptive assistance of human locomotion. IEEE Transactions on Neural Systems and Rehabilitation Engineering 27, 2059–2069 (2019) Banala et al. [2007] Banala, S.K., Agrawal, S.K., Scholz, J.P.: Active leg exoskeleton (alex) for gait rehabilitation of motor-impaired patients. In: 2007 IEEE 10th International Conference on Rehabilitation Robotics, pp. 401–407 (2007). 2007 IEEE 10th International Conference on Rehabilitation Robotics Dinovitzer et al. [2023a] Dinovitzer, H., Shushtari, M., Arami, A.: Feedforward control of lower limb exoskeletons: which torque profile should we use? IEEE Robotics and Automation Letters (2023) Dinovitzer et al. [2023b] Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Dominijanni, G., Pinheiro, D.L., Pollina, L., Orset, B., Gini, M., Anselmino, E., Pierella, C., Olivier, J., Shokur, S., Micera, S.: Human motor augmentation with an extra robotic arm without functional interference. Science Robotics 8 (2023) Losey et al. [2018] Losey, D.P., Mcdonald, C.G., Battaglia, E., O’Malley, M.: A review of intent detection, arbitration, and communication aspects of shared control for physical human-robot interaction. Applied Mechanics Reviews 70 (2018) https://doi.org/10.1115/1.4039145 Jackson and Collins [2019] Jackson, R.W., Collins, S.H.: Heuristic-based ankle exoskeleton control for co-adaptive assistance of human locomotion. IEEE Transactions on Neural Systems and Rehabilitation Engineering 27, 2059–2069 (2019) Banala et al. [2007] Banala, S.K., Agrawal, S.K., Scholz, J.P.: Active leg exoskeleton (alex) for gait rehabilitation of motor-impaired patients. In: 2007 IEEE 10th International Conference on Rehabilitation Robotics, pp. 401–407 (2007). 2007 IEEE 10th International Conference on Rehabilitation Robotics Dinovitzer et al. [2023a] Dinovitzer, H., Shushtari, M., Arami, A.: Feedforward control of lower limb exoskeletons: which torque profile should we use? IEEE Robotics and Automation Letters (2023) Dinovitzer et al. [2023b] Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Losey, D.P., Mcdonald, C.G., Battaglia, E., O’Malley, M.: A review of intent detection, arbitration, and communication aspects of shared control for physical human-robot interaction. Applied Mechanics Reviews 70 (2018) https://doi.org/10.1115/1.4039145 Jackson and Collins [2019] Jackson, R.W., Collins, S.H.: Heuristic-based ankle exoskeleton control for co-adaptive assistance of human locomotion. IEEE Transactions on Neural Systems and Rehabilitation Engineering 27, 2059–2069 (2019) Banala et al. [2007] Banala, S.K., Agrawal, S.K., Scholz, J.P.: Active leg exoskeleton (alex) for gait rehabilitation of motor-impaired patients. In: 2007 IEEE 10th International Conference on Rehabilitation Robotics, pp. 401–407 (2007). 2007 IEEE 10th International Conference on Rehabilitation Robotics Dinovitzer et al. [2023a] Dinovitzer, H., Shushtari, M., Arami, A.: Feedforward control of lower limb exoskeletons: which torque profile should we use? IEEE Robotics and Automation Letters (2023) Dinovitzer et al. [2023b] Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Jackson, R.W., Collins, S.H.: Heuristic-based ankle exoskeleton control for co-adaptive assistance of human locomotion. IEEE Transactions on Neural Systems and Rehabilitation Engineering 27, 2059–2069 (2019) Banala et al. [2007] Banala, S.K., Agrawal, S.K., Scholz, J.P.: Active leg exoskeleton (alex) for gait rehabilitation of motor-impaired patients. In: 2007 IEEE 10th International Conference on Rehabilitation Robotics, pp. 401–407 (2007). 2007 IEEE 10th International Conference on Rehabilitation Robotics Dinovitzer et al. [2023a] Dinovitzer, H., Shushtari, M., Arami, A.: Feedforward control of lower limb exoskeletons: which torque profile should we use? IEEE Robotics and Automation Letters (2023) Dinovitzer et al. [2023b] Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Banala, S.K., Agrawal, S.K., Scholz, J.P.: Active leg exoskeleton (alex) for gait rehabilitation of motor-impaired patients. In: 2007 IEEE 10th International Conference on Rehabilitation Robotics, pp. 401–407 (2007). 2007 IEEE 10th International Conference on Rehabilitation Robotics Dinovitzer et al. [2023a] Dinovitzer, H., Shushtari, M., Arami, A.: Feedforward control of lower limb exoskeletons: which torque profile should we use? IEEE Robotics and Automation Letters (2023) Dinovitzer et al. [2023b] Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Dinovitzer, H., Shushtari, M., Arami, A.: Feedforward control of lower limb exoskeletons: which torque profile should we use? IEEE Robotics and Automation Letters (2023) Dinovitzer et al. [2023b] Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017)
  8. Postol, N., Lamond, S., Galloway, M., Palazzi, K., Bivard, A., Spratt, N.J., Marquez, J.: The metabolic cost of exercising with a robotic exoskeleton: A comparison of healthy and neurologically impaired people. IEEE Transactions on Neural Systems and Rehabilitation Engineering 28, 3031–3039 (2020) Witte et al. [2020] Witte, K.A., Fiers, P., Sheets-Singer, A.L., Collins, S.H.: Improving the energy economy of human running with powered and unpowered ankle exoskeleton assistance. Science Robotics 5 (2020) Zhu et al. [2021] Zhu, F., Kern, M., Fowkes, E., Afzal, T., Contreras-Vidal, J.-L., Francisco, G.E., Chang, S.-H.: Effects of an exoskeleton-assisted gait training on post-stroke lower-limb muscle coordination. Journal of Neural Engineering 18, 046039 (2021) Küçüktabak et al. [2024] Küçüktabak, E.B., Wen, Y., Kim, S.J., Short, M., Ludvig, D., Hargrove, L., Perreault, E., Lynch, K., Pons, J.: Haptic transparency and interaction force control for a lower-limb exoskeleton. IEEE Transactions on Robotics (2024) Eva and Grizzle [2020] Eva, M.M., Grizzle, J.W.: Feedback control design for robust comfortable sit-to-stand motions of 3d lower-limb exoskeletons. IEEE Access 9, 122–161 (2020) Masengo et al. [2023] Masengo, G., Zhang, X., Dong, R., , A.B.A., Hamza, K., Mudaheranwa, E.: Lower limb exoskeleton robot and its cooperative control: A review, trends, and challenges for future research. Frontiers in Neurorobotics 16, 1–25 (2023) Ingraham et al. [2022] Ingraham, K.A., Remy, C.D., Rouse, E.J.: The role of user preference in the customized control of robotic exoskeletons. Science robotics 7 (2022) Pinto-Fernandez et al. [2020] Pinto-Fernandez, D., Diego, T., Carmen Sanchez-Villamanan, M., Aller, F., Mombaur, K., Conti, R., Vitiello, N., Moreno, J.C., Pons, J.L.: Performance evaluation of lower limb exoskeletons: A systematic review. IEEE Transactions on Neural Systems and Rehabilitation Engineering 28, 1573–1583 (2020) Slade et al. [2022] Slade, P., Kochenderfer, M.J., Delp, S.L., Collins, S.H.: Personalizing exoskeleton assistance while walking in the real world. Nature 610, 277–282 (2022) Medina et al. [2015] Medina, J.R., Lorenz, T., Hirche, S.: Synthesizing anticipatory haptic assistance considering human behavior uncertainty. IEEE Transactions on Robotics 31, 180–190 (2015) Martinez et al. [2018] Martinez, A., Lawson, B., Durrough, C., Goldfarb, M.: A velocity-field-based controller for assisting leg movement during walking with a bilateral hip and knee lower limb exoskeleton. IEEE Transactions on Robotics 35, 307–316 (2018) Shushtari et al. [2021] Shushtari, M., Nasiri, R., Arami, A.: Online reference trajectory adaptation: A personalized control strategy for lower limb exoskeletons. IEEE Robotics and Automation Letters 7, 128–134 (2021) Asl et al. [2020] Asl, H.J., Yamashita, M., Narikiyo, T., Kawanishi, M.: Field-based assist-as-needed control schemes for rehabilitation robots. IEEE/ASME Transactions on Mechatronics 25, 2100–2111 (2020) Dominijanni et al. [2023] Dominijanni, G., Pinheiro, D.L., Pollina, L., Orset, B., Gini, M., Anselmino, E., Pierella, C., Olivier, J., Shokur, S., Micera, S.: Human motor augmentation with an extra robotic arm without functional interference. Science Robotics 8 (2023) Losey et al. [2018] Losey, D.P., Mcdonald, C.G., Battaglia, E., O’Malley, M.: A review of intent detection, arbitration, and communication aspects of shared control for physical human-robot interaction. Applied Mechanics Reviews 70 (2018) https://doi.org/10.1115/1.4039145 Jackson and Collins [2019] Jackson, R.W., Collins, S.H.: Heuristic-based ankle exoskeleton control for co-adaptive assistance of human locomotion. IEEE Transactions on Neural Systems and Rehabilitation Engineering 27, 2059–2069 (2019) Banala et al. [2007] Banala, S.K., Agrawal, S.K., Scholz, J.P.: Active leg exoskeleton (alex) for gait rehabilitation of motor-impaired patients. In: 2007 IEEE 10th International Conference on Rehabilitation Robotics, pp. 401–407 (2007). 2007 IEEE 10th International Conference on Rehabilitation Robotics Dinovitzer et al. [2023a] Dinovitzer, H., Shushtari, M., Arami, A.: Feedforward control of lower limb exoskeletons: which torque profile should we use? IEEE Robotics and Automation Letters (2023) Dinovitzer et al. [2023b] Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Witte, K.A., Fiers, P., Sheets-Singer, A.L., Collins, S.H.: Improving the energy economy of human running with powered and unpowered ankle exoskeleton assistance. Science Robotics 5 (2020) Zhu et al. [2021] Zhu, F., Kern, M., Fowkes, E., Afzal, T., Contreras-Vidal, J.-L., Francisco, G.E., Chang, S.-H.: Effects of an exoskeleton-assisted gait training on post-stroke lower-limb muscle coordination. Journal of Neural Engineering 18, 046039 (2021) Küçüktabak et al. [2024] Küçüktabak, E.B., Wen, Y., Kim, S.J., Short, M., Ludvig, D., Hargrove, L., Perreault, E., Lynch, K., Pons, J.: Haptic transparency and interaction force control for a lower-limb exoskeleton. IEEE Transactions on Robotics (2024) Eva and Grizzle [2020] Eva, M.M., Grizzle, J.W.: Feedback control design for robust comfortable sit-to-stand motions of 3d lower-limb exoskeletons. IEEE Access 9, 122–161 (2020) Masengo et al. [2023] Masengo, G., Zhang, X., Dong, R., , A.B.A., Hamza, K., Mudaheranwa, E.: Lower limb exoskeleton robot and its cooperative control: A review, trends, and challenges for future research. Frontiers in Neurorobotics 16, 1–25 (2023) Ingraham et al. [2022] Ingraham, K.A., Remy, C.D., Rouse, E.J.: The role of user preference in the customized control of robotic exoskeletons. Science robotics 7 (2022) Pinto-Fernandez et al. [2020] Pinto-Fernandez, D., Diego, T., Carmen Sanchez-Villamanan, M., Aller, F., Mombaur, K., Conti, R., Vitiello, N., Moreno, J.C., Pons, J.L.: Performance evaluation of lower limb exoskeletons: A systematic review. IEEE Transactions on Neural Systems and Rehabilitation Engineering 28, 1573–1583 (2020) Slade et al. [2022] Slade, P., Kochenderfer, M.J., Delp, S.L., Collins, S.H.: Personalizing exoskeleton assistance while walking in the real world. Nature 610, 277–282 (2022) Medina et al. [2015] Medina, J.R., Lorenz, T., Hirche, S.: Synthesizing anticipatory haptic assistance considering human behavior uncertainty. IEEE Transactions on Robotics 31, 180–190 (2015) Martinez et al. [2018] Martinez, A., Lawson, B., Durrough, C., Goldfarb, M.: A velocity-field-based controller for assisting leg movement during walking with a bilateral hip and knee lower limb exoskeleton. IEEE Transactions on Robotics 35, 307–316 (2018) Shushtari et al. [2021] Shushtari, M., Nasiri, R., Arami, A.: Online reference trajectory adaptation: A personalized control strategy for lower limb exoskeletons. IEEE Robotics and Automation Letters 7, 128–134 (2021) Asl et al. [2020] Asl, H.J., Yamashita, M., Narikiyo, T., Kawanishi, M.: Field-based assist-as-needed control schemes for rehabilitation robots. IEEE/ASME Transactions on Mechatronics 25, 2100–2111 (2020) Dominijanni et al. [2023] Dominijanni, G., Pinheiro, D.L., Pollina, L., Orset, B., Gini, M., Anselmino, E., Pierella, C., Olivier, J., Shokur, S., Micera, S.: Human motor augmentation with an extra robotic arm without functional interference. Science Robotics 8 (2023) Losey et al. [2018] Losey, D.P., Mcdonald, C.G., Battaglia, E., O’Malley, M.: A review of intent detection, arbitration, and communication aspects of shared control for physical human-robot interaction. Applied Mechanics Reviews 70 (2018) https://doi.org/10.1115/1.4039145 Jackson and Collins [2019] Jackson, R.W., Collins, S.H.: Heuristic-based ankle exoskeleton control for co-adaptive assistance of human locomotion. IEEE Transactions on Neural Systems and Rehabilitation Engineering 27, 2059–2069 (2019) Banala et al. [2007] Banala, S.K., Agrawal, S.K., Scholz, J.P.: Active leg exoskeleton (alex) for gait rehabilitation of motor-impaired patients. In: 2007 IEEE 10th International Conference on Rehabilitation Robotics, pp. 401–407 (2007). 2007 IEEE 10th International Conference on Rehabilitation Robotics Dinovitzer et al. [2023a] Dinovitzer, H., Shushtari, M., Arami, A.: Feedforward control of lower limb exoskeletons: which torque profile should we use? IEEE Robotics and Automation Letters (2023) Dinovitzer et al. [2023b] Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Zhu, F., Kern, M., Fowkes, E., Afzal, T., Contreras-Vidal, J.-L., Francisco, G.E., Chang, S.-H.: Effects of an exoskeleton-assisted gait training on post-stroke lower-limb muscle coordination. Journal of Neural Engineering 18, 046039 (2021) Küçüktabak et al. [2024] Küçüktabak, E.B., Wen, Y., Kim, S.J., Short, M., Ludvig, D., Hargrove, L., Perreault, E., Lynch, K., Pons, J.: Haptic transparency and interaction force control for a lower-limb exoskeleton. IEEE Transactions on Robotics (2024) Eva and Grizzle [2020] Eva, M.M., Grizzle, J.W.: Feedback control design for robust comfortable sit-to-stand motions of 3d lower-limb exoskeletons. IEEE Access 9, 122–161 (2020) Masengo et al. [2023] Masengo, G., Zhang, X., Dong, R., , A.B.A., Hamza, K., Mudaheranwa, E.: Lower limb exoskeleton robot and its cooperative control: A review, trends, and challenges for future research. Frontiers in Neurorobotics 16, 1–25 (2023) Ingraham et al. [2022] Ingraham, K.A., Remy, C.D., Rouse, E.J.: The role of user preference in the customized control of robotic exoskeletons. Science robotics 7 (2022) Pinto-Fernandez et al. [2020] Pinto-Fernandez, D., Diego, T., Carmen Sanchez-Villamanan, M., Aller, F., Mombaur, K., Conti, R., Vitiello, N., Moreno, J.C., Pons, J.L.: Performance evaluation of lower limb exoskeletons: A systematic review. IEEE Transactions on Neural Systems and Rehabilitation Engineering 28, 1573–1583 (2020) Slade et al. [2022] Slade, P., Kochenderfer, M.J., Delp, S.L., Collins, S.H.: Personalizing exoskeleton assistance while walking in the real world. Nature 610, 277–282 (2022) Medina et al. [2015] Medina, J.R., Lorenz, T., Hirche, S.: Synthesizing anticipatory haptic assistance considering human behavior uncertainty. IEEE Transactions on Robotics 31, 180–190 (2015) Martinez et al. [2018] Martinez, A., Lawson, B., Durrough, C., Goldfarb, M.: A velocity-field-based controller for assisting leg movement during walking with a bilateral hip and knee lower limb exoskeleton. IEEE Transactions on Robotics 35, 307–316 (2018) Shushtari et al. [2021] Shushtari, M., Nasiri, R., Arami, A.: Online reference trajectory adaptation: A personalized control strategy for lower limb exoskeletons. IEEE Robotics and Automation Letters 7, 128–134 (2021) Asl et al. [2020] Asl, H.J., Yamashita, M., Narikiyo, T., Kawanishi, M.: Field-based assist-as-needed control schemes for rehabilitation robots. IEEE/ASME Transactions on Mechatronics 25, 2100–2111 (2020) Dominijanni et al. [2023] Dominijanni, G., Pinheiro, D.L., Pollina, L., Orset, B., Gini, M., Anselmino, E., Pierella, C., Olivier, J., Shokur, S., Micera, S.: Human motor augmentation with an extra robotic arm without functional interference. Science Robotics 8 (2023) Losey et al. [2018] Losey, D.P., Mcdonald, C.G., Battaglia, E., O’Malley, M.: A review of intent detection, arbitration, and communication aspects of shared control for physical human-robot interaction. Applied Mechanics Reviews 70 (2018) https://doi.org/10.1115/1.4039145 Jackson and Collins [2019] Jackson, R.W., Collins, S.H.: Heuristic-based ankle exoskeleton control for co-adaptive assistance of human locomotion. IEEE Transactions on Neural Systems and Rehabilitation Engineering 27, 2059–2069 (2019) Banala et al. [2007] Banala, S.K., Agrawal, S.K., Scholz, J.P.: Active leg exoskeleton (alex) for gait rehabilitation of motor-impaired patients. In: 2007 IEEE 10th International Conference on Rehabilitation Robotics, pp. 401–407 (2007). 2007 IEEE 10th International Conference on Rehabilitation Robotics Dinovitzer et al. [2023a] Dinovitzer, H., Shushtari, M., Arami, A.: Feedforward control of lower limb exoskeletons: which torque profile should we use? IEEE Robotics and Automation Letters (2023) Dinovitzer et al. [2023b] Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Küçüktabak, E.B., Wen, Y., Kim, S.J., Short, M., Ludvig, D., Hargrove, L., Perreault, E., Lynch, K., Pons, J.: Haptic transparency and interaction force control for a lower-limb exoskeleton. IEEE Transactions on Robotics (2024) Eva and Grizzle [2020] Eva, M.M., Grizzle, J.W.: Feedback control design for robust comfortable sit-to-stand motions of 3d lower-limb exoskeletons. IEEE Access 9, 122–161 (2020) Masengo et al. [2023] Masengo, G., Zhang, X., Dong, R., , A.B.A., Hamza, K., Mudaheranwa, E.: Lower limb exoskeleton robot and its cooperative control: A review, trends, and challenges for future research. Frontiers in Neurorobotics 16, 1–25 (2023) Ingraham et al. [2022] Ingraham, K.A., Remy, C.D., Rouse, E.J.: The role of user preference in the customized control of robotic exoskeletons. Science robotics 7 (2022) Pinto-Fernandez et al. [2020] Pinto-Fernandez, D., Diego, T., Carmen Sanchez-Villamanan, M., Aller, F., Mombaur, K., Conti, R., Vitiello, N., Moreno, J.C., Pons, J.L.: Performance evaluation of lower limb exoskeletons: A systematic review. IEEE Transactions on Neural Systems and Rehabilitation Engineering 28, 1573–1583 (2020) Slade et al. [2022] Slade, P., Kochenderfer, M.J., Delp, S.L., Collins, S.H.: Personalizing exoskeleton assistance while walking in the real world. Nature 610, 277–282 (2022) Medina et al. [2015] Medina, J.R., Lorenz, T., Hirche, S.: Synthesizing anticipatory haptic assistance considering human behavior uncertainty. IEEE Transactions on Robotics 31, 180–190 (2015) Martinez et al. [2018] Martinez, A., Lawson, B., Durrough, C., Goldfarb, M.: A velocity-field-based controller for assisting leg movement during walking with a bilateral hip and knee lower limb exoskeleton. IEEE Transactions on Robotics 35, 307–316 (2018) Shushtari et al. [2021] Shushtari, M., Nasiri, R., Arami, A.: Online reference trajectory adaptation: A personalized control strategy for lower limb exoskeletons. IEEE Robotics and Automation Letters 7, 128–134 (2021) Asl et al. [2020] Asl, H.J., Yamashita, M., Narikiyo, T., Kawanishi, M.: Field-based assist-as-needed control schemes for rehabilitation robots. IEEE/ASME Transactions on Mechatronics 25, 2100–2111 (2020) Dominijanni et al. [2023] Dominijanni, G., Pinheiro, D.L., Pollina, L., Orset, B., Gini, M., Anselmino, E., Pierella, C., Olivier, J., Shokur, S., Micera, S.: Human motor augmentation with an extra robotic arm without functional interference. Science Robotics 8 (2023) Losey et al. [2018] Losey, D.P., Mcdonald, C.G., Battaglia, E., O’Malley, M.: A review of intent detection, arbitration, and communication aspects of shared control for physical human-robot interaction. Applied Mechanics Reviews 70 (2018) https://doi.org/10.1115/1.4039145 Jackson and Collins [2019] Jackson, R.W., Collins, S.H.: Heuristic-based ankle exoskeleton control for co-adaptive assistance of human locomotion. IEEE Transactions on Neural Systems and Rehabilitation Engineering 27, 2059–2069 (2019) Banala et al. [2007] Banala, S.K., Agrawal, S.K., Scholz, J.P.: Active leg exoskeleton (alex) for gait rehabilitation of motor-impaired patients. In: 2007 IEEE 10th International Conference on Rehabilitation Robotics, pp. 401–407 (2007). 2007 IEEE 10th International Conference on Rehabilitation Robotics Dinovitzer et al. [2023a] Dinovitzer, H., Shushtari, M., Arami, A.: Feedforward control of lower limb exoskeletons: which torque profile should we use? IEEE Robotics and Automation Letters (2023) Dinovitzer et al. [2023b] Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Eva, M.M., Grizzle, J.W.: Feedback control design for robust comfortable sit-to-stand motions of 3d lower-limb exoskeletons. IEEE Access 9, 122–161 (2020) Masengo et al. [2023] Masengo, G., Zhang, X., Dong, R., , A.B.A., Hamza, K., Mudaheranwa, E.: Lower limb exoskeleton robot and its cooperative control: A review, trends, and challenges for future research. Frontiers in Neurorobotics 16, 1–25 (2023) Ingraham et al. [2022] Ingraham, K.A., Remy, C.D., Rouse, E.J.: The role of user preference in the customized control of robotic exoskeletons. Science robotics 7 (2022) Pinto-Fernandez et al. [2020] Pinto-Fernandez, D., Diego, T., Carmen Sanchez-Villamanan, M., Aller, F., Mombaur, K., Conti, R., Vitiello, N., Moreno, J.C., Pons, J.L.: Performance evaluation of lower limb exoskeletons: A systematic review. IEEE Transactions on Neural Systems and Rehabilitation Engineering 28, 1573–1583 (2020) Slade et al. [2022] Slade, P., Kochenderfer, M.J., Delp, S.L., Collins, S.H.: Personalizing exoskeleton assistance while walking in the real world. Nature 610, 277–282 (2022) Medina et al. [2015] Medina, J.R., Lorenz, T., Hirche, S.: Synthesizing anticipatory haptic assistance considering human behavior uncertainty. IEEE Transactions on Robotics 31, 180–190 (2015) Martinez et al. [2018] Martinez, A., Lawson, B., Durrough, C., Goldfarb, M.: A velocity-field-based controller for assisting leg movement during walking with a bilateral hip and knee lower limb exoskeleton. IEEE Transactions on Robotics 35, 307–316 (2018) Shushtari et al. [2021] Shushtari, M., Nasiri, R., Arami, A.: Online reference trajectory adaptation: A personalized control strategy for lower limb exoskeletons. IEEE Robotics and Automation Letters 7, 128–134 (2021) Asl et al. [2020] Asl, H.J., Yamashita, M., Narikiyo, T., Kawanishi, M.: Field-based assist-as-needed control schemes for rehabilitation robots. IEEE/ASME Transactions on Mechatronics 25, 2100–2111 (2020) Dominijanni et al. [2023] Dominijanni, G., Pinheiro, D.L., Pollina, L., Orset, B., Gini, M., Anselmino, E., Pierella, C., Olivier, J., Shokur, S., Micera, S.: Human motor augmentation with an extra robotic arm without functional interference. Science Robotics 8 (2023) Losey et al. [2018] Losey, D.P., Mcdonald, C.G., Battaglia, E., O’Malley, M.: A review of intent detection, arbitration, and communication aspects of shared control for physical human-robot interaction. Applied Mechanics Reviews 70 (2018) https://doi.org/10.1115/1.4039145 Jackson and Collins [2019] Jackson, R.W., Collins, S.H.: Heuristic-based ankle exoskeleton control for co-adaptive assistance of human locomotion. IEEE Transactions on Neural Systems and Rehabilitation Engineering 27, 2059–2069 (2019) Banala et al. [2007] Banala, S.K., Agrawal, S.K., Scholz, J.P.: Active leg exoskeleton (alex) for gait rehabilitation of motor-impaired patients. In: 2007 IEEE 10th International Conference on Rehabilitation Robotics, pp. 401–407 (2007). 2007 IEEE 10th International Conference on Rehabilitation Robotics Dinovitzer et al. [2023a] Dinovitzer, H., Shushtari, M., Arami, A.: Feedforward control of lower limb exoskeletons: which torque profile should we use? IEEE Robotics and Automation Letters (2023) Dinovitzer et al. [2023b] Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Masengo, G., Zhang, X., Dong, R., , A.B.A., Hamza, K., Mudaheranwa, E.: Lower limb exoskeleton robot and its cooperative control: A review, trends, and challenges for future research. Frontiers in Neurorobotics 16, 1–25 (2023) Ingraham et al. [2022] Ingraham, K.A., Remy, C.D., Rouse, E.J.: The role of user preference in the customized control of robotic exoskeletons. Science robotics 7 (2022) Pinto-Fernandez et al. [2020] Pinto-Fernandez, D., Diego, T., Carmen Sanchez-Villamanan, M., Aller, F., Mombaur, K., Conti, R., Vitiello, N., Moreno, J.C., Pons, J.L.: Performance evaluation of lower limb exoskeletons: A systematic review. IEEE Transactions on Neural Systems and Rehabilitation Engineering 28, 1573–1583 (2020) Slade et al. [2022] Slade, P., Kochenderfer, M.J., Delp, S.L., Collins, S.H.: Personalizing exoskeleton assistance while walking in the real world. Nature 610, 277–282 (2022) Medina et al. [2015] Medina, J.R., Lorenz, T., Hirche, S.: Synthesizing anticipatory haptic assistance considering human behavior uncertainty. IEEE Transactions on Robotics 31, 180–190 (2015) Martinez et al. [2018] Martinez, A., Lawson, B., Durrough, C., Goldfarb, M.: A velocity-field-based controller for assisting leg movement during walking with a bilateral hip and knee lower limb exoskeleton. IEEE Transactions on Robotics 35, 307–316 (2018) Shushtari et al. [2021] Shushtari, M., Nasiri, R., Arami, A.: Online reference trajectory adaptation: A personalized control strategy for lower limb exoskeletons. IEEE Robotics and Automation Letters 7, 128–134 (2021) Asl et al. [2020] Asl, H.J., Yamashita, M., Narikiyo, T., Kawanishi, M.: Field-based assist-as-needed control schemes for rehabilitation robots. IEEE/ASME Transactions on Mechatronics 25, 2100–2111 (2020) Dominijanni et al. [2023] Dominijanni, G., Pinheiro, D.L., Pollina, L., Orset, B., Gini, M., Anselmino, E., Pierella, C., Olivier, J., Shokur, S., Micera, S.: Human motor augmentation with an extra robotic arm without functional interference. Science Robotics 8 (2023) Losey et al. [2018] Losey, D.P., Mcdonald, C.G., Battaglia, E., O’Malley, M.: A review of intent detection, arbitration, and communication aspects of shared control for physical human-robot interaction. Applied Mechanics Reviews 70 (2018) https://doi.org/10.1115/1.4039145 Jackson and Collins [2019] Jackson, R.W., Collins, S.H.: Heuristic-based ankle exoskeleton control for co-adaptive assistance of human locomotion. IEEE Transactions on Neural Systems and Rehabilitation Engineering 27, 2059–2069 (2019) Banala et al. [2007] Banala, S.K., Agrawal, S.K., Scholz, J.P.: Active leg exoskeleton (alex) for gait rehabilitation of motor-impaired patients. In: 2007 IEEE 10th International Conference on Rehabilitation Robotics, pp. 401–407 (2007). 2007 IEEE 10th International Conference on Rehabilitation Robotics Dinovitzer et al. [2023a] Dinovitzer, H., Shushtari, M., Arami, A.: Feedforward control of lower limb exoskeletons: which torque profile should we use? IEEE Robotics and Automation Letters (2023) Dinovitzer et al. [2023b] Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Ingraham, K.A., Remy, C.D., Rouse, E.J.: The role of user preference in the customized control of robotic exoskeletons. Science robotics 7 (2022) Pinto-Fernandez et al. [2020] Pinto-Fernandez, D., Diego, T., Carmen Sanchez-Villamanan, M., Aller, F., Mombaur, K., Conti, R., Vitiello, N., Moreno, J.C., Pons, J.L.: Performance evaluation of lower limb exoskeletons: A systematic review. IEEE Transactions on Neural Systems and Rehabilitation Engineering 28, 1573–1583 (2020) Slade et al. [2022] Slade, P., Kochenderfer, M.J., Delp, S.L., Collins, S.H.: Personalizing exoskeleton assistance while walking in the real world. Nature 610, 277–282 (2022) Medina et al. [2015] Medina, J.R., Lorenz, T., Hirche, S.: Synthesizing anticipatory haptic assistance considering human behavior uncertainty. IEEE Transactions on Robotics 31, 180–190 (2015) Martinez et al. [2018] Martinez, A., Lawson, B., Durrough, C., Goldfarb, M.: A velocity-field-based controller for assisting leg movement during walking with a bilateral hip and knee lower limb exoskeleton. IEEE Transactions on Robotics 35, 307–316 (2018) Shushtari et al. [2021] Shushtari, M., Nasiri, R., Arami, A.: Online reference trajectory adaptation: A personalized control strategy for lower limb exoskeletons. IEEE Robotics and Automation Letters 7, 128–134 (2021) Asl et al. [2020] Asl, H.J., Yamashita, M., Narikiyo, T., Kawanishi, M.: Field-based assist-as-needed control schemes for rehabilitation robots. IEEE/ASME Transactions on Mechatronics 25, 2100–2111 (2020) Dominijanni et al. [2023] Dominijanni, G., Pinheiro, D.L., Pollina, L., Orset, B., Gini, M., Anselmino, E., Pierella, C., Olivier, J., Shokur, S., Micera, S.: Human motor augmentation with an extra robotic arm without functional interference. Science Robotics 8 (2023) Losey et al. [2018] Losey, D.P., Mcdonald, C.G., Battaglia, E., O’Malley, M.: A review of intent detection, arbitration, and communication aspects of shared control for physical human-robot interaction. Applied Mechanics Reviews 70 (2018) https://doi.org/10.1115/1.4039145 Jackson and Collins [2019] Jackson, R.W., Collins, S.H.: Heuristic-based ankle exoskeleton control for co-adaptive assistance of human locomotion. IEEE Transactions on Neural Systems and Rehabilitation Engineering 27, 2059–2069 (2019) Banala et al. [2007] Banala, S.K., Agrawal, S.K., Scholz, J.P.: Active leg exoskeleton (alex) for gait rehabilitation of motor-impaired patients. In: 2007 IEEE 10th International Conference on Rehabilitation Robotics, pp. 401–407 (2007). 2007 IEEE 10th International Conference on Rehabilitation Robotics Dinovitzer et al. [2023a] Dinovitzer, H., Shushtari, M., Arami, A.: Feedforward control of lower limb exoskeletons: which torque profile should we use? IEEE Robotics and Automation Letters (2023) Dinovitzer et al. [2023b] Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Pinto-Fernandez, D., Diego, T., Carmen Sanchez-Villamanan, M., Aller, F., Mombaur, K., Conti, R., Vitiello, N., Moreno, J.C., Pons, J.L.: Performance evaluation of lower limb exoskeletons: A systematic review. IEEE Transactions on Neural Systems and Rehabilitation Engineering 28, 1573–1583 (2020) Slade et al. [2022] Slade, P., Kochenderfer, M.J., Delp, S.L., Collins, S.H.: Personalizing exoskeleton assistance while walking in the real world. Nature 610, 277–282 (2022) Medina et al. [2015] Medina, J.R., Lorenz, T., Hirche, S.: Synthesizing anticipatory haptic assistance considering human behavior uncertainty. IEEE Transactions on Robotics 31, 180–190 (2015) Martinez et al. [2018] Martinez, A., Lawson, B., Durrough, C., Goldfarb, M.: A velocity-field-based controller for assisting leg movement during walking with a bilateral hip and knee lower limb exoskeleton. IEEE Transactions on Robotics 35, 307–316 (2018) Shushtari et al. [2021] Shushtari, M., Nasiri, R., Arami, A.: Online reference trajectory adaptation: A personalized control strategy for lower limb exoskeletons. IEEE Robotics and Automation Letters 7, 128–134 (2021) Asl et al. [2020] Asl, H.J., Yamashita, M., Narikiyo, T., Kawanishi, M.: Field-based assist-as-needed control schemes for rehabilitation robots. IEEE/ASME Transactions on Mechatronics 25, 2100–2111 (2020) Dominijanni et al. [2023] Dominijanni, G., Pinheiro, D.L., Pollina, L., Orset, B., Gini, M., Anselmino, E., Pierella, C., Olivier, J., Shokur, S., Micera, S.: Human motor augmentation with an extra robotic arm without functional interference. Science Robotics 8 (2023) Losey et al. [2018] Losey, D.P., Mcdonald, C.G., Battaglia, E., O’Malley, M.: A review of intent detection, arbitration, and communication aspects of shared control for physical human-robot interaction. Applied Mechanics Reviews 70 (2018) https://doi.org/10.1115/1.4039145 Jackson and Collins [2019] Jackson, R.W., Collins, S.H.: Heuristic-based ankle exoskeleton control for co-adaptive assistance of human locomotion. IEEE Transactions on Neural Systems and Rehabilitation Engineering 27, 2059–2069 (2019) Banala et al. [2007] Banala, S.K., Agrawal, S.K., Scholz, J.P.: Active leg exoskeleton (alex) for gait rehabilitation of motor-impaired patients. In: 2007 IEEE 10th International Conference on Rehabilitation Robotics, pp. 401–407 (2007). 2007 IEEE 10th International Conference on Rehabilitation Robotics Dinovitzer et al. [2023a] Dinovitzer, H., Shushtari, M., Arami, A.: Feedforward control of lower limb exoskeletons: which torque profile should we use? IEEE Robotics and Automation Letters (2023) Dinovitzer et al. [2023b] Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Slade, P., Kochenderfer, M.J., Delp, S.L., Collins, S.H.: Personalizing exoskeleton assistance while walking in the real world. Nature 610, 277–282 (2022) Medina et al. [2015] Medina, J.R., Lorenz, T., Hirche, S.: Synthesizing anticipatory haptic assistance considering human behavior uncertainty. IEEE Transactions on Robotics 31, 180–190 (2015) Martinez et al. [2018] Martinez, A., Lawson, B., Durrough, C., Goldfarb, M.: A velocity-field-based controller for assisting leg movement during walking with a bilateral hip and knee lower limb exoskeleton. IEEE Transactions on Robotics 35, 307–316 (2018) Shushtari et al. [2021] Shushtari, M., Nasiri, R., Arami, A.: Online reference trajectory adaptation: A personalized control strategy for lower limb exoskeletons. IEEE Robotics and Automation Letters 7, 128–134 (2021) Asl et al. [2020] Asl, H.J., Yamashita, M., Narikiyo, T., Kawanishi, M.: Field-based assist-as-needed control schemes for rehabilitation robots. IEEE/ASME Transactions on Mechatronics 25, 2100–2111 (2020) Dominijanni et al. [2023] Dominijanni, G., Pinheiro, D.L., Pollina, L., Orset, B., Gini, M., Anselmino, E., Pierella, C., Olivier, J., Shokur, S., Micera, S.: Human motor augmentation with an extra robotic arm without functional interference. Science Robotics 8 (2023) Losey et al. [2018] Losey, D.P., Mcdonald, C.G., Battaglia, E., O’Malley, M.: A review of intent detection, arbitration, and communication aspects of shared control for physical human-robot interaction. Applied Mechanics Reviews 70 (2018) https://doi.org/10.1115/1.4039145 Jackson and Collins [2019] Jackson, R.W., Collins, S.H.: Heuristic-based ankle exoskeleton control for co-adaptive assistance of human locomotion. IEEE Transactions on Neural Systems and Rehabilitation Engineering 27, 2059–2069 (2019) Banala et al. [2007] Banala, S.K., Agrawal, S.K., Scholz, J.P.: Active leg exoskeleton (alex) for gait rehabilitation of motor-impaired patients. In: 2007 IEEE 10th International Conference on Rehabilitation Robotics, pp. 401–407 (2007). 2007 IEEE 10th International Conference on Rehabilitation Robotics Dinovitzer et al. [2023a] Dinovitzer, H., Shushtari, M., Arami, A.: Feedforward control of lower limb exoskeletons: which torque profile should we use? IEEE Robotics and Automation Letters (2023) Dinovitzer et al. [2023b] Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Medina, J.R., Lorenz, T., Hirche, S.: Synthesizing anticipatory haptic assistance considering human behavior uncertainty. IEEE Transactions on Robotics 31, 180–190 (2015) Martinez et al. [2018] Martinez, A., Lawson, B., Durrough, C., Goldfarb, M.: A velocity-field-based controller for assisting leg movement during walking with a bilateral hip and knee lower limb exoskeleton. IEEE Transactions on Robotics 35, 307–316 (2018) Shushtari et al. [2021] Shushtari, M., Nasiri, R., Arami, A.: Online reference trajectory adaptation: A personalized control strategy for lower limb exoskeletons. IEEE Robotics and Automation Letters 7, 128–134 (2021) Asl et al. [2020] Asl, H.J., Yamashita, M., Narikiyo, T., Kawanishi, M.: Field-based assist-as-needed control schemes for rehabilitation robots. IEEE/ASME Transactions on Mechatronics 25, 2100–2111 (2020) Dominijanni et al. [2023] Dominijanni, G., Pinheiro, D.L., Pollina, L., Orset, B., Gini, M., Anselmino, E., Pierella, C., Olivier, J., Shokur, S., Micera, S.: Human motor augmentation with an extra robotic arm without functional interference. Science Robotics 8 (2023) Losey et al. [2018] Losey, D.P., Mcdonald, C.G., Battaglia, E., O’Malley, M.: A review of intent detection, arbitration, and communication aspects of shared control for physical human-robot interaction. Applied Mechanics Reviews 70 (2018) https://doi.org/10.1115/1.4039145 Jackson and Collins [2019] Jackson, R.W., Collins, S.H.: Heuristic-based ankle exoskeleton control for co-adaptive assistance of human locomotion. IEEE Transactions on Neural Systems and Rehabilitation Engineering 27, 2059–2069 (2019) Banala et al. [2007] Banala, S.K., Agrawal, S.K., Scholz, J.P.: Active leg exoskeleton (alex) for gait rehabilitation of motor-impaired patients. In: 2007 IEEE 10th International Conference on Rehabilitation Robotics, pp. 401–407 (2007). 2007 IEEE 10th International Conference on Rehabilitation Robotics Dinovitzer et al. [2023a] Dinovitzer, H., Shushtari, M., Arami, A.: Feedforward control of lower limb exoskeletons: which torque profile should we use? IEEE Robotics and Automation Letters (2023) Dinovitzer et al. [2023b] Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Martinez, A., Lawson, B., Durrough, C., Goldfarb, M.: A velocity-field-based controller for assisting leg movement during walking with a bilateral hip and knee lower limb exoskeleton. IEEE Transactions on Robotics 35, 307–316 (2018) Shushtari et al. [2021] Shushtari, M., Nasiri, R., Arami, A.: Online reference trajectory adaptation: A personalized control strategy for lower limb exoskeletons. IEEE Robotics and Automation Letters 7, 128–134 (2021) Asl et al. [2020] Asl, H.J., Yamashita, M., Narikiyo, T., Kawanishi, M.: Field-based assist-as-needed control schemes for rehabilitation robots. IEEE/ASME Transactions on Mechatronics 25, 2100–2111 (2020) Dominijanni et al. [2023] Dominijanni, G., Pinheiro, D.L., Pollina, L., Orset, B., Gini, M., Anselmino, E., Pierella, C., Olivier, J., Shokur, S., Micera, S.: Human motor augmentation with an extra robotic arm without functional interference. Science Robotics 8 (2023) Losey et al. [2018] Losey, D.P., Mcdonald, C.G., Battaglia, E., O’Malley, M.: A review of intent detection, arbitration, and communication aspects of shared control for physical human-robot interaction. Applied Mechanics Reviews 70 (2018) https://doi.org/10.1115/1.4039145 Jackson and Collins [2019] Jackson, R.W., Collins, S.H.: Heuristic-based ankle exoskeleton control for co-adaptive assistance of human locomotion. IEEE Transactions on Neural Systems and Rehabilitation Engineering 27, 2059–2069 (2019) Banala et al. [2007] Banala, S.K., Agrawal, S.K., Scholz, J.P.: Active leg exoskeleton (alex) for gait rehabilitation of motor-impaired patients. In: 2007 IEEE 10th International Conference on Rehabilitation Robotics, pp. 401–407 (2007). 2007 IEEE 10th International Conference on Rehabilitation Robotics Dinovitzer et al. [2023a] Dinovitzer, H., Shushtari, M., Arami, A.: Feedforward control of lower limb exoskeletons: which torque profile should we use? IEEE Robotics and Automation Letters (2023) Dinovitzer et al. [2023b] Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Shushtari, M., Nasiri, R., Arami, A.: Online reference trajectory adaptation: A personalized control strategy for lower limb exoskeletons. IEEE Robotics and Automation Letters 7, 128–134 (2021) Asl et al. [2020] Asl, H.J., Yamashita, M., Narikiyo, T., Kawanishi, M.: Field-based assist-as-needed control schemes for rehabilitation robots. IEEE/ASME Transactions on Mechatronics 25, 2100–2111 (2020) Dominijanni et al. [2023] Dominijanni, G., Pinheiro, D.L., Pollina, L., Orset, B., Gini, M., Anselmino, E., Pierella, C., Olivier, J., Shokur, S., Micera, S.: Human motor augmentation with an extra robotic arm without functional interference. Science Robotics 8 (2023) Losey et al. [2018] Losey, D.P., Mcdonald, C.G., Battaglia, E., O’Malley, M.: A review of intent detection, arbitration, and communication aspects of shared control for physical human-robot interaction. Applied Mechanics Reviews 70 (2018) https://doi.org/10.1115/1.4039145 Jackson and Collins [2019] Jackson, R.W., Collins, S.H.: Heuristic-based ankle exoskeleton control for co-adaptive assistance of human locomotion. IEEE Transactions on Neural Systems and Rehabilitation Engineering 27, 2059–2069 (2019) Banala et al. [2007] Banala, S.K., Agrawal, S.K., Scholz, J.P.: Active leg exoskeleton (alex) for gait rehabilitation of motor-impaired patients. In: 2007 IEEE 10th International Conference on Rehabilitation Robotics, pp. 401–407 (2007). 2007 IEEE 10th International Conference on Rehabilitation Robotics Dinovitzer et al. [2023a] Dinovitzer, H., Shushtari, M., Arami, A.: Feedforward control of lower limb exoskeletons: which torque profile should we use? IEEE Robotics and Automation Letters (2023) Dinovitzer et al. [2023b] Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Asl, H.J., Yamashita, M., Narikiyo, T., Kawanishi, M.: Field-based assist-as-needed control schemes for rehabilitation robots. IEEE/ASME Transactions on Mechatronics 25, 2100–2111 (2020) Dominijanni et al. [2023] Dominijanni, G., Pinheiro, D.L., Pollina, L., Orset, B., Gini, M., Anselmino, E., Pierella, C., Olivier, J., Shokur, S., Micera, S.: Human motor augmentation with an extra robotic arm without functional interference. Science Robotics 8 (2023) Losey et al. [2018] Losey, D.P., Mcdonald, C.G., Battaglia, E., O’Malley, M.: A review of intent detection, arbitration, and communication aspects of shared control for physical human-robot interaction. Applied Mechanics Reviews 70 (2018) https://doi.org/10.1115/1.4039145 Jackson and Collins [2019] Jackson, R.W., Collins, S.H.: Heuristic-based ankle exoskeleton control for co-adaptive assistance of human locomotion. IEEE Transactions on Neural Systems and Rehabilitation Engineering 27, 2059–2069 (2019) Banala et al. [2007] Banala, S.K., Agrawal, S.K., Scholz, J.P.: Active leg exoskeleton (alex) for gait rehabilitation of motor-impaired patients. In: 2007 IEEE 10th International Conference on Rehabilitation Robotics, pp. 401–407 (2007). 2007 IEEE 10th International Conference on Rehabilitation Robotics Dinovitzer et al. [2023a] Dinovitzer, H., Shushtari, M., Arami, A.: Feedforward control of lower limb exoskeletons: which torque profile should we use? IEEE Robotics and Automation Letters (2023) Dinovitzer et al. [2023b] Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Dominijanni, G., Pinheiro, D.L., Pollina, L., Orset, B., Gini, M., Anselmino, E., Pierella, C., Olivier, J., Shokur, S., Micera, S.: Human motor augmentation with an extra robotic arm without functional interference. Science Robotics 8 (2023) Losey et al. [2018] Losey, D.P., Mcdonald, C.G., Battaglia, E., O’Malley, M.: A review of intent detection, arbitration, and communication aspects of shared control for physical human-robot interaction. Applied Mechanics Reviews 70 (2018) https://doi.org/10.1115/1.4039145 Jackson and Collins [2019] Jackson, R.W., Collins, S.H.: Heuristic-based ankle exoskeleton control for co-adaptive assistance of human locomotion. IEEE Transactions on Neural Systems and Rehabilitation Engineering 27, 2059–2069 (2019) Banala et al. [2007] Banala, S.K., Agrawal, S.K., Scholz, J.P.: Active leg exoskeleton (alex) for gait rehabilitation of motor-impaired patients. In: 2007 IEEE 10th International Conference on Rehabilitation Robotics, pp. 401–407 (2007). 2007 IEEE 10th International Conference on Rehabilitation Robotics Dinovitzer et al. [2023a] Dinovitzer, H., Shushtari, M., Arami, A.: Feedforward control of lower limb exoskeletons: which torque profile should we use? IEEE Robotics and Automation Letters (2023) Dinovitzer et al. [2023b] Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Losey, D.P., Mcdonald, C.G., Battaglia, E., O’Malley, M.: A review of intent detection, arbitration, and communication aspects of shared control for physical human-robot interaction. Applied Mechanics Reviews 70 (2018) https://doi.org/10.1115/1.4039145 Jackson and Collins [2019] Jackson, R.W., Collins, S.H.: Heuristic-based ankle exoskeleton control for co-adaptive assistance of human locomotion. IEEE Transactions on Neural Systems and Rehabilitation Engineering 27, 2059–2069 (2019) Banala et al. [2007] Banala, S.K., Agrawal, S.K., Scholz, J.P.: Active leg exoskeleton (alex) for gait rehabilitation of motor-impaired patients. In: 2007 IEEE 10th International Conference on Rehabilitation Robotics, pp. 401–407 (2007). 2007 IEEE 10th International Conference on Rehabilitation Robotics Dinovitzer et al. [2023a] Dinovitzer, H., Shushtari, M., Arami, A.: Feedforward control of lower limb exoskeletons: which torque profile should we use? IEEE Robotics and Automation Letters (2023) Dinovitzer et al. [2023b] Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Jackson, R.W., Collins, S.H.: Heuristic-based ankle exoskeleton control for co-adaptive assistance of human locomotion. IEEE Transactions on Neural Systems and Rehabilitation Engineering 27, 2059–2069 (2019) Banala et al. [2007] Banala, S.K., Agrawal, S.K., Scholz, J.P.: Active leg exoskeleton (alex) for gait rehabilitation of motor-impaired patients. In: 2007 IEEE 10th International Conference on Rehabilitation Robotics, pp. 401–407 (2007). 2007 IEEE 10th International Conference on Rehabilitation Robotics Dinovitzer et al. [2023a] Dinovitzer, H., Shushtari, M., Arami, A.: Feedforward control of lower limb exoskeletons: which torque profile should we use? IEEE Robotics and Automation Letters (2023) Dinovitzer et al. [2023b] Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Banala, S.K., Agrawal, S.K., Scholz, J.P.: Active leg exoskeleton (alex) for gait rehabilitation of motor-impaired patients. In: 2007 IEEE 10th International Conference on Rehabilitation Robotics, pp. 401–407 (2007). 2007 IEEE 10th International Conference on Rehabilitation Robotics Dinovitzer et al. [2023a] Dinovitzer, H., Shushtari, M., Arami, A.: Feedforward control of lower limb exoskeletons: which torque profile should we use? IEEE Robotics and Automation Letters (2023) Dinovitzer et al. [2023b] Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Dinovitzer, H., Shushtari, M., Arami, A.: Feedforward control of lower limb exoskeletons: which torque profile should we use? IEEE Robotics and Automation Letters (2023) Dinovitzer et al. [2023b] Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017)
  9. Witte, K.A., Fiers, P., Sheets-Singer, A.L., Collins, S.H.: Improving the energy economy of human running with powered and unpowered ankle exoskeleton assistance. Science Robotics 5 (2020) Zhu et al. [2021] Zhu, F., Kern, M., Fowkes, E., Afzal, T., Contreras-Vidal, J.-L., Francisco, G.E., Chang, S.-H.: Effects of an exoskeleton-assisted gait training on post-stroke lower-limb muscle coordination. Journal of Neural Engineering 18, 046039 (2021) Küçüktabak et al. [2024] Küçüktabak, E.B., Wen, Y., Kim, S.J., Short, M., Ludvig, D., Hargrove, L., Perreault, E., Lynch, K., Pons, J.: Haptic transparency and interaction force control for a lower-limb exoskeleton. IEEE Transactions on Robotics (2024) Eva and Grizzle [2020] Eva, M.M., Grizzle, J.W.: Feedback control design for robust comfortable sit-to-stand motions of 3d lower-limb exoskeletons. IEEE Access 9, 122–161 (2020) Masengo et al. [2023] Masengo, G., Zhang, X., Dong, R., , A.B.A., Hamza, K., Mudaheranwa, E.: Lower limb exoskeleton robot and its cooperative control: A review, trends, and challenges for future research. Frontiers in Neurorobotics 16, 1–25 (2023) Ingraham et al. [2022] Ingraham, K.A., Remy, C.D., Rouse, E.J.: The role of user preference in the customized control of robotic exoskeletons. Science robotics 7 (2022) Pinto-Fernandez et al. [2020] Pinto-Fernandez, D., Diego, T., Carmen Sanchez-Villamanan, M., Aller, F., Mombaur, K., Conti, R., Vitiello, N., Moreno, J.C., Pons, J.L.: Performance evaluation of lower limb exoskeletons: A systematic review. IEEE Transactions on Neural Systems and Rehabilitation Engineering 28, 1573–1583 (2020) Slade et al. [2022] Slade, P., Kochenderfer, M.J., Delp, S.L., Collins, S.H.: Personalizing exoskeleton assistance while walking in the real world. Nature 610, 277–282 (2022) Medina et al. [2015] Medina, J.R., Lorenz, T., Hirche, S.: Synthesizing anticipatory haptic assistance considering human behavior uncertainty. IEEE Transactions on Robotics 31, 180–190 (2015) Martinez et al. [2018] Martinez, A., Lawson, B., Durrough, C., Goldfarb, M.: A velocity-field-based controller for assisting leg movement during walking with a bilateral hip and knee lower limb exoskeleton. IEEE Transactions on Robotics 35, 307–316 (2018) Shushtari et al. [2021] Shushtari, M., Nasiri, R., Arami, A.: Online reference trajectory adaptation: A personalized control strategy for lower limb exoskeletons. IEEE Robotics and Automation Letters 7, 128–134 (2021) Asl et al. [2020] Asl, H.J., Yamashita, M., Narikiyo, T., Kawanishi, M.: Field-based assist-as-needed control schemes for rehabilitation robots. IEEE/ASME Transactions on Mechatronics 25, 2100–2111 (2020) Dominijanni et al. [2023] Dominijanni, G., Pinheiro, D.L., Pollina, L., Orset, B., Gini, M., Anselmino, E., Pierella, C., Olivier, J., Shokur, S., Micera, S.: Human motor augmentation with an extra robotic arm without functional interference. Science Robotics 8 (2023) Losey et al. [2018] Losey, D.P., Mcdonald, C.G., Battaglia, E., O’Malley, M.: A review of intent detection, arbitration, and communication aspects of shared control for physical human-robot interaction. Applied Mechanics Reviews 70 (2018) https://doi.org/10.1115/1.4039145 Jackson and Collins [2019] Jackson, R.W., Collins, S.H.: Heuristic-based ankle exoskeleton control for co-adaptive assistance of human locomotion. IEEE Transactions on Neural Systems and Rehabilitation Engineering 27, 2059–2069 (2019) Banala et al. [2007] Banala, S.K., Agrawal, S.K., Scholz, J.P.: Active leg exoskeleton (alex) for gait rehabilitation of motor-impaired patients. In: 2007 IEEE 10th International Conference on Rehabilitation Robotics, pp. 401–407 (2007). 2007 IEEE 10th International Conference on Rehabilitation Robotics Dinovitzer et al. [2023a] Dinovitzer, H., Shushtari, M., Arami, A.: Feedforward control of lower limb exoskeletons: which torque profile should we use? IEEE Robotics and Automation Letters (2023) Dinovitzer et al. [2023b] Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Zhu, F., Kern, M., Fowkes, E., Afzal, T., Contreras-Vidal, J.-L., Francisco, G.E., Chang, S.-H.: Effects of an exoskeleton-assisted gait training on post-stroke lower-limb muscle coordination. Journal of Neural Engineering 18, 046039 (2021) Küçüktabak et al. [2024] Küçüktabak, E.B., Wen, Y., Kim, S.J., Short, M., Ludvig, D., Hargrove, L., Perreault, E., Lynch, K., Pons, J.: Haptic transparency and interaction force control for a lower-limb exoskeleton. IEEE Transactions on Robotics (2024) Eva and Grizzle [2020] Eva, M.M., Grizzle, J.W.: Feedback control design for robust comfortable sit-to-stand motions of 3d lower-limb exoskeletons. IEEE Access 9, 122–161 (2020) Masengo et al. [2023] Masengo, G., Zhang, X., Dong, R., , A.B.A., Hamza, K., Mudaheranwa, E.: Lower limb exoskeleton robot and its cooperative control: A review, trends, and challenges for future research. Frontiers in Neurorobotics 16, 1–25 (2023) Ingraham et al. [2022] Ingraham, K.A., Remy, C.D., Rouse, E.J.: The role of user preference in the customized control of robotic exoskeletons. Science robotics 7 (2022) Pinto-Fernandez et al. [2020] Pinto-Fernandez, D., Diego, T., Carmen Sanchez-Villamanan, M., Aller, F., Mombaur, K., Conti, R., Vitiello, N., Moreno, J.C., Pons, J.L.: Performance evaluation of lower limb exoskeletons: A systematic review. IEEE Transactions on Neural Systems and Rehabilitation Engineering 28, 1573–1583 (2020) Slade et al. [2022] Slade, P., Kochenderfer, M.J., Delp, S.L., Collins, S.H.: Personalizing exoskeleton assistance while walking in the real world. Nature 610, 277–282 (2022) Medina et al. [2015] Medina, J.R., Lorenz, T., Hirche, S.: Synthesizing anticipatory haptic assistance considering human behavior uncertainty. IEEE Transactions on Robotics 31, 180–190 (2015) Martinez et al. [2018] Martinez, A., Lawson, B., Durrough, C., Goldfarb, M.: A velocity-field-based controller for assisting leg movement during walking with a bilateral hip and knee lower limb exoskeleton. IEEE Transactions on Robotics 35, 307–316 (2018) Shushtari et al. [2021] Shushtari, M., Nasiri, R., Arami, A.: Online reference trajectory adaptation: A personalized control strategy for lower limb exoskeletons. IEEE Robotics and Automation Letters 7, 128–134 (2021) Asl et al. [2020] Asl, H.J., Yamashita, M., Narikiyo, T., Kawanishi, M.: Field-based assist-as-needed control schemes for rehabilitation robots. IEEE/ASME Transactions on Mechatronics 25, 2100–2111 (2020) Dominijanni et al. [2023] Dominijanni, G., Pinheiro, D.L., Pollina, L., Orset, B., Gini, M., Anselmino, E., Pierella, C., Olivier, J., Shokur, S., Micera, S.: Human motor augmentation with an extra robotic arm without functional interference. Science Robotics 8 (2023) Losey et al. [2018] Losey, D.P., Mcdonald, C.G., Battaglia, E., O’Malley, M.: A review of intent detection, arbitration, and communication aspects of shared control for physical human-robot interaction. Applied Mechanics Reviews 70 (2018) https://doi.org/10.1115/1.4039145 Jackson and Collins [2019] Jackson, R.W., Collins, S.H.: Heuristic-based ankle exoskeleton control for co-adaptive assistance of human locomotion. IEEE Transactions on Neural Systems and Rehabilitation Engineering 27, 2059–2069 (2019) Banala et al. [2007] Banala, S.K., Agrawal, S.K., Scholz, J.P.: Active leg exoskeleton (alex) for gait rehabilitation of motor-impaired patients. In: 2007 IEEE 10th International Conference on Rehabilitation Robotics, pp. 401–407 (2007). 2007 IEEE 10th International Conference on Rehabilitation Robotics Dinovitzer et al. [2023a] Dinovitzer, H., Shushtari, M., Arami, A.: Feedforward control of lower limb exoskeletons: which torque profile should we use? IEEE Robotics and Automation Letters (2023) Dinovitzer et al. [2023b] Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Küçüktabak, E.B., Wen, Y., Kim, S.J., Short, M., Ludvig, D., Hargrove, L., Perreault, E., Lynch, K., Pons, J.: Haptic transparency and interaction force control for a lower-limb exoskeleton. IEEE Transactions on Robotics (2024) Eva and Grizzle [2020] Eva, M.M., Grizzle, J.W.: Feedback control design for robust comfortable sit-to-stand motions of 3d lower-limb exoskeletons. IEEE Access 9, 122–161 (2020) Masengo et al. [2023] Masengo, G., Zhang, X., Dong, R., , A.B.A., Hamza, K., Mudaheranwa, E.: Lower limb exoskeleton robot and its cooperative control: A review, trends, and challenges for future research. Frontiers in Neurorobotics 16, 1–25 (2023) Ingraham et al. [2022] Ingraham, K.A., Remy, C.D., Rouse, E.J.: The role of user preference in the customized control of robotic exoskeletons. Science robotics 7 (2022) Pinto-Fernandez et al. [2020] Pinto-Fernandez, D., Diego, T., Carmen Sanchez-Villamanan, M., Aller, F., Mombaur, K., Conti, R., Vitiello, N., Moreno, J.C., Pons, J.L.: Performance evaluation of lower limb exoskeletons: A systematic review. IEEE Transactions on Neural Systems and Rehabilitation Engineering 28, 1573–1583 (2020) Slade et al. [2022] Slade, P., Kochenderfer, M.J., Delp, S.L., Collins, S.H.: Personalizing exoskeleton assistance while walking in the real world. Nature 610, 277–282 (2022) Medina et al. [2015] Medina, J.R., Lorenz, T., Hirche, S.: Synthesizing anticipatory haptic assistance considering human behavior uncertainty. IEEE Transactions on Robotics 31, 180–190 (2015) Martinez et al. [2018] Martinez, A., Lawson, B., Durrough, C., Goldfarb, M.: A velocity-field-based controller for assisting leg movement during walking with a bilateral hip and knee lower limb exoskeleton. IEEE Transactions on Robotics 35, 307–316 (2018) Shushtari et al. [2021] Shushtari, M., Nasiri, R., Arami, A.: Online reference trajectory adaptation: A personalized control strategy for lower limb exoskeletons. IEEE Robotics and Automation Letters 7, 128–134 (2021) Asl et al. [2020] Asl, H.J., Yamashita, M., Narikiyo, T., Kawanishi, M.: Field-based assist-as-needed control schemes for rehabilitation robots. IEEE/ASME Transactions on Mechatronics 25, 2100–2111 (2020) Dominijanni et al. [2023] Dominijanni, G., Pinheiro, D.L., Pollina, L., Orset, B., Gini, M., Anselmino, E., Pierella, C., Olivier, J., Shokur, S., Micera, S.: Human motor augmentation with an extra robotic arm without functional interference. Science Robotics 8 (2023) Losey et al. [2018] Losey, D.P., Mcdonald, C.G., Battaglia, E., O’Malley, M.: A review of intent detection, arbitration, and communication aspects of shared control for physical human-robot interaction. Applied Mechanics Reviews 70 (2018) https://doi.org/10.1115/1.4039145 Jackson and Collins [2019] Jackson, R.W., Collins, S.H.: Heuristic-based ankle exoskeleton control for co-adaptive assistance of human locomotion. IEEE Transactions on Neural Systems and Rehabilitation Engineering 27, 2059–2069 (2019) Banala et al. [2007] Banala, S.K., Agrawal, S.K., Scholz, J.P.: Active leg exoskeleton (alex) for gait rehabilitation of motor-impaired patients. In: 2007 IEEE 10th International Conference on Rehabilitation Robotics, pp. 401–407 (2007). 2007 IEEE 10th International Conference on Rehabilitation Robotics Dinovitzer et al. [2023a] Dinovitzer, H., Shushtari, M., Arami, A.: Feedforward control of lower limb exoskeletons: which torque profile should we use? IEEE Robotics and Automation Letters (2023) Dinovitzer et al. [2023b] Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Eva, M.M., Grizzle, J.W.: Feedback control design for robust comfortable sit-to-stand motions of 3d lower-limb exoskeletons. IEEE Access 9, 122–161 (2020) Masengo et al. [2023] Masengo, G., Zhang, X., Dong, R., , A.B.A., Hamza, K., Mudaheranwa, E.: Lower limb exoskeleton robot and its cooperative control: A review, trends, and challenges for future research. Frontiers in Neurorobotics 16, 1–25 (2023) Ingraham et al. [2022] Ingraham, K.A., Remy, C.D., Rouse, E.J.: The role of user preference in the customized control of robotic exoskeletons. Science robotics 7 (2022) Pinto-Fernandez et al. [2020] Pinto-Fernandez, D., Diego, T., Carmen Sanchez-Villamanan, M., Aller, F., Mombaur, K., Conti, R., Vitiello, N., Moreno, J.C., Pons, J.L.: Performance evaluation of lower limb exoskeletons: A systematic review. IEEE Transactions on Neural Systems and Rehabilitation Engineering 28, 1573–1583 (2020) Slade et al. [2022] Slade, P., Kochenderfer, M.J., Delp, S.L., Collins, S.H.: Personalizing exoskeleton assistance while walking in the real world. Nature 610, 277–282 (2022) Medina et al. [2015] Medina, J.R., Lorenz, T., Hirche, S.: Synthesizing anticipatory haptic assistance considering human behavior uncertainty. IEEE Transactions on Robotics 31, 180–190 (2015) Martinez et al. [2018] Martinez, A., Lawson, B., Durrough, C., Goldfarb, M.: A velocity-field-based controller for assisting leg movement during walking with a bilateral hip and knee lower limb exoskeleton. IEEE Transactions on Robotics 35, 307–316 (2018) Shushtari et al. [2021] Shushtari, M., Nasiri, R., Arami, A.: Online reference trajectory adaptation: A personalized control strategy for lower limb exoskeletons. IEEE Robotics and Automation Letters 7, 128–134 (2021) Asl et al. [2020] Asl, H.J., Yamashita, M., Narikiyo, T., Kawanishi, M.: Field-based assist-as-needed control schemes for rehabilitation robots. IEEE/ASME Transactions on Mechatronics 25, 2100–2111 (2020) Dominijanni et al. [2023] Dominijanni, G., Pinheiro, D.L., Pollina, L., Orset, B., Gini, M., Anselmino, E., Pierella, C., Olivier, J., Shokur, S., Micera, S.: Human motor augmentation with an extra robotic arm without functional interference. Science Robotics 8 (2023) Losey et al. [2018] Losey, D.P., Mcdonald, C.G., Battaglia, E., O’Malley, M.: A review of intent detection, arbitration, and communication aspects of shared control for physical human-robot interaction. Applied Mechanics Reviews 70 (2018) https://doi.org/10.1115/1.4039145 Jackson and Collins [2019] Jackson, R.W., Collins, S.H.: Heuristic-based ankle exoskeleton control for co-adaptive assistance of human locomotion. IEEE Transactions on Neural Systems and Rehabilitation Engineering 27, 2059–2069 (2019) Banala et al. [2007] Banala, S.K., Agrawal, S.K., Scholz, J.P.: Active leg exoskeleton (alex) for gait rehabilitation of motor-impaired patients. In: 2007 IEEE 10th International Conference on Rehabilitation Robotics, pp. 401–407 (2007). 2007 IEEE 10th International Conference on Rehabilitation Robotics Dinovitzer et al. [2023a] Dinovitzer, H., Shushtari, M., Arami, A.: Feedforward control of lower limb exoskeletons: which torque profile should we use? IEEE Robotics and Automation Letters (2023) Dinovitzer et al. [2023b] Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Masengo, G., Zhang, X., Dong, R., , A.B.A., Hamza, K., Mudaheranwa, E.: Lower limb exoskeleton robot and its cooperative control: A review, trends, and challenges for future research. Frontiers in Neurorobotics 16, 1–25 (2023) Ingraham et al. [2022] Ingraham, K.A., Remy, C.D., Rouse, E.J.: The role of user preference in the customized control of robotic exoskeletons. Science robotics 7 (2022) Pinto-Fernandez et al. [2020] Pinto-Fernandez, D., Diego, T., Carmen Sanchez-Villamanan, M., Aller, F., Mombaur, K., Conti, R., Vitiello, N., Moreno, J.C., Pons, J.L.: Performance evaluation of lower limb exoskeletons: A systematic review. IEEE Transactions on Neural Systems and Rehabilitation Engineering 28, 1573–1583 (2020) Slade et al. [2022] Slade, P., Kochenderfer, M.J., Delp, S.L., Collins, S.H.: Personalizing exoskeleton assistance while walking in the real world. Nature 610, 277–282 (2022) Medina et al. [2015] Medina, J.R., Lorenz, T., Hirche, S.: Synthesizing anticipatory haptic assistance considering human behavior uncertainty. IEEE Transactions on Robotics 31, 180–190 (2015) Martinez et al. [2018] Martinez, A., Lawson, B., Durrough, C., Goldfarb, M.: A velocity-field-based controller for assisting leg movement during walking with a bilateral hip and knee lower limb exoskeleton. IEEE Transactions on Robotics 35, 307–316 (2018) Shushtari et al. [2021] Shushtari, M., Nasiri, R., Arami, A.: Online reference trajectory adaptation: A personalized control strategy for lower limb exoskeletons. IEEE Robotics and Automation Letters 7, 128–134 (2021) Asl et al. [2020] Asl, H.J., Yamashita, M., Narikiyo, T., Kawanishi, M.: Field-based assist-as-needed control schemes for rehabilitation robots. IEEE/ASME Transactions on Mechatronics 25, 2100–2111 (2020) Dominijanni et al. [2023] Dominijanni, G., Pinheiro, D.L., Pollina, L., Orset, B., Gini, M., Anselmino, E., Pierella, C., Olivier, J., Shokur, S., Micera, S.: Human motor augmentation with an extra robotic arm without functional interference. Science Robotics 8 (2023) Losey et al. [2018] Losey, D.P., Mcdonald, C.G., Battaglia, E., O’Malley, M.: A review of intent detection, arbitration, and communication aspects of shared control for physical human-robot interaction. Applied Mechanics Reviews 70 (2018) https://doi.org/10.1115/1.4039145 Jackson and Collins [2019] Jackson, R.W., Collins, S.H.: Heuristic-based ankle exoskeleton control for co-adaptive assistance of human locomotion. IEEE Transactions on Neural Systems and Rehabilitation Engineering 27, 2059–2069 (2019) Banala et al. [2007] Banala, S.K., Agrawal, S.K., Scholz, J.P.: Active leg exoskeleton (alex) for gait rehabilitation of motor-impaired patients. In: 2007 IEEE 10th International Conference on Rehabilitation Robotics, pp. 401–407 (2007). 2007 IEEE 10th International Conference on Rehabilitation Robotics Dinovitzer et al. [2023a] Dinovitzer, H., Shushtari, M., Arami, A.: Feedforward control of lower limb exoskeletons: which torque profile should we use? IEEE Robotics and Automation Letters (2023) Dinovitzer et al. [2023b] Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Ingraham, K.A., Remy, C.D., Rouse, E.J.: The role of user preference in the customized control of robotic exoskeletons. Science robotics 7 (2022) Pinto-Fernandez et al. [2020] Pinto-Fernandez, D., Diego, T., Carmen Sanchez-Villamanan, M., Aller, F., Mombaur, K., Conti, R., Vitiello, N., Moreno, J.C., Pons, J.L.: Performance evaluation of lower limb exoskeletons: A systematic review. IEEE Transactions on Neural Systems and Rehabilitation Engineering 28, 1573–1583 (2020) Slade et al. [2022] Slade, P., Kochenderfer, M.J., Delp, S.L., Collins, S.H.: Personalizing exoskeleton assistance while walking in the real world. Nature 610, 277–282 (2022) Medina et al. [2015] Medina, J.R., Lorenz, T., Hirche, S.: Synthesizing anticipatory haptic assistance considering human behavior uncertainty. IEEE Transactions on Robotics 31, 180–190 (2015) Martinez et al. [2018] Martinez, A., Lawson, B., Durrough, C., Goldfarb, M.: A velocity-field-based controller for assisting leg movement during walking with a bilateral hip and knee lower limb exoskeleton. IEEE Transactions on Robotics 35, 307–316 (2018) Shushtari et al. [2021] Shushtari, M., Nasiri, R., Arami, A.: Online reference trajectory adaptation: A personalized control strategy for lower limb exoskeletons. IEEE Robotics and Automation Letters 7, 128–134 (2021) Asl et al. [2020] Asl, H.J., Yamashita, M., Narikiyo, T., Kawanishi, M.: Field-based assist-as-needed control schemes for rehabilitation robots. IEEE/ASME Transactions on Mechatronics 25, 2100–2111 (2020) Dominijanni et al. [2023] Dominijanni, G., Pinheiro, D.L., Pollina, L., Orset, B., Gini, M., Anselmino, E., Pierella, C., Olivier, J., Shokur, S., Micera, S.: Human motor augmentation with an extra robotic arm without functional interference. Science Robotics 8 (2023) Losey et al. [2018] Losey, D.P., Mcdonald, C.G., Battaglia, E., O’Malley, M.: A review of intent detection, arbitration, and communication aspects of shared control for physical human-robot interaction. Applied Mechanics Reviews 70 (2018) https://doi.org/10.1115/1.4039145 Jackson and Collins [2019] Jackson, R.W., Collins, S.H.: Heuristic-based ankle exoskeleton control for co-adaptive assistance of human locomotion. IEEE Transactions on Neural Systems and Rehabilitation Engineering 27, 2059–2069 (2019) Banala et al. [2007] Banala, S.K., Agrawal, S.K., Scholz, J.P.: Active leg exoskeleton (alex) for gait rehabilitation of motor-impaired patients. In: 2007 IEEE 10th International Conference on Rehabilitation Robotics, pp. 401–407 (2007). 2007 IEEE 10th International Conference on Rehabilitation Robotics Dinovitzer et al. [2023a] Dinovitzer, H., Shushtari, M., Arami, A.: Feedforward control of lower limb exoskeletons: which torque profile should we use? IEEE Robotics and Automation Letters (2023) Dinovitzer et al. [2023b] Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Pinto-Fernandez, D., Diego, T., Carmen Sanchez-Villamanan, M., Aller, F., Mombaur, K., Conti, R., Vitiello, N., Moreno, J.C., Pons, J.L.: Performance evaluation of lower limb exoskeletons: A systematic review. IEEE Transactions on Neural Systems and Rehabilitation Engineering 28, 1573–1583 (2020) Slade et al. [2022] Slade, P., Kochenderfer, M.J., Delp, S.L., Collins, S.H.: Personalizing exoskeleton assistance while walking in the real world. Nature 610, 277–282 (2022) Medina et al. [2015] Medina, J.R., Lorenz, T., Hirche, S.: Synthesizing anticipatory haptic assistance considering human behavior uncertainty. IEEE Transactions on Robotics 31, 180–190 (2015) Martinez et al. [2018] Martinez, A., Lawson, B., Durrough, C., Goldfarb, M.: A velocity-field-based controller for assisting leg movement during walking with a bilateral hip and knee lower limb exoskeleton. IEEE Transactions on Robotics 35, 307–316 (2018) Shushtari et al. [2021] Shushtari, M., Nasiri, R., Arami, A.: Online reference trajectory adaptation: A personalized control strategy for lower limb exoskeletons. IEEE Robotics and Automation Letters 7, 128–134 (2021) Asl et al. [2020] Asl, H.J., Yamashita, M., Narikiyo, T., Kawanishi, M.: Field-based assist-as-needed control schemes for rehabilitation robots. IEEE/ASME Transactions on Mechatronics 25, 2100–2111 (2020) Dominijanni et al. [2023] Dominijanni, G., Pinheiro, D.L., Pollina, L., Orset, B., Gini, M., Anselmino, E., Pierella, C., Olivier, J., Shokur, S., Micera, S.: Human motor augmentation with an extra robotic arm without functional interference. Science Robotics 8 (2023) Losey et al. [2018] Losey, D.P., Mcdonald, C.G., Battaglia, E., O’Malley, M.: A review of intent detection, arbitration, and communication aspects of shared control for physical human-robot interaction. Applied Mechanics Reviews 70 (2018) https://doi.org/10.1115/1.4039145 Jackson and Collins [2019] Jackson, R.W., Collins, S.H.: Heuristic-based ankle exoskeleton control for co-adaptive assistance of human locomotion. IEEE Transactions on Neural Systems and Rehabilitation Engineering 27, 2059–2069 (2019) Banala et al. [2007] Banala, S.K., Agrawal, S.K., Scholz, J.P.: Active leg exoskeleton (alex) for gait rehabilitation of motor-impaired patients. In: 2007 IEEE 10th International Conference on Rehabilitation Robotics, pp. 401–407 (2007). 2007 IEEE 10th International Conference on Rehabilitation Robotics Dinovitzer et al. [2023a] Dinovitzer, H., Shushtari, M., Arami, A.: Feedforward control of lower limb exoskeletons: which torque profile should we use? IEEE Robotics and Automation Letters (2023) Dinovitzer et al. [2023b] Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Slade, P., Kochenderfer, M.J., Delp, S.L., Collins, S.H.: Personalizing exoskeleton assistance while walking in the real world. Nature 610, 277–282 (2022) Medina et al. [2015] Medina, J.R., Lorenz, T., Hirche, S.: Synthesizing anticipatory haptic assistance considering human behavior uncertainty. IEEE Transactions on Robotics 31, 180–190 (2015) Martinez et al. [2018] Martinez, A., Lawson, B., Durrough, C., Goldfarb, M.: A velocity-field-based controller for assisting leg movement during walking with a bilateral hip and knee lower limb exoskeleton. IEEE Transactions on Robotics 35, 307–316 (2018) Shushtari et al. [2021] Shushtari, M., Nasiri, R., Arami, A.: Online reference trajectory adaptation: A personalized control strategy for lower limb exoskeletons. IEEE Robotics and Automation Letters 7, 128–134 (2021) Asl et al. [2020] Asl, H.J., Yamashita, M., Narikiyo, T., Kawanishi, M.: Field-based assist-as-needed control schemes for rehabilitation robots. IEEE/ASME Transactions on Mechatronics 25, 2100–2111 (2020) Dominijanni et al. [2023] Dominijanni, G., Pinheiro, D.L., Pollina, L., Orset, B., Gini, M., Anselmino, E., Pierella, C., Olivier, J., Shokur, S., Micera, S.: Human motor augmentation with an extra robotic arm without functional interference. Science Robotics 8 (2023) Losey et al. [2018] Losey, D.P., Mcdonald, C.G., Battaglia, E., O’Malley, M.: A review of intent detection, arbitration, and communication aspects of shared control for physical human-robot interaction. Applied Mechanics Reviews 70 (2018) https://doi.org/10.1115/1.4039145 Jackson and Collins [2019] Jackson, R.W., Collins, S.H.: Heuristic-based ankle exoskeleton control for co-adaptive assistance of human locomotion. IEEE Transactions on Neural Systems and Rehabilitation Engineering 27, 2059–2069 (2019) Banala et al. [2007] Banala, S.K., Agrawal, S.K., Scholz, J.P.: Active leg exoskeleton (alex) for gait rehabilitation of motor-impaired patients. In: 2007 IEEE 10th International Conference on Rehabilitation Robotics, pp. 401–407 (2007). 2007 IEEE 10th International Conference on Rehabilitation Robotics Dinovitzer et al. [2023a] Dinovitzer, H., Shushtari, M., Arami, A.: Feedforward control of lower limb exoskeletons: which torque profile should we use? IEEE Robotics and Automation Letters (2023) Dinovitzer et al. [2023b] Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Medina, J.R., Lorenz, T., Hirche, S.: Synthesizing anticipatory haptic assistance considering human behavior uncertainty. IEEE Transactions on Robotics 31, 180–190 (2015) Martinez et al. [2018] Martinez, A., Lawson, B., Durrough, C., Goldfarb, M.: A velocity-field-based controller for assisting leg movement during walking with a bilateral hip and knee lower limb exoskeleton. IEEE Transactions on Robotics 35, 307–316 (2018) Shushtari et al. [2021] Shushtari, M., Nasiri, R., Arami, A.: Online reference trajectory adaptation: A personalized control strategy for lower limb exoskeletons. IEEE Robotics and Automation Letters 7, 128–134 (2021) Asl et al. [2020] Asl, H.J., Yamashita, M., Narikiyo, T., Kawanishi, M.: Field-based assist-as-needed control schemes for rehabilitation robots. IEEE/ASME Transactions on Mechatronics 25, 2100–2111 (2020) Dominijanni et al. [2023] Dominijanni, G., Pinheiro, D.L., Pollina, L., Orset, B., Gini, M., Anselmino, E., Pierella, C., Olivier, J., Shokur, S., Micera, S.: Human motor augmentation with an extra robotic arm without functional interference. Science Robotics 8 (2023) Losey et al. [2018] Losey, D.P., Mcdonald, C.G., Battaglia, E., O’Malley, M.: A review of intent detection, arbitration, and communication aspects of shared control for physical human-robot interaction. Applied Mechanics Reviews 70 (2018) https://doi.org/10.1115/1.4039145 Jackson and Collins [2019] Jackson, R.W., Collins, S.H.: Heuristic-based ankle exoskeleton control for co-adaptive assistance of human locomotion. IEEE Transactions on Neural Systems and Rehabilitation Engineering 27, 2059–2069 (2019) Banala et al. [2007] Banala, S.K., Agrawal, S.K., Scholz, J.P.: Active leg exoskeleton (alex) for gait rehabilitation of motor-impaired patients. In: 2007 IEEE 10th International Conference on Rehabilitation Robotics, pp. 401–407 (2007). 2007 IEEE 10th International Conference on Rehabilitation Robotics Dinovitzer et al. [2023a] Dinovitzer, H., Shushtari, M., Arami, A.: Feedforward control of lower limb exoskeletons: which torque profile should we use? IEEE Robotics and Automation Letters (2023) Dinovitzer et al. [2023b] Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Martinez, A., Lawson, B., Durrough, C., Goldfarb, M.: A velocity-field-based controller for assisting leg movement during walking with a bilateral hip and knee lower limb exoskeleton. IEEE Transactions on Robotics 35, 307–316 (2018) Shushtari et al. [2021] Shushtari, M., Nasiri, R., Arami, A.: Online reference trajectory adaptation: A personalized control strategy for lower limb exoskeletons. IEEE Robotics and Automation Letters 7, 128–134 (2021) Asl et al. [2020] Asl, H.J., Yamashita, M., Narikiyo, T., Kawanishi, M.: Field-based assist-as-needed control schemes for rehabilitation robots. IEEE/ASME Transactions on Mechatronics 25, 2100–2111 (2020) Dominijanni et al. [2023] Dominijanni, G., Pinheiro, D.L., Pollina, L., Orset, B., Gini, M., Anselmino, E., Pierella, C., Olivier, J., Shokur, S., Micera, S.: Human motor augmentation with an extra robotic arm without functional interference. Science Robotics 8 (2023) Losey et al. [2018] Losey, D.P., Mcdonald, C.G., Battaglia, E., O’Malley, M.: A review of intent detection, arbitration, and communication aspects of shared control for physical human-robot interaction. Applied Mechanics Reviews 70 (2018) https://doi.org/10.1115/1.4039145 Jackson and Collins [2019] Jackson, R.W., Collins, S.H.: Heuristic-based ankle exoskeleton control for co-adaptive assistance of human locomotion. IEEE Transactions on Neural Systems and Rehabilitation Engineering 27, 2059–2069 (2019) Banala et al. [2007] Banala, S.K., Agrawal, S.K., Scholz, J.P.: Active leg exoskeleton (alex) for gait rehabilitation of motor-impaired patients. In: 2007 IEEE 10th International Conference on Rehabilitation Robotics, pp. 401–407 (2007). 2007 IEEE 10th International Conference on Rehabilitation Robotics Dinovitzer et al. [2023a] Dinovitzer, H., Shushtari, M., Arami, A.: Feedforward control of lower limb exoskeletons: which torque profile should we use? IEEE Robotics and Automation Letters (2023) Dinovitzer et al. [2023b] Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Shushtari, M., Nasiri, R., Arami, A.: Online reference trajectory adaptation: A personalized control strategy for lower limb exoskeletons. IEEE Robotics and Automation Letters 7, 128–134 (2021) Asl et al. [2020] Asl, H.J., Yamashita, M., Narikiyo, T., Kawanishi, M.: Field-based assist-as-needed control schemes for rehabilitation robots. IEEE/ASME Transactions on Mechatronics 25, 2100–2111 (2020) Dominijanni et al. [2023] Dominijanni, G., Pinheiro, D.L., Pollina, L., Orset, B., Gini, M., Anselmino, E., Pierella, C., Olivier, J., Shokur, S., Micera, S.: Human motor augmentation with an extra robotic arm without functional interference. Science Robotics 8 (2023) Losey et al. [2018] Losey, D.P., Mcdonald, C.G., Battaglia, E., O’Malley, M.: A review of intent detection, arbitration, and communication aspects of shared control for physical human-robot interaction. Applied Mechanics Reviews 70 (2018) https://doi.org/10.1115/1.4039145 Jackson and Collins [2019] Jackson, R.W., Collins, S.H.: Heuristic-based ankle exoskeleton control for co-adaptive assistance of human locomotion. IEEE Transactions on Neural Systems and Rehabilitation Engineering 27, 2059–2069 (2019) Banala et al. [2007] Banala, S.K., Agrawal, S.K., Scholz, J.P.: Active leg exoskeleton (alex) for gait rehabilitation of motor-impaired patients. In: 2007 IEEE 10th International Conference on Rehabilitation Robotics, pp. 401–407 (2007). 2007 IEEE 10th International Conference on Rehabilitation Robotics Dinovitzer et al. [2023a] Dinovitzer, H., Shushtari, M., Arami, A.: Feedforward control of lower limb exoskeletons: which torque profile should we use? IEEE Robotics and Automation Letters (2023) Dinovitzer et al. [2023b] Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Asl, H.J., Yamashita, M., Narikiyo, T., Kawanishi, M.: Field-based assist-as-needed control schemes for rehabilitation robots. IEEE/ASME Transactions on Mechatronics 25, 2100–2111 (2020) Dominijanni et al. [2023] Dominijanni, G., Pinheiro, D.L., Pollina, L., Orset, B., Gini, M., Anselmino, E., Pierella, C., Olivier, J., Shokur, S., Micera, S.: Human motor augmentation with an extra robotic arm without functional interference. Science Robotics 8 (2023) Losey et al. [2018] Losey, D.P., Mcdonald, C.G., Battaglia, E., O’Malley, M.: A review of intent detection, arbitration, and communication aspects of shared control for physical human-robot interaction. Applied Mechanics Reviews 70 (2018) https://doi.org/10.1115/1.4039145 Jackson and Collins [2019] Jackson, R.W., Collins, S.H.: Heuristic-based ankle exoskeleton control for co-adaptive assistance of human locomotion. IEEE Transactions on Neural Systems and Rehabilitation Engineering 27, 2059–2069 (2019) Banala et al. [2007] Banala, S.K., Agrawal, S.K., Scholz, J.P.: Active leg exoskeleton (alex) for gait rehabilitation of motor-impaired patients. In: 2007 IEEE 10th International Conference on Rehabilitation Robotics, pp. 401–407 (2007). 2007 IEEE 10th International Conference on Rehabilitation Robotics Dinovitzer et al. [2023a] Dinovitzer, H., Shushtari, M., Arami, A.: Feedforward control of lower limb exoskeletons: which torque profile should we use? IEEE Robotics and Automation Letters (2023) Dinovitzer et al. [2023b] Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Dominijanni, G., Pinheiro, D.L., Pollina, L., Orset, B., Gini, M., Anselmino, E., Pierella, C., Olivier, J., Shokur, S., Micera, S.: Human motor augmentation with an extra robotic arm without functional interference. Science Robotics 8 (2023) Losey et al. [2018] Losey, D.P., Mcdonald, C.G., Battaglia, E., O’Malley, M.: A review of intent detection, arbitration, and communication aspects of shared control for physical human-robot interaction. Applied Mechanics Reviews 70 (2018) https://doi.org/10.1115/1.4039145 Jackson and Collins [2019] Jackson, R.W., Collins, S.H.: Heuristic-based ankle exoskeleton control for co-adaptive assistance of human locomotion. IEEE Transactions on Neural Systems and Rehabilitation Engineering 27, 2059–2069 (2019) Banala et al. [2007] Banala, S.K., Agrawal, S.K., Scholz, J.P.: Active leg exoskeleton (alex) for gait rehabilitation of motor-impaired patients. In: 2007 IEEE 10th International Conference on Rehabilitation Robotics, pp. 401–407 (2007). 2007 IEEE 10th International Conference on Rehabilitation Robotics Dinovitzer et al. [2023a] Dinovitzer, H., Shushtari, M., Arami, A.: Feedforward control of lower limb exoskeletons: which torque profile should we use? IEEE Robotics and Automation Letters (2023) Dinovitzer et al. [2023b] Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Losey, D.P., Mcdonald, C.G., Battaglia, E., O’Malley, M.: A review of intent detection, arbitration, and communication aspects of shared control for physical human-robot interaction. Applied Mechanics Reviews 70 (2018) https://doi.org/10.1115/1.4039145 Jackson and Collins [2019] Jackson, R.W., Collins, S.H.: Heuristic-based ankle exoskeleton control for co-adaptive assistance of human locomotion. IEEE Transactions on Neural Systems and Rehabilitation Engineering 27, 2059–2069 (2019) Banala et al. [2007] Banala, S.K., Agrawal, S.K., Scholz, J.P.: Active leg exoskeleton (alex) for gait rehabilitation of motor-impaired patients. In: 2007 IEEE 10th International Conference on Rehabilitation Robotics, pp. 401–407 (2007). 2007 IEEE 10th International Conference on Rehabilitation Robotics Dinovitzer et al. [2023a] Dinovitzer, H., Shushtari, M., Arami, A.: Feedforward control of lower limb exoskeletons: which torque profile should we use? IEEE Robotics and Automation Letters (2023) Dinovitzer et al. [2023b] Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Jackson, R.W., Collins, S.H.: Heuristic-based ankle exoskeleton control for co-adaptive assistance of human locomotion. IEEE Transactions on Neural Systems and Rehabilitation Engineering 27, 2059–2069 (2019) Banala et al. [2007] Banala, S.K., Agrawal, S.K., Scholz, J.P.: Active leg exoskeleton (alex) for gait rehabilitation of motor-impaired patients. In: 2007 IEEE 10th International Conference on Rehabilitation Robotics, pp. 401–407 (2007). 2007 IEEE 10th International Conference on Rehabilitation Robotics Dinovitzer et al. [2023a] Dinovitzer, H., Shushtari, M., Arami, A.: Feedforward control of lower limb exoskeletons: which torque profile should we use? IEEE Robotics and Automation Letters (2023) Dinovitzer et al. [2023b] Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Banala, S.K., Agrawal, S.K., Scholz, J.P.: Active leg exoskeleton (alex) for gait rehabilitation of motor-impaired patients. In: 2007 IEEE 10th International Conference on Rehabilitation Robotics, pp. 401–407 (2007). 2007 IEEE 10th International Conference on Rehabilitation Robotics Dinovitzer et al. [2023a] Dinovitzer, H., Shushtari, M., Arami, A.: Feedforward control of lower limb exoskeletons: which torque profile should we use? IEEE Robotics and Automation Letters (2023) Dinovitzer et al. [2023b] Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Dinovitzer, H., Shushtari, M., Arami, A.: Feedforward control of lower limb exoskeletons: which torque profile should we use? IEEE Robotics and Automation Letters (2023) Dinovitzer et al. [2023b] Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017)
  10. Zhu, F., Kern, M., Fowkes, E., Afzal, T., Contreras-Vidal, J.-L., Francisco, G.E., Chang, S.-H.: Effects of an exoskeleton-assisted gait training on post-stroke lower-limb muscle coordination. Journal of Neural Engineering 18, 046039 (2021) Küçüktabak et al. [2024] Küçüktabak, E.B., Wen, Y., Kim, S.J., Short, M., Ludvig, D., Hargrove, L., Perreault, E., Lynch, K., Pons, J.: Haptic transparency and interaction force control for a lower-limb exoskeleton. IEEE Transactions on Robotics (2024) Eva and Grizzle [2020] Eva, M.M., Grizzle, J.W.: Feedback control design for robust comfortable sit-to-stand motions of 3d lower-limb exoskeletons. IEEE Access 9, 122–161 (2020) Masengo et al. [2023] Masengo, G., Zhang, X., Dong, R., , A.B.A., Hamza, K., Mudaheranwa, E.: Lower limb exoskeleton robot and its cooperative control: A review, trends, and challenges for future research. Frontiers in Neurorobotics 16, 1–25 (2023) Ingraham et al. [2022] Ingraham, K.A., Remy, C.D., Rouse, E.J.: The role of user preference in the customized control of robotic exoskeletons. Science robotics 7 (2022) Pinto-Fernandez et al. [2020] Pinto-Fernandez, D., Diego, T., Carmen Sanchez-Villamanan, M., Aller, F., Mombaur, K., Conti, R., Vitiello, N., Moreno, J.C., Pons, J.L.: Performance evaluation of lower limb exoskeletons: A systematic review. IEEE Transactions on Neural Systems and Rehabilitation Engineering 28, 1573–1583 (2020) Slade et al. [2022] Slade, P., Kochenderfer, M.J., Delp, S.L., Collins, S.H.: Personalizing exoskeleton assistance while walking in the real world. Nature 610, 277–282 (2022) Medina et al. [2015] Medina, J.R., Lorenz, T., Hirche, S.: Synthesizing anticipatory haptic assistance considering human behavior uncertainty. IEEE Transactions on Robotics 31, 180–190 (2015) Martinez et al. [2018] Martinez, A., Lawson, B., Durrough, C., Goldfarb, M.: A velocity-field-based controller for assisting leg movement during walking with a bilateral hip and knee lower limb exoskeleton. IEEE Transactions on Robotics 35, 307–316 (2018) Shushtari et al. [2021] Shushtari, M., Nasiri, R., Arami, A.: Online reference trajectory adaptation: A personalized control strategy for lower limb exoskeletons. IEEE Robotics and Automation Letters 7, 128–134 (2021) Asl et al. [2020] Asl, H.J., Yamashita, M., Narikiyo, T., Kawanishi, M.: Field-based assist-as-needed control schemes for rehabilitation robots. IEEE/ASME Transactions on Mechatronics 25, 2100–2111 (2020) Dominijanni et al. [2023] Dominijanni, G., Pinheiro, D.L., Pollina, L., Orset, B., Gini, M., Anselmino, E., Pierella, C., Olivier, J., Shokur, S., Micera, S.: Human motor augmentation with an extra robotic arm without functional interference. Science Robotics 8 (2023) Losey et al. [2018] Losey, D.P., Mcdonald, C.G., Battaglia, E., O’Malley, M.: A review of intent detection, arbitration, and communication aspects of shared control for physical human-robot interaction. Applied Mechanics Reviews 70 (2018) https://doi.org/10.1115/1.4039145 Jackson and Collins [2019] Jackson, R.W., Collins, S.H.: Heuristic-based ankle exoskeleton control for co-adaptive assistance of human locomotion. IEEE Transactions on Neural Systems and Rehabilitation Engineering 27, 2059–2069 (2019) Banala et al. [2007] Banala, S.K., Agrawal, S.K., Scholz, J.P.: Active leg exoskeleton (alex) for gait rehabilitation of motor-impaired patients. In: 2007 IEEE 10th International Conference on Rehabilitation Robotics, pp. 401–407 (2007). 2007 IEEE 10th International Conference on Rehabilitation Robotics Dinovitzer et al. [2023a] Dinovitzer, H., Shushtari, M., Arami, A.: Feedforward control of lower limb exoskeletons: which torque profile should we use? IEEE Robotics and Automation Letters (2023) Dinovitzer et al. [2023b] Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Küçüktabak, E.B., Wen, Y., Kim, S.J., Short, M., Ludvig, D., Hargrove, L., Perreault, E., Lynch, K., Pons, J.: Haptic transparency and interaction force control for a lower-limb exoskeleton. IEEE Transactions on Robotics (2024) Eva and Grizzle [2020] Eva, M.M., Grizzle, J.W.: Feedback control design for robust comfortable sit-to-stand motions of 3d lower-limb exoskeletons. IEEE Access 9, 122–161 (2020) Masengo et al. [2023] Masengo, G., Zhang, X., Dong, R., , A.B.A., Hamza, K., Mudaheranwa, E.: Lower limb exoskeleton robot and its cooperative control: A review, trends, and challenges for future research. Frontiers in Neurorobotics 16, 1–25 (2023) Ingraham et al. [2022] Ingraham, K.A., Remy, C.D., Rouse, E.J.: The role of user preference in the customized control of robotic exoskeletons. Science robotics 7 (2022) Pinto-Fernandez et al. [2020] Pinto-Fernandez, D., Diego, T., Carmen Sanchez-Villamanan, M., Aller, F., Mombaur, K., Conti, R., Vitiello, N., Moreno, J.C., Pons, J.L.: Performance evaluation of lower limb exoskeletons: A systematic review. IEEE Transactions on Neural Systems and Rehabilitation Engineering 28, 1573–1583 (2020) Slade et al. [2022] Slade, P., Kochenderfer, M.J., Delp, S.L., Collins, S.H.: Personalizing exoskeleton assistance while walking in the real world. Nature 610, 277–282 (2022) Medina et al. [2015] Medina, J.R., Lorenz, T., Hirche, S.: Synthesizing anticipatory haptic assistance considering human behavior uncertainty. IEEE Transactions on Robotics 31, 180–190 (2015) Martinez et al. [2018] Martinez, A., Lawson, B., Durrough, C., Goldfarb, M.: A velocity-field-based controller for assisting leg movement during walking with a bilateral hip and knee lower limb exoskeleton. IEEE Transactions on Robotics 35, 307–316 (2018) Shushtari et al. [2021] Shushtari, M., Nasiri, R., Arami, A.: Online reference trajectory adaptation: A personalized control strategy for lower limb exoskeletons. IEEE Robotics and Automation Letters 7, 128–134 (2021) Asl et al. [2020] Asl, H.J., Yamashita, M., Narikiyo, T., Kawanishi, M.: Field-based assist-as-needed control schemes for rehabilitation robots. IEEE/ASME Transactions on Mechatronics 25, 2100–2111 (2020) Dominijanni et al. [2023] Dominijanni, G., Pinheiro, D.L., Pollina, L., Orset, B., Gini, M., Anselmino, E., Pierella, C., Olivier, J., Shokur, S., Micera, S.: Human motor augmentation with an extra robotic arm without functional interference. Science Robotics 8 (2023) Losey et al. [2018] Losey, D.P., Mcdonald, C.G., Battaglia, E., O’Malley, M.: A review of intent detection, arbitration, and communication aspects of shared control for physical human-robot interaction. Applied Mechanics Reviews 70 (2018) https://doi.org/10.1115/1.4039145 Jackson and Collins [2019] Jackson, R.W., Collins, S.H.: Heuristic-based ankle exoskeleton control for co-adaptive assistance of human locomotion. IEEE Transactions on Neural Systems and Rehabilitation Engineering 27, 2059–2069 (2019) Banala et al. [2007] Banala, S.K., Agrawal, S.K., Scholz, J.P.: Active leg exoskeleton (alex) for gait rehabilitation of motor-impaired patients. In: 2007 IEEE 10th International Conference on Rehabilitation Robotics, pp. 401–407 (2007). 2007 IEEE 10th International Conference on Rehabilitation Robotics Dinovitzer et al. [2023a] Dinovitzer, H., Shushtari, M., Arami, A.: Feedforward control of lower limb exoskeletons: which torque profile should we use? IEEE Robotics and Automation Letters (2023) Dinovitzer et al. [2023b] Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Eva, M.M., Grizzle, J.W.: Feedback control design for robust comfortable sit-to-stand motions of 3d lower-limb exoskeletons. IEEE Access 9, 122–161 (2020) Masengo et al. [2023] Masengo, G., Zhang, X., Dong, R., , A.B.A., Hamza, K., Mudaheranwa, E.: Lower limb exoskeleton robot and its cooperative control: A review, trends, and challenges for future research. Frontiers in Neurorobotics 16, 1–25 (2023) Ingraham et al. [2022] Ingraham, K.A., Remy, C.D., Rouse, E.J.: The role of user preference in the customized control of robotic exoskeletons. Science robotics 7 (2022) Pinto-Fernandez et al. [2020] Pinto-Fernandez, D., Diego, T., Carmen Sanchez-Villamanan, M., Aller, F., Mombaur, K., Conti, R., Vitiello, N., Moreno, J.C., Pons, J.L.: Performance evaluation of lower limb exoskeletons: A systematic review. IEEE Transactions on Neural Systems and Rehabilitation Engineering 28, 1573–1583 (2020) Slade et al. [2022] Slade, P., Kochenderfer, M.J., Delp, S.L., Collins, S.H.: Personalizing exoskeleton assistance while walking in the real world. Nature 610, 277–282 (2022) Medina et al. [2015] Medina, J.R., Lorenz, T., Hirche, S.: Synthesizing anticipatory haptic assistance considering human behavior uncertainty. IEEE Transactions on Robotics 31, 180–190 (2015) Martinez et al. [2018] Martinez, A., Lawson, B., Durrough, C., Goldfarb, M.: A velocity-field-based controller for assisting leg movement during walking with a bilateral hip and knee lower limb exoskeleton. IEEE Transactions on Robotics 35, 307–316 (2018) Shushtari et al. [2021] Shushtari, M., Nasiri, R., Arami, A.: Online reference trajectory adaptation: A personalized control strategy for lower limb exoskeletons. IEEE Robotics and Automation Letters 7, 128–134 (2021) Asl et al. [2020] Asl, H.J., Yamashita, M., Narikiyo, T., Kawanishi, M.: Field-based assist-as-needed control schemes for rehabilitation robots. IEEE/ASME Transactions on Mechatronics 25, 2100–2111 (2020) Dominijanni et al. [2023] Dominijanni, G., Pinheiro, D.L., Pollina, L., Orset, B., Gini, M., Anselmino, E., Pierella, C., Olivier, J., Shokur, S., Micera, S.: Human motor augmentation with an extra robotic arm without functional interference. Science Robotics 8 (2023) Losey et al. [2018] Losey, D.P., Mcdonald, C.G., Battaglia, E., O’Malley, M.: A review of intent detection, arbitration, and communication aspects of shared control for physical human-robot interaction. Applied Mechanics Reviews 70 (2018) https://doi.org/10.1115/1.4039145 Jackson and Collins [2019] Jackson, R.W., Collins, S.H.: Heuristic-based ankle exoskeleton control for co-adaptive assistance of human locomotion. IEEE Transactions on Neural Systems and Rehabilitation Engineering 27, 2059–2069 (2019) Banala et al. [2007] Banala, S.K., Agrawal, S.K., Scholz, J.P.: Active leg exoskeleton (alex) for gait rehabilitation of motor-impaired patients. In: 2007 IEEE 10th International Conference on Rehabilitation Robotics, pp. 401–407 (2007). 2007 IEEE 10th International Conference on Rehabilitation Robotics Dinovitzer et al. [2023a] Dinovitzer, H., Shushtari, M., Arami, A.: Feedforward control of lower limb exoskeletons: which torque profile should we use? IEEE Robotics and Automation Letters (2023) Dinovitzer et al. [2023b] Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Masengo, G., Zhang, X., Dong, R., , A.B.A., Hamza, K., Mudaheranwa, E.: Lower limb exoskeleton robot and its cooperative control: A review, trends, and challenges for future research. Frontiers in Neurorobotics 16, 1–25 (2023) Ingraham et al. [2022] Ingraham, K.A., Remy, C.D., Rouse, E.J.: The role of user preference in the customized control of robotic exoskeletons. Science robotics 7 (2022) Pinto-Fernandez et al. [2020] Pinto-Fernandez, D., Diego, T., Carmen Sanchez-Villamanan, M., Aller, F., Mombaur, K., Conti, R., Vitiello, N., Moreno, J.C., Pons, J.L.: Performance evaluation of lower limb exoskeletons: A systematic review. IEEE Transactions on Neural Systems and Rehabilitation Engineering 28, 1573–1583 (2020) Slade et al. [2022] Slade, P., Kochenderfer, M.J., Delp, S.L., Collins, S.H.: Personalizing exoskeleton assistance while walking in the real world. Nature 610, 277–282 (2022) Medina et al. [2015] Medina, J.R., Lorenz, T., Hirche, S.: Synthesizing anticipatory haptic assistance considering human behavior uncertainty. IEEE Transactions on Robotics 31, 180–190 (2015) Martinez et al. [2018] Martinez, A., Lawson, B., Durrough, C., Goldfarb, M.: A velocity-field-based controller for assisting leg movement during walking with a bilateral hip and knee lower limb exoskeleton. IEEE Transactions on Robotics 35, 307–316 (2018) Shushtari et al. [2021] Shushtari, M., Nasiri, R., Arami, A.: Online reference trajectory adaptation: A personalized control strategy for lower limb exoskeletons. IEEE Robotics and Automation Letters 7, 128–134 (2021) Asl et al. [2020] Asl, H.J., Yamashita, M., Narikiyo, T., Kawanishi, M.: Field-based assist-as-needed control schemes for rehabilitation robots. IEEE/ASME Transactions on Mechatronics 25, 2100–2111 (2020) Dominijanni et al. [2023] Dominijanni, G., Pinheiro, D.L., Pollina, L., Orset, B., Gini, M., Anselmino, E., Pierella, C., Olivier, J., Shokur, S., Micera, S.: Human motor augmentation with an extra robotic arm without functional interference. Science Robotics 8 (2023) Losey et al. [2018] Losey, D.P., Mcdonald, C.G., Battaglia, E., O’Malley, M.: A review of intent detection, arbitration, and communication aspects of shared control for physical human-robot interaction. Applied Mechanics Reviews 70 (2018) https://doi.org/10.1115/1.4039145 Jackson and Collins [2019] Jackson, R.W., Collins, S.H.: Heuristic-based ankle exoskeleton control for co-adaptive assistance of human locomotion. IEEE Transactions on Neural Systems and Rehabilitation Engineering 27, 2059–2069 (2019) Banala et al. [2007] Banala, S.K., Agrawal, S.K., Scholz, J.P.: Active leg exoskeleton (alex) for gait rehabilitation of motor-impaired patients. In: 2007 IEEE 10th International Conference on Rehabilitation Robotics, pp. 401–407 (2007). 2007 IEEE 10th International Conference on Rehabilitation Robotics Dinovitzer et al. [2023a] Dinovitzer, H., Shushtari, M., Arami, A.: Feedforward control of lower limb exoskeletons: which torque profile should we use? IEEE Robotics and Automation Letters (2023) Dinovitzer et al. [2023b] Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Ingraham, K.A., Remy, C.D., Rouse, E.J.: The role of user preference in the customized control of robotic exoskeletons. Science robotics 7 (2022) Pinto-Fernandez et al. [2020] Pinto-Fernandez, D., Diego, T., Carmen Sanchez-Villamanan, M., Aller, F., Mombaur, K., Conti, R., Vitiello, N., Moreno, J.C., Pons, J.L.: Performance evaluation of lower limb exoskeletons: A systematic review. IEEE Transactions on Neural Systems and Rehabilitation Engineering 28, 1573–1583 (2020) Slade et al. [2022] Slade, P., Kochenderfer, M.J., Delp, S.L., Collins, S.H.: Personalizing exoskeleton assistance while walking in the real world. Nature 610, 277–282 (2022) Medina et al. [2015] Medina, J.R., Lorenz, T., Hirche, S.: Synthesizing anticipatory haptic assistance considering human behavior uncertainty. IEEE Transactions on Robotics 31, 180–190 (2015) Martinez et al. [2018] Martinez, A., Lawson, B., Durrough, C., Goldfarb, M.: A velocity-field-based controller for assisting leg movement during walking with a bilateral hip and knee lower limb exoskeleton. IEEE Transactions on Robotics 35, 307–316 (2018) Shushtari et al. [2021] Shushtari, M., Nasiri, R., Arami, A.: Online reference trajectory adaptation: A personalized control strategy for lower limb exoskeletons. IEEE Robotics and Automation Letters 7, 128–134 (2021) Asl et al. [2020] Asl, H.J., Yamashita, M., Narikiyo, T., Kawanishi, M.: Field-based assist-as-needed control schemes for rehabilitation robots. IEEE/ASME Transactions on Mechatronics 25, 2100–2111 (2020) Dominijanni et al. [2023] Dominijanni, G., Pinheiro, D.L., Pollina, L., Orset, B., Gini, M., Anselmino, E., Pierella, C., Olivier, J., Shokur, S., Micera, S.: Human motor augmentation with an extra robotic arm without functional interference. Science Robotics 8 (2023) Losey et al. [2018] Losey, D.P., Mcdonald, C.G., Battaglia, E., O’Malley, M.: A review of intent detection, arbitration, and communication aspects of shared control for physical human-robot interaction. Applied Mechanics Reviews 70 (2018) https://doi.org/10.1115/1.4039145 Jackson and Collins [2019] Jackson, R.W., Collins, S.H.: Heuristic-based ankle exoskeleton control for co-adaptive assistance of human locomotion. IEEE Transactions on Neural Systems and Rehabilitation Engineering 27, 2059–2069 (2019) Banala et al. [2007] Banala, S.K., Agrawal, S.K., Scholz, J.P.: Active leg exoskeleton (alex) for gait rehabilitation of motor-impaired patients. In: 2007 IEEE 10th International Conference on Rehabilitation Robotics, pp. 401–407 (2007). 2007 IEEE 10th International Conference on Rehabilitation Robotics Dinovitzer et al. [2023a] Dinovitzer, H., Shushtari, M., Arami, A.: Feedforward control of lower limb exoskeletons: which torque profile should we use? IEEE Robotics and Automation Letters (2023) Dinovitzer et al. [2023b] Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Pinto-Fernandez, D., Diego, T., Carmen Sanchez-Villamanan, M., Aller, F., Mombaur, K., Conti, R., Vitiello, N., Moreno, J.C., Pons, J.L.: Performance evaluation of lower limb exoskeletons: A systematic review. IEEE Transactions on Neural Systems and Rehabilitation Engineering 28, 1573–1583 (2020) Slade et al. [2022] Slade, P., Kochenderfer, M.J., Delp, S.L., Collins, S.H.: Personalizing exoskeleton assistance while walking in the real world. Nature 610, 277–282 (2022) Medina et al. [2015] Medina, J.R., Lorenz, T., Hirche, S.: Synthesizing anticipatory haptic assistance considering human behavior uncertainty. IEEE Transactions on Robotics 31, 180–190 (2015) Martinez et al. [2018] Martinez, A., Lawson, B., Durrough, C., Goldfarb, M.: A velocity-field-based controller for assisting leg movement during walking with a bilateral hip and knee lower limb exoskeleton. IEEE Transactions on Robotics 35, 307–316 (2018) Shushtari et al. [2021] Shushtari, M., Nasiri, R., Arami, A.: Online reference trajectory adaptation: A personalized control strategy for lower limb exoskeletons. IEEE Robotics and Automation Letters 7, 128–134 (2021) Asl et al. [2020] Asl, H.J., Yamashita, M., Narikiyo, T., Kawanishi, M.: Field-based assist-as-needed control schemes for rehabilitation robots. IEEE/ASME Transactions on Mechatronics 25, 2100–2111 (2020) Dominijanni et al. [2023] Dominijanni, G., Pinheiro, D.L., Pollina, L., Orset, B., Gini, M., Anselmino, E., Pierella, C., Olivier, J., Shokur, S., Micera, S.: Human motor augmentation with an extra robotic arm without functional interference. Science Robotics 8 (2023) Losey et al. [2018] Losey, D.P., Mcdonald, C.G., Battaglia, E., O’Malley, M.: A review of intent detection, arbitration, and communication aspects of shared control for physical human-robot interaction. Applied Mechanics Reviews 70 (2018) https://doi.org/10.1115/1.4039145 Jackson and Collins [2019] Jackson, R.W., Collins, S.H.: Heuristic-based ankle exoskeleton control for co-adaptive assistance of human locomotion. IEEE Transactions on Neural Systems and Rehabilitation Engineering 27, 2059–2069 (2019) Banala et al. [2007] Banala, S.K., Agrawal, S.K., Scholz, J.P.: Active leg exoskeleton (alex) for gait rehabilitation of motor-impaired patients. In: 2007 IEEE 10th International Conference on Rehabilitation Robotics, pp. 401–407 (2007). 2007 IEEE 10th International Conference on Rehabilitation Robotics Dinovitzer et al. [2023a] Dinovitzer, H., Shushtari, M., Arami, A.: Feedforward control of lower limb exoskeletons: which torque profile should we use? IEEE Robotics and Automation Letters (2023) Dinovitzer et al. [2023b] Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Slade, P., Kochenderfer, M.J., Delp, S.L., Collins, S.H.: Personalizing exoskeleton assistance while walking in the real world. Nature 610, 277–282 (2022) Medina et al. [2015] Medina, J.R., Lorenz, T., Hirche, S.: Synthesizing anticipatory haptic assistance considering human behavior uncertainty. IEEE Transactions on Robotics 31, 180–190 (2015) Martinez et al. [2018] Martinez, A., Lawson, B., Durrough, C., Goldfarb, M.: A velocity-field-based controller for assisting leg movement during walking with a bilateral hip and knee lower limb exoskeleton. IEEE Transactions on Robotics 35, 307–316 (2018) Shushtari et al. [2021] Shushtari, M., Nasiri, R., Arami, A.: Online reference trajectory adaptation: A personalized control strategy for lower limb exoskeletons. IEEE Robotics and Automation Letters 7, 128–134 (2021) Asl et al. [2020] Asl, H.J., Yamashita, M., Narikiyo, T., Kawanishi, M.: Field-based assist-as-needed control schemes for rehabilitation robots. IEEE/ASME Transactions on Mechatronics 25, 2100–2111 (2020) Dominijanni et al. [2023] Dominijanni, G., Pinheiro, D.L., Pollina, L., Orset, B., Gini, M., Anselmino, E., Pierella, C., Olivier, J., Shokur, S., Micera, S.: Human motor augmentation with an extra robotic arm without functional interference. Science Robotics 8 (2023) Losey et al. [2018] Losey, D.P., Mcdonald, C.G., Battaglia, E., O’Malley, M.: A review of intent detection, arbitration, and communication aspects of shared control for physical human-robot interaction. Applied Mechanics Reviews 70 (2018) https://doi.org/10.1115/1.4039145 Jackson and Collins [2019] Jackson, R.W., Collins, S.H.: Heuristic-based ankle exoskeleton control for co-adaptive assistance of human locomotion. IEEE Transactions on Neural Systems and Rehabilitation Engineering 27, 2059–2069 (2019) Banala et al. [2007] Banala, S.K., Agrawal, S.K., Scholz, J.P.: Active leg exoskeleton (alex) for gait rehabilitation of motor-impaired patients. In: 2007 IEEE 10th International Conference on Rehabilitation Robotics, pp. 401–407 (2007). 2007 IEEE 10th International Conference on Rehabilitation Robotics Dinovitzer et al. [2023a] Dinovitzer, H., Shushtari, M., Arami, A.: Feedforward control of lower limb exoskeletons: which torque profile should we use? IEEE Robotics and Automation Letters (2023) Dinovitzer et al. [2023b] Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Medina, J.R., Lorenz, T., Hirche, S.: Synthesizing anticipatory haptic assistance considering human behavior uncertainty. IEEE Transactions on Robotics 31, 180–190 (2015) Martinez et al. [2018] Martinez, A., Lawson, B., Durrough, C., Goldfarb, M.: A velocity-field-based controller for assisting leg movement during walking with a bilateral hip and knee lower limb exoskeleton. IEEE Transactions on Robotics 35, 307–316 (2018) Shushtari et al. [2021] Shushtari, M., Nasiri, R., Arami, A.: Online reference trajectory adaptation: A personalized control strategy for lower limb exoskeletons. IEEE Robotics and Automation Letters 7, 128–134 (2021) Asl et al. [2020] Asl, H.J., Yamashita, M., Narikiyo, T., Kawanishi, M.: Field-based assist-as-needed control schemes for rehabilitation robots. IEEE/ASME Transactions on Mechatronics 25, 2100–2111 (2020) Dominijanni et al. [2023] Dominijanni, G., Pinheiro, D.L., Pollina, L., Orset, B., Gini, M., Anselmino, E., Pierella, C., Olivier, J., Shokur, S., Micera, S.: Human motor augmentation with an extra robotic arm without functional interference. Science Robotics 8 (2023) Losey et al. [2018] Losey, D.P., Mcdonald, C.G., Battaglia, E., O’Malley, M.: A review of intent detection, arbitration, and communication aspects of shared control for physical human-robot interaction. Applied Mechanics Reviews 70 (2018) https://doi.org/10.1115/1.4039145 Jackson and Collins [2019] Jackson, R.W., Collins, S.H.: Heuristic-based ankle exoskeleton control for co-adaptive assistance of human locomotion. IEEE Transactions on Neural Systems and Rehabilitation Engineering 27, 2059–2069 (2019) Banala et al. [2007] Banala, S.K., Agrawal, S.K., Scholz, J.P.: Active leg exoskeleton (alex) for gait rehabilitation of motor-impaired patients. In: 2007 IEEE 10th International Conference on Rehabilitation Robotics, pp. 401–407 (2007). 2007 IEEE 10th International Conference on Rehabilitation Robotics Dinovitzer et al. [2023a] Dinovitzer, H., Shushtari, M., Arami, A.: Feedforward control of lower limb exoskeletons: which torque profile should we use? IEEE Robotics and Automation Letters (2023) Dinovitzer et al. [2023b] Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Martinez, A., Lawson, B., Durrough, C., Goldfarb, M.: A velocity-field-based controller for assisting leg movement during walking with a bilateral hip and knee lower limb exoskeleton. IEEE Transactions on Robotics 35, 307–316 (2018) Shushtari et al. [2021] Shushtari, M., Nasiri, R., Arami, A.: Online reference trajectory adaptation: A personalized control strategy for lower limb exoskeletons. IEEE Robotics and Automation Letters 7, 128–134 (2021) Asl et al. [2020] Asl, H.J., Yamashita, M., Narikiyo, T., Kawanishi, M.: Field-based assist-as-needed control schemes for rehabilitation robots. IEEE/ASME Transactions on Mechatronics 25, 2100–2111 (2020) Dominijanni et al. [2023] Dominijanni, G., Pinheiro, D.L., Pollina, L., Orset, B., Gini, M., Anselmino, E., Pierella, C., Olivier, J., Shokur, S., Micera, S.: Human motor augmentation with an extra robotic arm without functional interference. Science Robotics 8 (2023) Losey et al. [2018] Losey, D.P., Mcdonald, C.G., Battaglia, E., O’Malley, M.: A review of intent detection, arbitration, and communication aspects of shared control for physical human-robot interaction. Applied Mechanics Reviews 70 (2018) https://doi.org/10.1115/1.4039145 Jackson and Collins [2019] Jackson, R.W., Collins, S.H.: Heuristic-based ankle exoskeleton control for co-adaptive assistance of human locomotion. IEEE Transactions on Neural Systems and Rehabilitation Engineering 27, 2059–2069 (2019) Banala et al. [2007] Banala, S.K., Agrawal, S.K., Scholz, J.P.: Active leg exoskeleton (alex) for gait rehabilitation of motor-impaired patients. In: 2007 IEEE 10th International Conference on Rehabilitation Robotics, pp. 401–407 (2007). 2007 IEEE 10th International Conference on Rehabilitation Robotics Dinovitzer et al. [2023a] Dinovitzer, H., Shushtari, M., Arami, A.: Feedforward control of lower limb exoskeletons: which torque profile should we use? IEEE Robotics and Automation Letters (2023) Dinovitzer et al. [2023b] Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Shushtari, M., Nasiri, R., Arami, A.: Online reference trajectory adaptation: A personalized control strategy for lower limb exoskeletons. IEEE Robotics and Automation Letters 7, 128–134 (2021) Asl et al. [2020] Asl, H.J., Yamashita, M., Narikiyo, T., Kawanishi, M.: Field-based assist-as-needed control schemes for rehabilitation robots. IEEE/ASME Transactions on Mechatronics 25, 2100–2111 (2020) Dominijanni et al. [2023] Dominijanni, G., Pinheiro, D.L., Pollina, L., Orset, B., Gini, M., Anselmino, E., Pierella, C., Olivier, J., Shokur, S., Micera, S.: Human motor augmentation with an extra robotic arm without functional interference. Science Robotics 8 (2023) Losey et al. [2018] Losey, D.P., Mcdonald, C.G., Battaglia, E., O’Malley, M.: A review of intent detection, arbitration, and communication aspects of shared control for physical human-robot interaction. Applied Mechanics Reviews 70 (2018) https://doi.org/10.1115/1.4039145 Jackson and Collins [2019] Jackson, R.W., Collins, S.H.: Heuristic-based ankle exoskeleton control for co-adaptive assistance of human locomotion. IEEE Transactions on Neural Systems and Rehabilitation Engineering 27, 2059–2069 (2019) Banala et al. [2007] Banala, S.K., Agrawal, S.K., Scholz, J.P.: Active leg exoskeleton (alex) for gait rehabilitation of motor-impaired patients. In: 2007 IEEE 10th International Conference on Rehabilitation Robotics, pp. 401–407 (2007). 2007 IEEE 10th International Conference on Rehabilitation Robotics Dinovitzer et al. [2023a] Dinovitzer, H., Shushtari, M., Arami, A.: Feedforward control of lower limb exoskeletons: which torque profile should we use? IEEE Robotics and Automation Letters (2023) Dinovitzer et al. [2023b] Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Asl, H.J., Yamashita, M., Narikiyo, T., Kawanishi, M.: Field-based assist-as-needed control schemes for rehabilitation robots. IEEE/ASME Transactions on Mechatronics 25, 2100–2111 (2020) Dominijanni et al. [2023] Dominijanni, G., Pinheiro, D.L., Pollina, L., Orset, B., Gini, M., Anselmino, E., Pierella, C., Olivier, J., Shokur, S., Micera, S.: Human motor augmentation with an extra robotic arm without functional interference. Science Robotics 8 (2023) Losey et al. [2018] Losey, D.P., Mcdonald, C.G., Battaglia, E., O’Malley, M.: A review of intent detection, arbitration, and communication aspects of shared control for physical human-robot interaction. Applied Mechanics Reviews 70 (2018) https://doi.org/10.1115/1.4039145 Jackson and Collins [2019] Jackson, R.W., Collins, S.H.: Heuristic-based ankle exoskeleton control for co-adaptive assistance of human locomotion. IEEE Transactions on Neural Systems and Rehabilitation Engineering 27, 2059–2069 (2019) Banala et al. [2007] Banala, S.K., Agrawal, S.K., Scholz, J.P.: Active leg exoskeleton (alex) for gait rehabilitation of motor-impaired patients. In: 2007 IEEE 10th International Conference on Rehabilitation Robotics, pp. 401–407 (2007). 2007 IEEE 10th International Conference on Rehabilitation Robotics Dinovitzer et al. [2023a] Dinovitzer, H., Shushtari, M., Arami, A.: Feedforward control of lower limb exoskeletons: which torque profile should we use? IEEE Robotics and Automation Letters (2023) Dinovitzer et al. [2023b] Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Dominijanni, G., Pinheiro, D.L., Pollina, L., Orset, B., Gini, M., Anselmino, E., Pierella, C., Olivier, J., Shokur, S., Micera, S.: Human motor augmentation with an extra robotic arm without functional interference. Science Robotics 8 (2023) Losey et al. [2018] Losey, D.P., Mcdonald, C.G., Battaglia, E., O’Malley, M.: A review of intent detection, arbitration, and communication aspects of shared control for physical human-robot interaction. Applied Mechanics Reviews 70 (2018) https://doi.org/10.1115/1.4039145 Jackson and Collins [2019] Jackson, R.W., Collins, S.H.: Heuristic-based ankle exoskeleton control for co-adaptive assistance of human locomotion. IEEE Transactions on Neural Systems and Rehabilitation Engineering 27, 2059–2069 (2019) Banala et al. [2007] Banala, S.K., Agrawal, S.K., Scholz, J.P.: Active leg exoskeleton (alex) for gait rehabilitation of motor-impaired patients. In: 2007 IEEE 10th International Conference on Rehabilitation Robotics, pp. 401–407 (2007). 2007 IEEE 10th International Conference on Rehabilitation Robotics Dinovitzer et al. [2023a] Dinovitzer, H., Shushtari, M., Arami, A.: Feedforward control of lower limb exoskeletons: which torque profile should we use? IEEE Robotics and Automation Letters (2023) Dinovitzer et al. [2023b] Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Losey, D.P., Mcdonald, C.G., Battaglia, E., O’Malley, M.: A review of intent detection, arbitration, and communication aspects of shared control for physical human-robot interaction. Applied Mechanics Reviews 70 (2018) https://doi.org/10.1115/1.4039145 Jackson and Collins [2019] Jackson, R.W., Collins, S.H.: Heuristic-based ankle exoskeleton control for co-adaptive assistance of human locomotion. IEEE Transactions on Neural Systems and Rehabilitation Engineering 27, 2059–2069 (2019) Banala et al. [2007] Banala, S.K., Agrawal, S.K., Scholz, J.P.: Active leg exoskeleton (alex) for gait rehabilitation of motor-impaired patients. In: 2007 IEEE 10th International Conference on Rehabilitation Robotics, pp. 401–407 (2007). 2007 IEEE 10th International Conference on Rehabilitation Robotics Dinovitzer et al. [2023a] Dinovitzer, H., Shushtari, M., Arami, A.: Feedforward control of lower limb exoskeletons: which torque profile should we use? IEEE Robotics and Automation Letters (2023) Dinovitzer et al. [2023b] Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Jackson, R.W., Collins, S.H.: Heuristic-based ankle exoskeleton control for co-adaptive assistance of human locomotion. IEEE Transactions on Neural Systems and Rehabilitation Engineering 27, 2059–2069 (2019) Banala et al. [2007] Banala, S.K., Agrawal, S.K., Scholz, J.P.: Active leg exoskeleton (alex) for gait rehabilitation of motor-impaired patients. In: 2007 IEEE 10th International Conference on Rehabilitation Robotics, pp. 401–407 (2007). 2007 IEEE 10th International Conference on Rehabilitation Robotics Dinovitzer et al. [2023a] Dinovitzer, H., Shushtari, M., Arami, A.: Feedforward control of lower limb exoskeletons: which torque profile should we use? IEEE Robotics and Automation Letters (2023) Dinovitzer et al. [2023b] Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Banala, S.K., Agrawal, S.K., Scholz, J.P.: Active leg exoskeleton (alex) for gait rehabilitation of motor-impaired patients. In: 2007 IEEE 10th International Conference on Rehabilitation Robotics, pp. 401–407 (2007). 2007 IEEE 10th International Conference on Rehabilitation Robotics Dinovitzer et al. [2023a] Dinovitzer, H., Shushtari, M., Arami, A.: Feedforward control of lower limb exoskeletons: which torque profile should we use? IEEE Robotics and Automation Letters (2023) Dinovitzer et al. [2023b] Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Dinovitzer, H., Shushtari, M., Arami, A.: Feedforward control of lower limb exoskeletons: which torque profile should we use? IEEE Robotics and Automation Letters (2023) Dinovitzer et al. [2023b] Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017)
  11. Küçüktabak, E.B., Wen, Y., Kim, S.J., Short, M., Ludvig, D., Hargrove, L., Perreault, E., Lynch, K., Pons, J.: Haptic transparency and interaction force control for a lower-limb exoskeleton. IEEE Transactions on Robotics (2024) Eva and Grizzle [2020] Eva, M.M., Grizzle, J.W.: Feedback control design for robust comfortable sit-to-stand motions of 3d lower-limb exoskeletons. IEEE Access 9, 122–161 (2020) Masengo et al. [2023] Masengo, G., Zhang, X., Dong, R., , A.B.A., Hamza, K., Mudaheranwa, E.: Lower limb exoskeleton robot and its cooperative control: A review, trends, and challenges for future research. Frontiers in Neurorobotics 16, 1–25 (2023) Ingraham et al. [2022] Ingraham, K.A., Remy, C.D., Rouse, E.J.: The role of user preference in the customized control of robotic exoskeletons. Science robotics 7 (2022) Pinto-Fernandez et al. [2020] Pinto-Fernandez, D., Diego, T., Carmen Sanchez-Villamanan, M., Aller, F., Mombaur, K., Conti, R., Vitiello, N., Moreno, J.C., Pons, J.L.: Performance evaluation of lower limb exoskeletons: A systematic review. IEEE Transactions on Neural Systems and Rehabilitation Engineering 28, 1573–1583 (2020) Slade et al. [2022] Slade, P., Kochenderfer, M.J., Delp, S.L., Collins, S.H.: Personalizing exoskeleton assistance while walking in the real world. Nature 610, 277–282 (2022) Medina et al. [2015] Medina, J.R., Lorenz, T., Hirche, S.: Synthesizing anticipatory haptic assistance considering human behavior uncertainty. IEEE Transactions on Robotics 31, 180–190 (2015) Martinez et al. [2018] Martinez, A., Lawson, B., Durrough, C., Goldfarb, M.: A velocity-field-based controller for assisting leg movement during walking with a bilateral hip and knee lower limb exoskeleton. IEEE Transactions on Robotics 35, 307–316 (2018) Shushtari et al. [2021] Shushtari, M., Nasiri, R., Arami, A.: Online reference trajectory adaptation: A personalized control strategy for lower limb exoskeletons. IEEE Robotics and Automation Letters 7, 128–134 (2021) Asl et al. [2020] Asl, H.J., Yamashita, M., Narikiyo, T., Kawanishi, M.: Field-based assist-as-needed control schemes for rehabilitation robots. IEEE/ASME Transactions on Mechatronics 25, 2100–2111 (2020) Dominijanni et al. [2023] Dominijanni, G., Pinheiro, D.L., Pollina, L., Orset, B., Gini, M., Anselmino, E., Pierella, C., Olivier, J., Shokur, S., Micera, S.: Human motor augmentation with an extra robotic arm without functional interference. Science Robotics 8 (2023) Losey et al. [2018] Losey, D.P., Mcdonald, C.G., Battaglia, E., O’Malley, M.: A review of intent detection, arbitration, and communication aspects of shared control for physical human-robot interaction. Applied Mechanics Reviews 70 (2018) https://doi.org/10.1115/1.4039145 Jackson and Collins [2019] Jackson, R.W., Collins, S.H.: Heuristic-based ankle exoskeleton control for co-adaptive assistance of human locomotion. IEEE Transactions on Neural Systems and Rehabilitation Engineering 27, 2059–2069 (2019) Banala et al. [2007] Banala, S.K., Agrawal, S.K., Scholz, J.P.: Active leg exoskeleton (alex) for gait rehabilitation of motor-impaired patients. In: 2007 IEEE 10th International Conference on Rehabilitation Robotics, pp. 401–407 (2007). 2007 IEEE 10th International Conference on Rehabilitation Robotics Dinovitzer et al. [2023a] Dinovitzer, H., Shushtari, M., Arami, A.: Feedforward control of lower limb exoskeletons: which torque profile should we use? IEEE Robotics and Automation Letters (2023) Dinovitzer et al. [2023b] Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Eva, M.M., Grizzle, J.W.: Feedback control design for robust comfortable sit-to-stand motions of 3d lower-limb exoskeletons. IEEE Access 9, 122–161 (2020) Masengo et al. [2023] Masengo, G., Zhang, X., Dong, R., , A.B.A., Hamza, K., Mudaheranwa, E.: Lower limb exoskeleton robot and its cooperative control: A review, trends, and challenges for future research. Frontiers in Neurorobotics 16, 1–25 (2023) Ingraham et al. [2022] Ingraham, K.A., Remy, C.D., Rouse, E.J.: The role of user preference in the customized control of robotic exoskeletons. Science robotics 7 (2022) Pinto-Fernandez et al. [2020] Pinto-Fernandez, D., Diego, T., Carmen Sanchez-Villamanan, M., Aller, F., Mombaur, K., Conti, R., Vitiello, N., Moreno, J.C., Pons, J.L.: Performance evaluation of lower limb exoskeletons: A systematic review. IEEE Transactions on Neural Systems and Rehabilitation Engineering 28, 1573–1583 (2020) Slade et al. [2022] Slade, P., Kochenderfer, M.J., Delp, S.L., Collins, S.H.: Personalizing exoskeleton assistance while walking in the real world. Nature 610, 277–282 (2022) Medina et al. [2015] Medina, J.R., Lorenz, T., Hirche, S.: Synthesizing anticipatory haptic assistance considering human behavior uncertainty. IEEE Transactions on Robotics 31, 180–190 (2015) Martinez et al. [2018] Martinez, A., Lawson, B., Durrough, C., Goldfarb, M.: A velocity-field-based controller for assisting leg movement during walking with a bilateral hip and knee lower limb exoskeleton. IEEE Transactions on Robotics 35, 307–316 (2018) Shushtari et al. [2021] Shushtari, M., Nasiri, R., Arami, A.: Online reference trajectory adaptation: A personalized control strategy for lower limb exoskeletons. IEEE Robotics and Automation Letters 7, 128–134 (2021) Asl et al. [2020] Asl, H.J., Yamashita, M., Narikiyo, T., Kawanishi, M.: Field-based assist-as-needed control schemes for rehabilitation robots. IEEE/ASME Transactions on Mechatronics 25, 2100–2111 (2020) Dominijanni et al. [2023] Dominijanni, G., Pinheiro, D.L., Pollina, L., Orset, B., Gini, M., Anselmino, E., Pierella, C., Olivier, J., Shokur, S., Micera, S.: Human motor augmentation with an extra robotic arm without functional interference. Science Robotics 8 (2023) Losey et al. [2018] Losey, D.P., Mcdonald, C.G., Battaglia, E., O’Malley, M.: A review of intent detection, arbitration, and communication aspects of shared control for physical human-robot interaction. Applied Mechanics Reviews 70 (2018) https://doi.org/10.1115/1.4039145 Jackson and Collins [2019] Jackson, R.W., Collins, S.H.: Heuristic-based ankle exoskeleton control for co-adaptive assistance of human locomotion. IEEE Transactions on Neural Systems and Rehabilitation Engineering 27, 2059–2069 (2019) Banala et al. [2007] Banala, S.K., Agrawal, S.K., Scholz, J.P.: Active leg exoskeleton (alex) for gait rehabilitation of motor-impaired patients. In: 2007 IEEE 10th International Conference on Rehabilitation Robotics, pp. 401–407 (2007). 2007 IEEE 10th International Conference on Rehabilitation Robotics Dinovitzer et al. [2023a] Dinovitzer, H., Shushtari, M., Arami, A.: Feedforward control of lower limb exoskeletons: which torque profile should we use? IEEE Robotics and Automation Letters (2023) Dinovitzer et al. [2023b] Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Masengo, G., Zhang, X., Dong, R., , A.B.A., Hamza, K., Mudaheranwa, E.: Lower limb exoskeleton robot and its cooperative control: A review, trends, and challenges for future research. Frontiers in Neurorobotics 16, 1–25 (2023) Ingraham et al. [2022] Ingraham, K.A., Remy, C.D., Rouse, E.J.: The role of user preference in the customized control of robotic exoskeletons. Science robotics 7 (2022) Pinto-Fernandez et al. [2020] Pinto-Fernandez, D., Diego, T., Carmen Sanchez-Villamanan, M., Aller, F., Mombaur, K., Conti, R., Vitiello, N., Moreno, J.C., Pons, J.L.: Performance evaluation of lower limb exoskeletons: A systematic review. IEEE Transactions on Neural Systems and Rehabilitation Engineering 28, 1573–1583 (2020) Slade et al. [2022] Slade, P., Kochenderfer, M.J., Delp, S.L., Collins, S.H.: Personalizing exoskeleton assistance while walking in the real world. Nature 610, 277–282 (2022) Medina et al. [2015] Medina, J.R., Lorenz, T., Hirche, S.: Synthesizing anticipatory haptic assistance considering human behavior uncertainty. IEEE Transactions on Robotics 31, 180–190 (2015) Martinez et al. [2018] Martinez, A., Lawson, B., Durrough, C., Goldfarb, M.: A velocity-field-based controller for assisting leg movement during walking with a bilateral hip and knee lower limb exoskeleton. IEEE Transactions on Robotics 35, 307–316 (2018) Shushtari et al. [2021] Shushtari, M., Nasiri, R., Arami, A.: Online reference trajectory adaptation: A personalized control strategy for lower limb exoskeletons. IEEE Robotics and Automation Letters 7, 128–134 (2021) Asl et al. [2020] Asl, H.J., Yamashita, M., Narikiyo, T., Kawanishi, M.: Field-based assist-as-needed control schemes for rehabilitation robots. IEEE/ASME Transactions on Mechatronics 25, 2100–2111 (2020) Dominijanni et al. [2023] Dominijanni, G., Pinheiro, D.L., Pollina, L., Orset, B., Gini, M., Anselmino, E., Pierella, C., Olivier, J., Shokur, S., Micera, S.: Human motor augmentation with an extra robotic arm without functional interference. Science Robotics 8 (2023) Losey et al. [2018] Losey, D.P., Mcdonald, C.G., Battaglia, E., O’Malley, M.: A review of intent detection, arbitration, and communication aspects of shared control for physical human-robot interaction. Applied Mechanics Reviews 70 (2018) https://doi.org/10.1115/1.4039145 Jackson and Collins [2019] Jackson, R.W., Collins, S.H.: Heuristic-based ankle exoskeleton control for co-adaptive assistance of human locomotion. IEEE Transactions on Neural Systems and Rehabilitation Engineering 27, 2059–2069 (2019) Banala et al. [2007] Banala, S.K., Agrawal, S.K., Scholz, J.P.: Active leg exoskeleton (alex) for gait rehabilitation of motor-impaired patients. In: 2007 IEEE 10th International Conference on Rehabilitation Robotics, pp. 401–407 (2007). 2007 IEEE 10th International Conference on Rehabilitation Robotics Dinovitzer et al. [2023a] Dinovitzer, H., Shushtari, M., Arami, A.: Feedforward control of lower limb exoskeletons: which torque profile should we use? IEEE Robotics and Automation Letters (2023) Dinovitzer et al. [2023b] Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Ingraham, K.A., Remy, C.D., Rouse, E.J.: The role of user preference in the customized control of robotic exoskeletons. Science robotics 7 (2022) Pinto-Fernandez et al. [2020] Pinto-Fernandez, D., Diego, T., Carmen Sanchez-Villamanan, M., Aller, F., Mombaur, K., Conti, R., Vitiello, N., Moreno, J.C., Pons, J.L.: Performance evaluation of lower limb exoskeletons: A systematic review. IEEE Transactions on Neural Systems and Rehabilitation Engineering 28, 1573–1583 (2020) Slade et al. [2022] Slade, P., Kochenderfer, M.J., Delp, S.L., Collins, S.H.: Personalizing exoskeleton assistance while walking in the real world. Nature 610, 277–282 (2022) Medina et al. [2015] Medina, J.R., Lorenz, T., Hirche, S.: Synthesizing anticipatory haptic assistance considering human behavior uncertainty. IEEE Transactions on Robotics 31, 180–190 (2015) Martinez et al. [2018] Martinez, A., Lawson, B., Durrough, C., Goldfarb, M.: A velocity-field-based controller for assisting leg movement during walking with a bilateral hip and knee lower limb exoskeleton. IEEE Transactions on Robotics 35, 307–316 (2018) Shushtari et al. [2021] Shushtari, M., Nasiri, R., Arami, A.: Online reference trajectory adaptation: A personalized control strategy for lower limb exoskeletons. IEEE Robotics and Automation Letters 7, 128–134 (2021) Asl et al. [2020] Asl, H.J., Yamashita, M., Narikiyo, T., Kawanishi, M.: Field-based assist-as-needed control schemes for rehabilitation robots. IEEE/ASME Transactions on Mechatronics 25, 2100–2111 (2020) Dominijanni et al. [2023] Dominijanni, G., Pinheiro, D.L., Pollina, L., Orset, B., Gini, M., Anselmino, E., Pierella, C., Olivier, J., Shokur, S., Micera, S.: Human motor augmentation with an extra robotic arm without functional interference. Science Robotics 8 (2023) Losey et al. [2018] Losey, D.P., Mcdonald, C.G., Battaglia, E., O’Malley, M.: A review of intent detection, arbitration, and communication aspects of shared control for physical human-robot interaction. Applied Mechanics Reviews 70 (2018) https://doi.org/10.1115/1.4039145 Jackson and Collins [2019] Jackson, R.W., Collins, S.H.: Heuristic-based ankle exoskeleton control for co-adaptive assistance of human locomotion. IEEE Transactions on Neural Systems and Rehabilitation Engineering 27, 2059–2069 (2019) Banala et al. [2007] Banala, S.K., Agrawal, S.K., Scholz, J.P.: Active leg exoskeleton (alex) for gait rehabilitation of motor-impaired patients. In: 2007 IEEE 10th International Conference on Rehabilitation Robotics, pp. 401–407 (2007). 2007 IEEE 10th International Conference on Rehabilitation Robotics Dinovitzer et al. [2023a] Dinovitzer, H., Shushtari, M., Arami, A.: Feedforward control of lower limb exoskeletons: which torque profile should we use? IEEE Robotics and Automation Letters (2023) Dinovitzer et al. [2023b] Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Pinto-Fernandez, D., Diego, T., Carmen Sanchez-Villamanan, M., Aller, F., Mombaur, K., Conti, R., Vitiello, N., Moreno, J.C., Pons, J.L.: Performance evaluation of lower limb exoskeletons: A systematic review. IEEE Transactions on Neural Systems and Rehabilitation Engineering 28, 1573–1583 (2020) Slade et al. [2022] Slade, P., Kochenderfer, M.J., Delp, S.L., Collins, S.H.: Personalizing exoskeleton assistance while walking in the real world. Nature 610, 277–282 (2022) Medina et al. [2015] Medina, J.R., Lorenz, T., Hirche, S.: Synthesizing anticipatory haptic assistance considering human behavior uncertainty. IEEE Transactions on Robotics 31, 180–190 (2015) Martinez et al. [2018] Martinez, A., Lawson, B., Durrough, C., Goldfarb, M.: A velocity-field-based controller for assisting leg movement during walking with a bilateral hip and knee lower limb exoskeleton. IEEE Transactions on Robotics 35, 307–316 (2018) Shushtari et al. [2021] Shushtari, M., Nasiri, R., Arami, A.: Online reference trajectory adaptation: A personalized control strategy for lower limb exoskeletons. IEEE Robotics and Automation Letters 7, 128–134 (2021) Asl et al. [2020] Asl, H.J., Yamashita, M., Narikiyo, T., Kawanishi, M.: Field-based assist-as-needed control schemes for rehabilitation robots. IEEE/ASME Transactions on Mechatronics 25, 2100–2111 (2020) Dominijanni et al. [2023] Dominijanni, G., Pinheiro, D.L., Pollina, L., Orset, B., Gini, M., Anselmino, E., Pierella, C., Olivier, J., Shokur, S., Micera, S.: Human motor augmentation with an extra robotic arm without functional interference. Science Robotics 8 (2023) Losey et al. [2018] Losey, D.P., Mcdonald, C.G., Battaglia, E., O’Malley, M.: A review of intent detection, arbitration, and communication aspects of shared control for physical human-robot interaction. Applied Mechanics Reviews 70 (2018) https://doi.org/10.1115/1.4039145 Jackson and Collins [2019] Jackson, R.W., Collins, S.H.: Heuristic-based ankle exoskeleton control for co-adaptive assistance of human locomotion. IEEE Transactions on Neural Systems and Rehabilitation Engineering 27, 2059–2069 (2019) Banala et al. [2007] Banala, S.K., Agrawal, S.K., Scholz, J.P.: Active leg exoskeleton (alex) for gait rehabilitation of motor-impaired patients. In: 2007 IEEE 10th International Conference on Rehabilitation Robotics, pp. 401–407 (2007). 2007 IEEE 10th International Conference on Rehabilitation Robotics Dinovitzer et al. [2023a] Dinovitzer, H., Shushtari, M., Arami, A.: Feedforward control of lower limb exoskeletons: which torque profile should we use? IEEE Robotics and Automation Letters (2023) Dinovitzer et al. [2023b] Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Slade, P., Kochenderfer, M.J., Delp, S.L., Collins, S.H.: Personalizing exoskeleton assistance while walking in the real world. Nature 610, 277–282 (2022) Medina et al. [2015] Medina, J.R., Lorenz, T., Hirche, S.: Synthesizing anticipatory haptic assistance considering human behavior uncertainty. IEEE Transactions on Robotics 31, 180–190 (2015) Martinez et al. [2018] Martinez, A., Lawson, B., Durrough, C., Goldfarb, M.: A velocity-field-based controller for assisting leg movement during walking with a bilateral hip and knee lower limb exoskeleton. IEEE Transactions on Robotics 35, 307–316 (2018) Shushtari et al. [2021] Shushtari, M., Nasiri, R., Arami, A.: Online reference trajectory adaptation: A personalized control strategy for lower limb exoskeletons. IEEE Robotics and Automation Letters 7, 128–134 (2021) Asl et al. [2020] Asl, H.J., Yamashita, M., Narikiyo, T., Kawanishi, M.: Field-based assist-as-needed control schemes for rehabilitation robots. IEEE/ASME Transactions on Mechatronics 25, 2100–2111 (2020) Dominijanni et al. [2023] Dominijanni, G., Pinheiro, D.L., Pollina, L., Orset, B., Gini, M., Anselmino, E., Pierella, C., Olivier, J., Shokur, S., Micera, S.: Human motor augmentation with an extra robotic arm without functional interference. Science Robotics 8 (2023) Losey et al. [2018] Losey, D.P., Mcdonald, C.G., Battaglia, E., O’Malley, M.: A review of intent detection, arbitration, and communication aspects of shared control for physical human-robot interaction. Applied Mechanics Reviews 70 (2018) https://doi.org/10.1115/1.4039145 Jackson and Collins [2019] Jackson, R.W., Collins, S.H.: Heuristic-based ankle exoskeleton control for co-adaptive assistance of human locomotion. IEEE Transactions on Neural Systems and Rehabilitation Engineering 27, 2059–2069 (2019) Banala et al. [2007] Banala, S.K., Agrawal, S.K., Scholz, J.P.: Active leg exoskeleton (alex) for gait rehabilitation of motor-impaired patients. In: 2007 IEEE 10th International Conference on Rehabilitation Robotics, pp. 401–407 (2007). 2007 IEEE 10th International Conference on Rehabilitation Robotics Dinovitzer et al. [2023a] Dinovitzer, H., Shushtari, M., Arami, A.: Feedforward control of lower limb exoskeletons: which torque profile should we use? IEEE Robotics and Automation Letters (2023) Dinovitzer et al. [2023b] Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Medina, J.R., Lorenz, T., Hirche, S.: Synthesizing anticipatory haptic assistance considering human behavior uncertainty. IEEE Transactions on Robotics 31, 180–190 (2015) Martinez et al. [2018] Martinez, A., Lawson, B., Durrough, C., Goldfarb, M.: A velocity-field-based controller for assisting leg movement during walking with a bilateral hip and knee lower limb exoskeleton. IEEE Transactions on Robotics 35, 307–316 (2018) Shushtari et al. [2021] Shushtari, M., Nasiri, R., Arami, A.: Online reference trajectory adaptation: A personalized control strategy for lower limb exoskeletons. IEEE Robotics and Automation Letters 7, 128–134 (2021) Asl et al. [2020] Asl, H.J., Yamashita, M., Narikiyo, T., Kawanishi, M.: Field-based assist-as-needed control schemes for rehabilitation robots. IEEE/ASME Transactions on Mechatronics 25, 2100–2111 (2020) Dominijanni et al. [2023] Dominijanni, G., Pinheiro, D.L., Pollina, L., Orset, B., Gini, M., Anselmino, E., Pierella, C., Olivier, J., Shokur, S., Micera, S.: Human motor augmentation with an extra robotic arm without functional interference. Science Robotics 8 (2023) Losey et al. [2018] Losey, D.P., Mcdonald, C.G., Battaglia, E., O’Malley, M.: A review of intent detection, arbitration, and communication aspects of shared control for physical human-robot interaction. Applied Mechanics Reviews 70 (2018) https://doi.org/10.1115/1.4039145 Jackson and Collins [2019] Jackson, R.W., Collins, S.H.: Heuristic-based ankle exoskeleton control for co-adaptive assistance of human locomotion. IEEE Transactions on Neural Systems and Rehabilitation Engineering 27, 2059–2069 (2019) Banala et al. [2007] Banala, S.K., Agrawal, S.K., Scholz, J.P.: Active leg exoskeleton (alex) for gait rehabilitation of motor-impaired patients. In: 2007 IEEE 10th International Conference on Rehabilitation Robotics, pp. 401–407 (2007). 2007 IEEE 10th International Conference on Rehabilitation Robotics Dinovitzer et al. [2023a] Dinovitzer, H., Shushtari, M., Arami, A.: Feedforward control of lower limb exoskeletons: which torque profile should we use? IEEE Robotics and Automation Letters (2023) Dinovitzer et al. [2023b] Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Martinez, A., Lawson, B., Durrough, C., Goldfarb, M.: A velocity-field-based controller for assisting leg movement during walking with a bilateral hip and knee lower limb exoskeleton. IEEE Transactions on Robotics 35, 307–316 (2018) Shushtari et al. [2021] Shushtari, M., Nasiri, R., Arami, A.: Online reference trajectory adaptation: A personalized control strategy for lower limb exoskeletons. IEEE Robotics and Automation Letters 7, 128–134 (2021) Asl et al. [2020] Asl, H.J., Yamashita, M., Narikiyo, T., Kawanishi, M.: Field-based assist-as-needed control schemes for rehabilitation robots. IEEE/ASME Transactions on Mechatronics 25, 2100–2111 (2020) Dominijanni et al. [2023] Dominijanni, G., Pinheiro, D.L., Pollina, L., Orset, B., Gini, M., Anselmino, E., Pierella, C., Olivier, J., Shokur, S., Micera, S.: Human motor augmentation with an extra robotic arm without functional interference. Science Robotics 8 (2023) Losey et al. [2018] Losey, D.P., Mcdonald, C.G., Battaglia, E., O’Malley, M.: A review of intent detection, arbitration, and communication aspects of shared control for physical human-robot interaction. Applied Mechanics Reviews 70 (2018) https://doi.org/10.1115/1.4039145 Jackson and Collins [2019] Jackson, R.W., Collins, S.H.: Heuristic-based ankle exoskeleton control for co-adaptive assistance of human locomotion. IEEE Transactions on Neural Systems and Rehabilitation Engineering 27, 2059–2069 (2019) Banala et al. [2007] Banala, S.K., Agrawal, S.K., Scholz, J.P.: Active leg exoskeleton (alex) for gait rehabilitation of motor-impaired patients. In: 2007 IEEE 10th International Conference on Rehabilitation Robotics, pp. 401–407 (2007). 2007 IEEE 10th International Conference on Rehabilitation Robotics Dinovitzer et al. [2023a] Dinovitzer, H., Shushtari, M., Arami, A.: Feedforward control of lower limb exoskeletons: which torque profile should we use? IEEE Robotics and Automation Letters (2023) Dinovitzer et al. [2023b] Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Shushtari, M., Nasiri, R., Arami, A.: Online reference trajectory adaptation: A personalized control strategy for lower limb exoskeletons. IEEE Robotics and Automation Letters 7, 128–134 (2021) Asl et al. [2020] Asl, H.J., Yamashita, M., Narikiyo, T., Kawanishi, M.: Field-based assist-as-needed control schemes for rehabilitation robots. IEEE/ASME Transactions on Mechatronics 25, 2100–2111 (2020) Dominijanni et al. [2023] Dominijanni, G., Pinheiro, D.L., Pollina, L., Orset, B., Gini, M., Anselmino, E., Pierella, C., Olivier, J., Shokur, S., Micera, S.: Human motor augmentation with an extra robotic arm without functional interference. Science Robotics 8 (2023) Losey et al. [2018] Losey, D.P., Mcdonald, C.G., Battaglia, E., O’Malley, M.: A review of intent detection, arbitration, and communication aspects of shared control for physical human-robot interaction. Applied Mechanics Reviews 70 (2018) https://doi.org/10.1115/1.4039145 Jackson and Collins [2019] Jackson, R.W., Collins, S.H.: Heuristic-based ankle exoskeleton control for co-adaptive assistance of human locomotion. IEEE Transactions on Neural Systems and Rehabilitation Engineering 27, 2059–2069 (2019) Banala et al. [2007] Banala, S.K., Agrawal, S.K., Scholz, J.P.: Active leg exoskeleton (alex) for gait rehabilitation of motor-impaired patients. In: 2007 IEEE 10th International Conference on Rehabilitation Robotics, pp. 401–407 (2007). 2007 IEEE 10th International Conference on Rehabilitation Robotics Dinovitzer et al. [2023a] Dinovitzer, H., Shushtari, M., Arami, A.: Feedforward control of lower limb exoskeletons: which torque profile should we use? IEEE Robotics and Automation Letters (2023) Dinovitzer et al. [2023b] Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Asl, H.J., Yamashita, M., Narikiyo, T., Kawanishi, M.: Field-based assist-as-needed control schemes for rehabilitation robots. IEEE/ASME Transactions on Mechatronics 25, 2100–2111 (2020) Dominijanni et al. [2023] Dominijanni, G., Pinheiro, D.L., Pollina, L., Orset, B., Gini, M., Anselmino, E., Pierella, C., Olivier, J., Shokur, S., Micera, S.: Human motor augmentation with an extra robotic arm without functional interference. Science Robotics 8 (2023) Losey et al. [2018] Losey, D.P., Mcdonald, C.G., Battaglia, E., O’Malley, M.: A review of intent detection, arbitration, and communication aspects of shared control for physical human-robot interaction. Applied Mechanics Reviews 70 (2018) https://doi.org/10.1115/1.4039145 Jackson and Collins [2019] Jackson, R.W., Collins, S.H.: Heuristic-based ankle exoskeleton control for co-adaptive assistance of human locomotion. IEEE Transactions on Neural Systems and Rehabilitation Engineering 27, 2059–2069 (2019) Banala et al. [2007] Banala, S.K., Agrawal, S.K., Scholz, J.P.: Active leg exoskeleton (alex) for gait rehabilitation of motor-impaired patients. In: 2007 IEEE 10th International Conference on Rehabilitation Robotics, pp. 401–407 (2007). 2007 IEEE 10th International Conference on Rehabilitation Robotics Dinovitzer et al. [2023a] Dinovitzer, H., Shushtari, M., Arami, A.: Feedforward control of lower limb exoskeletons: which torque profile should we use? IEEE Robotics and Automation Letters (2023) Dinovitzer et al. [2023b] Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Dominijanni, G., Pinheiro, D.L., Pollina, L., Orset, B., Gini, M., Anselmino, E., Pierella, C., Olivier, J., Shokur, S., Micera, S.: Human motor augmentation with an extra robotic arm without functional interference. Science Robotics 8 (2023) Losey et al. [2018] Losey, D.P., Mcdonald, C.G., Battaglia, E., O’Malley, M.: A review of intent detection, arbitration, and communication aspects of shared control for physical human-robot interaction. Applied Mechanics Reviews 70 (2018) https://doi.org/10.1115/1.4039145 Jackson and Collins [2019] Jackson, R.W., Collins, S.H.: Heuristic-based ankle exoskeleton control for co-adaptive assistance of human locomotion. IEEE Transactions on Neural Systems and Rehabilitation Engineering 27, 2059–2069 (2019) Banala et al. [2007] Banala, S.K., Agrawal, S.K., Scholz, J.P.: Active leg exoskeleton (alex) for gait rehabilitation of motor-impaired patients. In: 2007 IEEE 10th International Conference on Rehabilitation Robotics, pp. 401–407 (2007). 2007 IEEE 10th International Conference on Rehabilitation Robotics Dinovitzer et al. [2023a] Dinovitzer, H., Shushtari, M., Arami, A.: Feedforward control of lower limb exoskeletons: which torque profile should we use? IEEE Robotics and Automation Letters (2023) Dinovitzer et al. [2023b] Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Losey, D.P., Mcdonald, C.G., Battaglia, E., O’Malley, M.: A review of intent detection, arbitration, and communication aspects of shared control for physical human-robot interaction. Applied Mechanics Reviews 70 (2018) https://doi.org/10.1115/1.4039145 Jackson and Collins [2019] Jackson, R.W., Collins, S.H.: Heuristic-based ankle exoskeleton control for co-adaptive assistance of human locomotion. IEEE Transactions on Neural Systems and Rehabilitation Engineering 27, 2059–2069 (2019) Banala et al. [2007] Banala, S.K., Agrawal, S.K., Scholz, J.P.: Active leg exoskeleton (alex) for gait rehabilitation of motor-impaired patients. In: 2007 IEEE 10th International Conference on Rehabilitation Robotics, pp. 401–407 (2007). 2007 IEEE 10th International Conference on Rehabilitation Robotics Dinovitzer et al. [2023a] Dinovitzer, H., Shushtari, M., Arami, A.: Feedforward control of lower limb exoskeletons: which torque profile should we use? IEEE Robotics and Automation Letters (2023) Dinovitzer et al. [2023b] Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Jackson, R.W., Collins, S.H.: Heuristic-based ankle exoskeleton control for co-adaptive assistance of human locomotion. IEEE Transactions on Neural Systems and Rehabilitation Engineering 27, 2059–2069 (2019) Banala et al. [2007] Banala, S.K., Agrawal, S.K., Scholz, J.P.: Active leg exoskeleton (alex) for gait rehabilitation of motor-impaired patients. In: 2007 IEEE 10th International Conference on Rehabilitation Robotics, pp. 401–407 (2007). 2007 IEEE 10th International Conference on Rehabilitation Robotics Dinovitzer et al. [2023a] Dinovitzer, H., Shushtari, M., Arami, A.: Feedforward control of lower limb exoskeletons: which torque profile should we use? IEEE Robotics and Automation Letters (2023) Dinovitzer et al. [2023b] Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Banala, S.K., Agrawal, S.K., Scholz, J.P.: Active leg exoskeleton (alex) for gait rehabilitation of motor-impaired patients. In: 2007 IEEE 10th International Conference on Rehabilitation Robotics, pp. 401–407 (2007). 2007 IEEE 10th International Conference on Rehabilitation Robotics Dinovitzer et al. [2023a] Dinovitzer, H., Shushtari, M., Arami, A.: Feedforward control of lower limb exoskeletons: which torque profile should we use? IEEE Robotics and Automation Letters (2023) Dinovitzer et al. [2023b] Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Dinovitzer, H., Shushtari, M., Arami, A.: Feedforward control of lower limb exoskeletons: which torque profile should we use? IEEE Robotics and Automation Letters (2023) Dinovitzer et al. [2023b] Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017)
  12. Eva, M.M., Grizzle, J.W.: Feedback control design for robust comfortable sit-to-stand motions of 3d lower-limb exoskeletons. IEEE Access 9, 122–161 (2020) Masengo et al. [2023] Masengo, G., Zhang, X., Dong, R., , A.B.A., Hamza, K., Mudaheranwa, E.: Lower limb exoskeleton robot and its cooperative control: A review, trends, and challenges for future research. Frontiers in Neurorobotics 16, 1–25 (2023) Ingraham et al. [2022] Ingraham, K.A., Remy, C.D., Rouse, E.J.: The role of user preference in the customized control of robotic exoskeletons. Science robotics 7 (2022) Pinto-Fernandez et al. [2020] Pinto-Fernandez, D., Diego, T., Carmen Sanchez-Villamanan, M., Aller, F., Mombaur, K., Conti, R., Vitiello, N., Moreno, J.C., Pons, J.L.: Performance evaluation of lower limb exoskeletons: A systematic review. IEEE Transactions on Neural Systems and Rehabilitation Engineering 28, 1573–1583 (2020) Slade et al. [2022] Slade, P., Kochenderfer, M.J., Delp, S.L., Collins, S.H.: Personalizing exoskeleton assistance while walking in the real world. Nature 610, 277–282 (2022) Medina et al. [2015] Medina, J.R., Lorenz, T., Hirche, S.: Synthesizing anticipatory haptic assistance considering human behavior uncertainty. IEEE Transactions on Robotics 31, 180–190 (2015) Martinez et al. [2018] Martinez, A., Lawson, B., Durrough, C., Goldfarb, M.: A velocity-field-based controller for assisting leg movement during walking with a bilateral hip and knee lower limb exoskeleton. IEEE Transactions on Robotics 35, 307–316 (2018) Shushtari et al. [2021] Shushtari, M., Nasiri, R., Arami, A.: Online reference trajectory adaptation: A personalized control strategy for lower limb exoskeletons. IEEE Robotics and Automation Letters 7, 128–134 (2021) Asl et al. [2020] Asl, H.J., Yamashita, M., Narikiyo, T., Kawanishi, M.: Field-based assist-as-needed control schemes for rehabilitation robots. IEEE/ASME Transactions on Mechatronics 25, 2100–2111 (2020) Dominijanni et al. [2023] Dominijanni, G., Pinheiro, D.L., Pollina, L., Orset, B., Gini, M., Anselmino, E., Pierella, C., Olivier, J., Shokur, S., Micera, S.: Human motor augmentation with an extra robotic arm without functional interference. Science Robotics 8 (2023) Losey et al. [2018] Losey, D.P., Mcdonald, C.G., Battaglia, E., O’Malley, M.: A review of intent detection, arbitration, and communication aspects of shared control for physical human-robot interaction. Applied Mechanics Reviews 70 (2018) https://doi.org/10.1115/1.4039145 Jackson and Collins [2019] Jackson, R.W., Collins, S.H.: Heuristic-based ankle exoskeleton control for co-adaptive assistance of human locomotion. IEEE Transactions on Neural Systems and Rehabilitation Engineering 27, 2059–2069 (2019) Banala et al. [2007] Banala, S.K., Agrawal, S.K., Scholz, J.P.: Active leg exoskeleton (alex) for gait rehabilitation of motor-impaired patients. In: 2007 IEEE 10th International Conference on Rehabilitation Robotics, pp. 401–407 (2007). 2007 IEEE 10th International Conference on Rehabilitation Robotics Dinovitzer et al. [2023a] Dinovitzer, H., Shushtari, M., Arami, A.: Feedforward control of lower limb exoskeletons: which torque profile should we use? IEEE Robotics and Automation Letters (2023) Dinovitzer et al. [2023b] Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Masengo, G., Zhang, X., Dong, R., , A.B.A., Hamza, K., Mudaheranwa, E.: Lower limb exoskeleton robot and its cooperative control: A review, trends, and challenges for future research. Frontiers in Neurorobotics 16, 1–25 (2023) Ingraham et al. [2022] Ingraham, K.A., Remy, C.D., Rouse, E.J.: The role of user preference in the customized control of robotic exoskeletons. Science robotics 7 (2022) Pinto-Fernandez et al. [2020] Pinto-Fernandez, D., Diego, T., Carmen Sanchez-Villamanan, M., Aller, F., Mombaur, K., Conti, R., Vitiello, N., Moreno, J.C., Pons, J.L.: Performance evaluation of lower limb exoskeletons: A systematic review. IEEE Transactions on Neural Systems and Rehabilitation Engineering 28, 1573–1583 (2020) Slade et al. [2022] Slade, P., Kochenderfer, M.J., Delp, S.L., Collins, S.H.: Personalizing exoskeleton assistance while walking in the real world. Nature 610, 277–282 (2022) Medina et al. [2015] Medina, J.R., Lorenz, T., Hirche, S.: Synthesizing anticipatory haptic assistance considering human behavior uncertainty. IEEE Transactions on Robotics 31, 180–190 (2015) Martinez et al. [2018] Martinez, A., Lawson, B., Durrough, C., Goldfarb, M.: A velocity-field-based controller for assisting leg movement during walking with a bilateral hip and knee lower limb exoskeleton. IEEE Transactions on Robotics 35, 307–316 (2018) Shushtari et al. [2021] Shushtari, M., Nasiri, R., Arami, A.: Online reference trajectory adaptation: A personalized control strategy for lower limb exoskeletons. IEEE Robotics and Automation Letters 7, 128–134 (2021) Asl et al. [2020] Asl, H.J., Yamashita, M., Narikiyo, T., Kawanishi, M.: Field-based assist-as-needed control schemes for rehabilitation robots. IEEE/ASME Transactions on Mechatronics 25, 2100–2111 (2020) Dominijanni et al. [2023] Dominijanni, G., Pinheiro, D.L., Pollina, L., Orset, B., Gini, M., Anselmino, E., Pierella, C., Olivier, J., Shokur, S., Micera, S.: Human motor augmentation with an extra robotic arm without functional interference. Science Robotics 8 (2023) Losey et al. [2018] Losey, D.P., Mcdonald, C.G., Battaglia, E., O’Malley, M.: A review of intent detection, arbitration, and communication aspects of shared control for physical human-robot interaction. Applied Mechanics Reviews 70 (2018) https://doi.org/10.1115/1.4039145 Jackson and Collins [2019] Jackson, R.W., Collins, S.H.: Heuristic-based ankle exoskeleton control for co-adaptive assistance of human locomotion. IEEE Transactions on Neural Systems and Rehabilitation Engineering 27, 2059–2069 (2019) Banala et al. [2007] Banala, S.K., Agrawal, S.K., Scholz, J.P.: Active leg exoskeleton (alex) for gait rehabilitation of motor-impaired patients. In: 2007 IEEE 10th International Conference on Rehabilitation Robotics, pp. 401–407 (2007). 2007 IEEE 10th International Conference on Rehabilitation Robotics Dinovitzer et al. [2023a] Dinovitzer, H., Shushtari, M., Arami, A.: Feedforward control of lower limb exoskeletons: which torque profile should we use? IEEE Robotics and Automation Letters (2023) Dinovitzer et al. [2023b] Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Ingraham, K.A., Remy, C.D., Rouse, E.J.: The role of user preference in the customized control of robotic exoskeletons. Science robotics 7 (2022) Pinto-Fernandez et al. [2020] Pinto-Fernandez, D., Diego, T., Carmen Sanchez-Villamanan, M., Aller, F., Mombaur, K., Conti, R., Vitiello, N., Moreno, J.C., Pons, J.L.: Performance evaluation of lower limb exoskeletons: A systematic review. IEEE Transactions on Neural Systems and Rehabilitation Engineering 28, 1573–1583 (2020) Slade et al. [2022] Slade, P., Kochenderfer, M.J., Delp, S.L., Collins, S.H.: Personalizing exoskeleton assistance while walking in the real world. Nature 610, 277–282 (2022) Medina et al. [2015] Medina, J.R., Lorenz, T., Hirche, S.: Synthesizing anticipatory haptic assistance considering human behavior uncertainty. IEEE Transactions on Robotics 31, 180–190 (2015) Martinez et al. [2018] Martinez, A., Lawson, B., Durrough, C., Goldfarb, M.: A velocity-field-based controller for assisting leg movement during walking with a bilateral hip and knee lower limb exoskeleton. IEEE Transactions on Robotics 35, 307–316 (2018) Shushtari et al. [2021] Shushtari, M., Nasiri, R., Arami, A.: Online reference trajectory adaptation: A personalized control strategy for lower limb exoskeletons. IEEE Robotics and Automation Letters 7, 128–134 (2021) Asl et al. [2020] Asl, H.J., Yamashita, M., Narikiyo, T., Kawanishi, M.: Field-based assist-as-needed control schemes for rehabilitation robots. IEEE/ASME Transactions on Mechatronics 25, 2100–2111 (2020) Dominijanni et al. [2023] Dominijanni, G., Pinheiro, D.L., Pollina, L., Orset, B., Gini, M., Anselmino, E., Pierella, C., Olivier, J., Shokur, S., Micera, S.: Human motor augmentation with an extra robotic arm without functional interference. Science Robotics 8 (2023) Losey et al. [2018] Losey, D.P., Mcdonald, C.G., Battaglia, E., O’Malley, M.: A review of intent detection, arbitration, and communication aspects of shared control for physical human-robot interaction. Applied Mechanics Reviews 70 (2018) https://doi.org/10.1115/1.4039145 Jackson and Collins [2019] Jackson, R.W., Collins, S.H.: Heuristic-based ankle exoskeleton control for co-adaptive assistance of human locomotion. IEEE Transactions on Neural Systems and Rehabilitation Engineering 27, 2059–2069 (2019) Banala et al. [2007] Banala, S.K., Agrawal, S.K., Scholz, J.P.: Active leg exoskeleton (alex) for gait rehabilitation of motor-impaired patients. In: 2007 IEEE 10th International Conference on Rehabilitation Robotics, pp. 401–407 (2007). 2007 IEEE 10th International Conference on Rehabilitation Robotics Dinovitzer et al. [2023a] Dinovitzer, H., Shushtari, M., Arami, A.: Feedforward control of lower limb exoskeletons: which torque profile should we use? IEEE Robotics and Automation Letters (2023) Dinovitzer et al. [2023b] Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Pinto-Fernandez, D., Diego, T., Carmen Sanchez-Villamanan, M., Aller, F., Mombaur, K., Conti, R., Vitiello, N., Moreno, J.C., Pons, J.L.: Performance evaluation of lower limb exoskeletons: A systematic review. IEEE Transactions on Neural Systems and Rehabilitation Engineering 28, 1573–1583 (2020) Slade et al. [2022] Slade, P., Kochenderfer, M.J., Delp, S.L., Collins, S.H.: Personalizing exoskeleton assistance while walking in the real world. Nature 610, 277–282 (2022) Medina et al. [2015] Medina, J.R., Lorenz, T., Hirche, S.: Synthesizing anticipatory haptic assistance considering human behavior uncertainty. IEEE Transactions on Robotics 31, 180–190 (2015) Martinez et al. [2018] Martinez, A., Lawson, B., Durrough, C., Goldfarb, M.: A velocity-field-based controller for assisting leg movement during walking with a bilateral hip and knee lower limb exoskeleton. IEEE Transactions on Robotics 35, 307–316 (2018) Shushtari et al. [2021] Shushtari, M., Nasiri, R., Arami, A.: Online reference trajectory adaptation: A personalized control strategy for lower limb exoskeletons. IEEE Robotics and Automation Letters 7, 128–134 (2021) Asl et al. [2020] Asl, H.J., Yamashita, M., Narikiyo, T., Kawanishi, M.: Field-based assist-as-needed control schemes for rehabilitation robots. IEEE/ASME Transactions on Mechatronics 25, 2100–2111 (2020) Dominijanni et al. [2023] Dominijanni, G., Pinheiro, D.L., Pollina, L., Orset, B., Gini, M., Anselmino, E., Pierella, C., Olivier, J., Shokur, S., Micera, S.: Human motor augmentation with an extra robotic arm without functional interference. Science Robotics 8 (2023) Losey et al. [2018] Losey, D.P., Mcdonald, C.G., Battaglia, E., O’Malley, M.: A review of intent detection, arbitration, and communication aspects of shared control for physical human-robot interaction. Applied Mechanics Reviews 70 (2018) https://doi.org/10.1115/1.4039145 Jackson and Collins [2019] Jackson, R.W., Collins, S.H.: Heuristic-based ankle exoskeleton control for co-adaptive assistance of human locomotion. IEEE Transactions on Neural Systems and Rehabilitation Engineering 27, 2059–2069 (2019) Banala et al. [2007] Banala, S.K., Agrawal, S.K., Scholz, J.P.: Active leg exoskeleton (alex) for gait rehabilitation of motor-impaired patients. In: 2007 IEEE 10th International Conference on Rehabilitation Robotics, pp. 401–407 (2007). 2007 IEEE 10th International Conference on Rehabilitation Robotics Dinovitzer et al. [2023a] Dinovitzer, H., Shushtari, M., Arami, A.: Feedforward control of lower limb exoskeletons: which torque profile should we use? IEEE Robotics and Automation Letters (2023) Dinovitzer et al. [2023b] Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Slade, P., Kochenderfer, M.J., Delp, S.L., Collins, S.H.: Personalizing exoskeleton assistance while walking in the real world. Nature 610, 277–282 (2022) Medina et al. [2015] Medina, J.R., Lorenz, T., Hirche, S.: Synthesizing anticipatory haptic assistance considering human behavior uncertainty. IEEE Transactions on Robotics 31, 180–190 (2015) Martinez et al. [2018] Martinez, A., Lawson, B., Durrough, C., Goldfarb, M.: A velocity-field-based controller for assisting leg movement during walking with a bilateral hip and knee lower limb exoskeleton. IEEE Transactions on Robotics 35, 307–316 (2018) Shushtari et al. [2021] Shushtari, M., Nasiri, R., Arami, A.: Online reference trajectory adaptation: A personalized control strategy for lower limb exoskeletons. IEEE Robotics and Automation Letters 7, 128–134 (2021) Asl et al. [2020] Asl, H.J., Yamashita, M., Narikiyo, T., Kawanishi, M.: Field-based assist-as-needed control schemes for rehabilitation robots. IEEE/ASME Transactions on Mechatronics 25, 2100–2111 (2020) Dominijanni et al. [2023] Dominijanni, G., Pinheiro, D.L., Pollina, L., Orset, B., Gini, M., Anselmino, E., Pierella, C., Olivier, J., Shokur, S., Micera, S.: Human motor augmentation with an extra robotic arm without functional interference. Science Robotics 8 (2023) Losey et al. [2018] Losey, D.P., Mcdonald, C.G., Battaglia, E., O’Malley, M.: A review of intent detection, arbitration, and communication aspects of shared control for physical human-robot interaction. Applied Mechanics Reviews 70 (2018) https://doi.org/10.1115/1.4039145 Jackson and Collins [2019] Jackson, R.W., Collins, S.H.: Heuristic-based ankle exoskeleton control for co-adaptive assistance of human locomotion. IEEE Transactions on Neural Systems and Rehabilitation Engineering 27, 2059–2069 (2019) Banala et al. [2007] Banala, S.K., Agrawal, S.K., Scholz, J.P.: Active leg exoskeleton (alex) for gait rehabilitation of motor-impaired patients. In: 2007 IEEE 10th International Conference on Rehabilitation Robotics, pp. 401–407 (2007). 2007 IEEE 10th International Conference on Rehabilitation Robotics Dinovitzer et al. [2023a] Dinovitzer, H., Shushtari, M., Arami, A.: Feedforward control of lower limb exoskeletons: which torque profile should we use? IEEE Robotics and Automation Letters (2023) Dinovitzer et al. [2023b] Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Medina, J.R., Lorenz, T., Hirche, S.: Synthesizing anticipatory haptic assistance considering human behavior uncertainty. IEEE Transactions on Robotics 31, 180–190 (2015) Martinez et al. [2018] Martinez, A., Lawson, B., Durrough, C., Goldfarb, M.: A velocity-field-based controller for assisting leg movement during walking with a bilateral hip and knee lower limb exoskeleton. IEEE Transactions on Robotics 35, 307–316 (2018) Shushtari et al. [2021] Shushtari, M., Nasiri, R., Arami, A.: Online reference trajectory adaptation: A personalized control strategy for lower limb exoskeletons. IEEE Robotics and Automation Letters 7, 128–134 (2021) Asl et al. [2020] Asl, H.J., Yamashita, M., Narikiyo, T., Kawanishi, M.: Field-based assist-as-needed control schemes for rehabilitation robots. IEEE/ASME Transactions on Mechatronics 25, 2100–2111 (2020) Dominijanni et al. [2023] Dominijanni, G., Pinheiro, D.L., Pollina, L., Orset, B., Gini, M., Anselmino, E., Pierella, C., Olivier, J., Shokur, S., Micera, S.: Human motor augmentation with an extra robotic arm without functional interference. Science Robotics 8 (2023) Losey et al. [2018] Losey, D.P., Mcdonald, C.G., Battaglia, E., O’Malley, M.: A review of intent detection, arbitration, and communication aspects of shared control for physical human-robot interaction. Applied Mechanics Reviews 70 (2018) https://doi.org/10.1115/1.4039145 Jackson and Collins [2019] Jackson, R.W., Collins, S.H.: Heuristic-based ankle exoskeleton control for co-adaptive assistance of human locomotion. IEEE Transactions on Neural Systems and Rehabilitation Engineering 27, 2059–2069 (2019) Banala et al. [2007] Banala, S.K., Agrawal, S.K., Scholz, J.P.: Active leg exoskeleton (alex) for gait rehabilitation of motor-impaired patients. In: 2007 IEEE 10th International Conference on Rehabilitation Robotics, pp. 401–407 (2007). 2007 IEEE 10th International Conference on Rehabilitation Robotics Dinovitzer et al. [2023a] Dinovitzer, H., Shushtari, M., Arami, A.: Feedforward control of lower limb exoskeletons: which torque profile should we use? IEEE Robotics and Automation Letters (2023) Dinovitzer et al. [2023b] Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Martinez, A., Lawson, B., Durrough, C., Goldfarb, M.: A velocity-field-based controller for assisting leg movement during walking with a bilateral hip and knee lower limb exoskeleton. IEEE Transactions on Robotics 35, 307–316 (2018) Shushtari et al. [2021] Shushtari, M., Nasiri, R., Arami, A.: Online reference trajectory adaptation: A personalized control strategy for lower limb exoskeletons. IEEE Robotics and Automation Letters 7, 128–134 (2021) Asl et al. [2020] Asl, H.J., Yamashita, M., Narikiyo, T., Kawanishi, M.: Field-based assist-as-needed control schemes for rehabilitation robots. IEEE/ASME Transactions on Mechatronics 25, 2100–2111 (2020) Dominijanni et al. [2023] Dominijanni, G., Pinheiro, D.L., Pollina, L., Orset, B., Gini, M., Anselmino, E., Pierella, C., Olivier, J., Shokur, S., Micera, S.: Human motor augmentation with an extra robotic arm without functional interference. Science Robotics 8 (2023) Losey et al. [2018] Losey, D.P., Mcdonald, C.G., Battaglia, E., O’Malley, M.: A review of intent detection, arbitration, and communication aspects of shared control for physical human-robot interaction. Applied Mechanics Reviews 70 (2018) https://doi.org/10.1115/1.4039145 Jackson and Collins [2019] Jackson, R.W., Collins, S.H.: Heuristic-based ankle exoskeleton control for co-adaptive assistance of human locomotion. IEEE Transactions on Neural Systems and Rehabilitation Engineering 27, 2059–2069 (2019) Banala et al. [2007] Banala, S.K., Agrawal, S.K., Scholz, J.P.: Active leg exoskeleton (alex) for gait rehabilitation of motor-impaired patients. In: 2007 IEEE 10th International Conference on Rehabilitation Robotics, pp. 401–407 (2007). 2007 IEEE 10th International Conference on Rehabilitation Robotics Dinovitzer et al. [2023a] Dinovitzer, H., Shushtari, M., Arami, A.: Feedforward control of lower limb exoskeletons: which torque profile should we use? IEEE Robotics and Automation Letters (2023) Dinovitzer et al. [2023b] Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Shushtari, M., Nasiri, R., Arami, A.: Online reference trajectory adaptation: A personalized control strategy for lower limb exoskeletons. IEEE Robotics and Automation Letters 7, 128–134 (2021) Asl et al. [2020] Asl, H.J., Yamashita, M., Narikiyo, T., Kawanishi, M.: Field-based assist-as-needed control schemes for rehabilitation robots. IEEE/ASME Transactions on Mechatronics 25, 2100–2111 (2020) Dominijanni et al. [2023] Dominijanni, G., Pinheiro, D.L., Pollina, L., Orset, B., Gini, M., Anselmino, E., Pierella, C., Olivier, J., Shokur, S., Micera, S.: Human motor augmentation with an extra robotic arm without functional interference. Science Robotics 8 (2023) Losey et al. [2018] Losey, D.P., Mcdonald, C.G., Battaglia, E., O’Malley, M.: A review of intent detection, arbitration, and communication aspects of shared control for physical human-robot interaction. Applied Mechanics Reviews 70 (2018) https://doi.org/10.1115/1.4039145 Jackson and Collins [2019] Jackson, R.W., Collins, S.H.: Heuristic-based ankle exoskeleton control for co-adaptive assistance of human locomotion. IEEE Transactions on Neural Systems and Rehabilitation Engineering 27, 2059–2069 (2019) Banala et al. [2007] Banala, S.K., Agrawal, S.K., Scholz, J.P.: Active leg exoskeleton (alex) for gait rehabilitation of motor-impaired patients. In: 2007 IEEE 10th International Conference on Rehabilitation Robotics, pp. 401–407 (2007). 2007 IEEE 10th International Conference on Rehabilitation Robotics Dinovitzer et al. [2023a] Dinovitzer, H., Shushtari, M., Arami, A.: Feedforward control of lower limb exoskeletons: which torque profile should we use? IEEE Robotics and Automation Letters (2023) Dinovitzer et al. [2023b] Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Asl, H.J., Yamashita, M., Narikiyo, T., Kawanishi, M.: Field-based assist-as-needed control schemes for rehabilitation robots. IEEE/ASME Transactions on Mechatronics 25, 2100–2111 (2020) Dominijanni et al. [2023] Dominijanni, G., Pinheiro, D.L., Pollina, L., Orset, B., Gini, M., Anselmino, E., Pierella, C., Olivier, J., Shokur, S., Micera, S.: Human motor augmentation with an extra robotic arm without functional interference. Science Robotics 8 (2023) Losey et al. [2018] Losey, D.P., Mcdonald, C.G., Battaglia, E., O’Malley, M.: A review of intent detection, arbitration, and communication aspects of shared control for physical human-robot interaction. Applied Mechanics Reviews 70 (2018) https://doi.org/10.1115/1.4039145 Jackson and Collins [2019] Jackson, R.W., Collins, S.H.: Heuristic-based ankle exoskeleton control for co-adaptive assistance of human locomotion. IEEE Transactions on Neural Systems and Rehabilitation Engineering 27, 2059–2069 (2019) Banala et al. [2007] Banala, S.K., Agrawal, S.K., Scholz, J.P.: Active leg exoskeleton (alex) for gait rehabilitation of motor-impaired patients. In: 2007 IEEE 10th International Conference on Rehabilitation Robotics, pp. 401–407 (2007). 2007 IEEE 10th International Conference on Rehabilitation Robotics Dinovitzer et al. [2023a] Dinovitzer, H., Shushtari, M., Arami, A.: Feedforward control of lower limb exoskeletons: which torque profile should we use? IEEE Robotics and Automation Letters (2023) Dinovitzer et al. [2023b] Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Dominijanni, G., Pinheiro, D.L., Pollina, L., Orset, B., Gini, M., Anselmino, E., Pierella, C., Olivier, J., Shokur, S., Micera, S.: Human motor augmentation with an extra robotic arm without functional interference. Science Robotics 8 (2023) Losey et al. [2018] Losey, D.P., Mcdonald, C.G., Battaglia, E., O’Malley, M.: A review of intent detection, arbitration, and communication aspects of shared control for physical human-robot interaction. Applied Mechanics Reviews 70 (2018) https://doi.org/10.1115/1.4039145 Jackson and Collins [2019] Jackson, R.W., Collins, S.H.: Heuristic-based ankle exoskeleton control for co-adaptive assistance of human locomotion. IEEE Transactions on Neural Systems and Rehabilitation Engineering 27, 2059–2069 (2019) Banala et al. [2007] Banala, S.K., Agrawal, S.K., Scholz, J.P.: Active leg exoskeleton (alex) for gait rehabilitation of motor-impaired patients. In: 2007 IEEE 10th International Conference on Rehabilitation Robotics, pp. 401–407 (2007). 2007 IEEE 10th International Conference on Rehabilitation Robotics Dinovitzer et al. [2023a] Dinovitzer, H., Shushtari, M., Arami, A.: Feedforward control of lower limb exoskeletons: which torque profile should we use? IEEE Robotics and Automation Letters (2023) Dinovitzer et al. [2023b] Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Losey, D.P., Mcdonald, C.G., Battaglia, E., O’Malley, M.: A review of intent detection, arbitration, and communication aspects of shared control for physical human-robot interaction. Applied Mechanics Reviews 70 (2018) https://doi.org/10.1115/1.4039145 Jackson and Collins [2019] Jackson, R.W., Collins, S.H.: Heuristic-based ankle exoskeleton control for co-adaptive assistance of human locomotion. IEEE Transactions on Neural Systems and Rehabilitation Engineering 27, 2059–2069 (2019) Banala et al. [2007] Banala, S.K., Agrawal, S.K., Scholz, J.P.: Active leg exoskeleton (alex) for gait rehabilitation of motor-impaired patients. In: 2007 IEEE 10th International Conference on Rehabilitation Robotics, pp. 401–407 (2007). 2007 IEEE 10th International Conference on Rehabilitation Robotics Dinovitzer et al. [2023a] Dinovitzer, H., Shushtari, M., Arami, A.: Feedforward control of lower limb exoskeletons: which torque profile should we use? IEEE Robotics and Automation Letters (2023) Dinovitzer et al. [2023b] Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Jackson, R.W., Collins, S.H.: Heuristic-based ankle exoskeleton control for co-adaptive assistance of human locomotion. IEEE Transactions on Neural Systems and Rehabilitation Engineering 27, 2059–2069 (2019) Banala et al. [2007] Banala, S.K., Agrawal, S.K., Scholz, J.P.: Active leg exoskeleton (alex) for gait rehabilitation of motor-impaired patients. In: 2007 IEEE 10th International Conference on Rehabilitation Robotics, pp. 401–407 (2007). 2007 IEEE 10th International Conference on Rehabilitation Robotics Dinovitzer et al. [2023a] Dinovitzer, H., Shushtari, M., Arami, A.: Feedforward control of lower limb exoskeletons: which torque profile should we use? IEEE Robotics and Automation Letters (2023) Dinovitzer et al. [2023b] Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Banala, S.K., Agrawal, S.K., Scholz, J.P.: Active leg exoskeleton (alex) for gait rehabilitation of motor-impaired patients. In: 2007 IEEE 10th International Conference on Rehabilitation Robotics, pp. 401–407 (2007). 2007 IEEE 10th International Conference on Rehabilitation Robotics Dinovitzer et al. [2023a] Dinovitzer, H., Shushtari, M., Arami, A.: Feedforward control of lower limb exoskeletons: which torque profile should we use? IEEE Robotics and Automation Letters (2023) Dinovitzer et al. [2023b] Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Dinovitzer, H., Shushtari, M., Arami, A.: Feedforward control of lower limb exoskeletons: which torque profile should we use? IEEE Robotics and Automation Letters (2023) Dinovitzer et al. [2023b] Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017)
  13. Masengo, G., Zhang, X., Dong, R., , A.B.A., Hamza, K., Mudaheranwa, E.: Lower limb exoskeleton robot and its cooperative control: A review, trends, and challenges for future research. Frontiers in Neurorobotics 16, 1–25 (2023) Ingraham et al. [2022] Ingraham, K.A., Remy, C.D., Rouse, E.J.: The role of user preference in the customized control of robotic exoskeletons. Science robotics 7 (2022) Pinto-Fernandez et al. [2020] Pinto-Fernandez, D., Diego, T., Carmen Sanchez-Villamanan, M., Aller, F., Mombaur, K., Conti, R., Vitiello, N., Moreno, J.C., Pons, J.L.: Performance evaluation of lower limb exoskeletons: A systematic review. IEEE Transactions on Neural Systems and Rehabilitation Engineering 28, 1573–1583 (2020) Slade et al. [2022] Slade, P., Kochenderfer, M.J., Delp, S.L., Collins, S.H.: Personalizing exoskeleton assistance while walking in the real world. Nature 610, 277–282 (2022) Medina et al. [2015] Medina, J.R., Lorenz, T., Hirche, S.: Synthesizing anticipatory haptic assistance considering human behavior uncertainty. IEEE Transactions on Robotics 31, 180–190 (2015) Martinez et al. [2018] Martinez, A., Lawson, B., Durrough, C., Goldfarb, M.: A velocity-field-based controller for assisting leg movement during walking with a bilateral hip and knee lower limb exoskeleton. IEEE Transactions on Robotics 35, 307–316 (2018) Shushtari et al. [2021] Shushtari, M., Nasiri, R., Arami, A.: Online reference trajectory adaptation: A personalized control strategy for lower limb exoskeletons. IEEE Robotics and Automation Letters 7, 128–134 (2021) Asl et al. [2020] Asl, H.J., Yamashita, M., Narikiyo, T., Kawanishi, M.: Field-based assist-as-needed control schemes for rehabilitation robots. IEEE/ASME Transactions on Mechatronics 25, 2100–2111 (2020) Dominijanni et al. [2023] Dominijanni, G., Pinheiro, D.L., Pollina, L., Orset, B., Gini, M., Anselmino, E., Pierella, C., Olivier, J., Shokur, S., Micera, S.: Human motor augmentation with an extra robotic arm without functional interference. Science Robotics 8 (2023) Losey et al. [2018] Losey, D.P., Mcdonald, C.G., Battaglia, E., O’Malley, M.: A review of intent detection, arbitration, and communication aspects of shared control for physical human-robot interaction. Applied Mechanics Reviews 70 (2018) https://doi.org/10.1115/1.4039145 Jackson and Collins [2019] Jackson, R.W., Collins, S.H.: Heuristic-based ankle exoskeleton control for co-adaptive assistance of human locomotion. IEEE Transactions on Neural Systems and Rehabilitation Engineering 27, 2059–2069 (2019) Banala et al. [2007] Banala, S.K., Agrawal, S.K., Scholz, J.P.: Active leg exoskeleton (alex) for gait rehabilitation of motor-impaired patients. In: 2007 IEEE 10th International Conference on Rehabilitation Robotics, pp. 401–407 (2007). 2007 IEEE 10th International Conference on Rehabilitation Robotics Dinovitzer et al. [2023a] Dinovitzer, H., Shushtari, M., Arami, A.: Feedforward control of lower limb exoskeletons: which torque profile should we use? IEEE Robotics and Automation Letters (2023) Dinovitzer et al. [2023b] Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Ingraham, K.A., Remy, C.D., Rouse, E.J.: The role of user preference in the customized control of robotic exoskeletons. Science robotics 7 (2022) Pinto-Fernandez et al. [2020] Pinto-Fernandez, D., Diego, T., Carmen Sanchez-Villamanan, M., Aller, F., Mombaur, K., Conti, R., Vitiello, N., Moreno, J.C., Pons, J.L.: Performance evaluation of lower limb exoskeletons: A systematic review. IEEE Transactions on Neural Systems and Rehabilitation Engineering 28, 1573–1583 (2020) Slade et al. [2022] Slade, P., Kochenderfer, M.J., Delp, S.L., Collins, S.H.: Personalizing exoskeleton assistance while walking in the real world. Nature 610, 277–282 (2022) Medina et al. [2015] Medina, J.R., Lorenz, T., Hirche, S.: Synthesizing anticipatory haptic assistance considering human behavior uncertainty. IEEE Transactions on Robotics 31, 180–190 (2015) Martinez et al. [2018] Martinez, A., Lawson, B., Durrough, C., Goldfarb, M.: A velocity-field-based controller for assisting leg movement during walking with a bilateral hip and knee lower limb exoskeleton. IEEE Transactions on Robotics 35, 307–316 (2018) Shushtari et al. [2021] Shushtari, M., Nasiri, R., Arami, A.: Online reference trajectory adaptation: A personalized control strategy for lower limb exoskeletons. IEEE Robotics and Automation Letters 7, 128–134 (2021) Asl et al. [2020] Asl, H.J., Yamashita, M., Narikiyo, T., Kawanishi, M.: Field-based assist-as-needed control schemes for rehabilitation robots. IEEE/ASME Transactions on Mechatronics 25, 2100–2111 (2020) Dominijanni et al. [2023] Dominijanni, G., Pinheiro, D.L., Pollina, L., Orset, B., Gini, M., Anselmino, E., Pierella, C., Olivier, J., Shokur, S., Micera, S.: Human motor augmentation with an extra robotic arm without functional interference. Science Robotics 8 (2023) Losey et al. [2018] Losey, D.P., Mcdonald, C.G., Battaglia, E., O’Malley, M.: A review of intent detection, arbitration, and communication aspects of shared control for physical human-robot interaction. Applied Mechanics Reviews 70 (2018) https://doi.org/10.1115/1.4039145 Jackson and Collins [2019] Jackson, R.W., Collins, S.H.: Heuristic-based ankle exoskeleton control for co-adaptive assistance of human locomotion. IEEE Transactions on Neural Systems and Rehabilitation Engineering 27, 2059–2069 (2019) Banala et al. [2007] Banala, S.K., Agrawal, S.K., Scholz, J.P.: Active leg exoskeleton (alex) for gait rehabilitation of motor-impaired patients. In: 2007 IEEE 10th International Conference on Rehabilitation Robotics, pp. 401–407 (2007). 2007 IEEE 10th International Conference on Rehabilitation Robotics Dinovitzer et al. [2023a] Dinovitzer, H., Shushtari, M., Arami, A.: Feedforward control of lower limb exoskeletons: which torque profile should we use? IEEE Robotics and Automation Letters (2023) Dinovitzer et al. [2023b] Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Pinto-Fernandez, D., Diego, T., Carmen Sanchez-Villamanan, M., Aller, F., Mombaur, K., Conti, R., Vitiello, N., Moreno, J.C., Pons, J.L.: Performance evaluation of lower limb exoskeletons: A systematic review. IEEE Transactions on Neural Systems and Rehabilitation Engineering 28, 1573–1583 (2020) Slade et al. [2022] Slade, P., Kochenderfer, M.J., Delp, S.L., Collins, S.H.: Personalizing exoskeleton assistance while walking in the real world. Nature 610, 277–282 (2022) Medina et al. [2015] Medina, J.R., Lorenz, T., Hirche, S.: Synthesizing anticipatory haptic assistance considering human behavior uncertainty. IEEE Transactions on Robotics 31, 180–190 (2015) Martinez et al. [2018] Martinez, A., Lawson, B., Durrough, C., Goldfarb, M.: A velocity-field-based controller for assisting leg movement during walking with a bilateral hip and knee lower limb exoskeleton. IEEE Transactions on Robotics 35, 307–316 (2018) Shushtari et al. [2021] Shushtari, M., Nasiri, R., Arami, A.: Online reference trajectory adaptation: A personalized control strategy for lower limb exoskeletons. IEEE Robotics and Automation Letters 7, 128–134 (2021) Asl et al. [2020] Asl, H.J., Yamashita, M., Narikiyo, T., Kawanishi, M.: Field-based assist-as-needed control schemes for rehabilitation robots. IEEE/ASME Transactions on Mechatronics 25, 2100–2111 (2020) Dominijanni et al. [2023] Dominijanni, G., Pinheiro, D.L., Pollina, L., Orset, B., Gini, M., Anselmino, E., Pierella, C., Olivier, J., Shokur, S., Micera, S.: Human motor augmentation with an extra robotic arm without functional interference. Science Robotics 8 (2023) Losey et al. [2018] Losey, D.P., Mcdonald, C.G., Battaglia, E., O’Malley, M.: A review of intent detection, arbitration, and communication aspects of shared control for physical human-robot interaction. Applied Mechanics Reviews 70 (2018) https://doi.org/10.1115/1.4039145 Jackson and Collins [2019] Jackson, R.W., Collins, S.H.: Heuristic-based ankle exoskeleton control for co-adaptive assistance of human locomotion. IEEE Transactions on Neural Systems and Rehabilitation Engineering 27, 2059–2069 (2019) Banala et al. [2007] Banala, S.K., Agrawal, S.K., Scholz, J.P.: Active leg exoskeleton (alex) for gait rehabilitation of motor-impaired patients. In: 2007 IEEE 10th International Conference on Rehabilitation Robotics, pp. 401–407 (2007). 2007 IEEE 10th International Conference on Rehabilitation Robotics Dinovitzer et al. [2023a] Dinovitzer, H., Shushtari, M., Arami, A.: Feedforward control of lower limb exoskeletons: which torque profile should we use? IEEE Robotics and Automation Letters (2023) Dinovitzer et al. [2023b] Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Slade, P., Kochenderfer, M.J., Delp, S.L., Collins, S.H.: Personalizing exoskeleton assistance while walking in the real world. Nature 610, 277–282 (2022) Medina et al. [2015] Medina, J.R., Lorenz, T., Hirche, S.: Synthesizing anticipatory haptic assistance considering human behavior uncertainty. IEEE Transactions on Robotics 31, 180–190 (2015) Martinez et al. [2018] Martinez, A., Lawson, B., Durrough, C., Goldfarb, M.: A velocity-field-based controller for assisting leg movement during walking with a bilateral hip and knee lower limb exoskeleton. IEEE Transactions on Robotics 35, 307–316 (2018) Shushtari et al. [2021] Shushtari, M., Nasiri, R., Arami, A.: Online reference trajectory adaptation: A personalized control strategy for lower limb exoskeletons. IEEE Robotics and Automation Letters 7, 128–134 (2021) Asl et al. [2020] Asl, H.J., Yamashita, M., Narikiyo, T., Kawanishi, M.: Field-based assist-as-needed control schemes for rehabilitation robots. IEEE/ASME Transactions on Mechatronics 25, 2100–2111 (2020) Dominijanni et al. [2023] Dominijanni, G., Pinheiro, D.L., Pollina, L., Orset, B., Gini, M., Anselmino, E., Pierella, C., Olivier, J., Shokur, S., Micera, S.: Human motor augmentation with an extra robotic arm without functional interference. Science Robotics 8 (2023) Losey et al. [2018] Losey, D.P., Mcdonald, C.G., Battaglia, E., O’Malley, M.: A review of intent detection, arbitration, and communication aspects of shared control for physical human-robot interaction. Applied Mechanics Reviews 70 (2018) https://doi.org/10.1115/1.4039145 Jackson and Collins [2019] Jackson, R.W., Collins, S.H.: Heuristic-based ankle exoskeleton control for co-adaptive assistance of human locomotion. IEEE Transactions on Neural Systems and Rehabilitation Engineering 27, 2059–2069 (2019) Banala et al. [2007] Banala, S.K., Agrawal, S.K., Scholz, J.P.: Active leg exoskeleton (alex) for gait rehabilitation of motor-impaired patients. In: 2007 IEEE 10th International Conference on Rehabilitation Robotics, pp. 401–407 (2007). 2007 IEEE 10th International Conference on Rehabilitation Robotics Dinovitzer et al. [2023a] Dinovitzer, H., Shushtari, M., Arami, A.: Feedforward control of lower limb exoskeletons: which torque profile should we use? IEEE Robotics and Automation Letters (2023) Dinovitzer et al. [2023b] Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Medina, J.R., Lorenz, T., Hirche, S.: Synthesizing anticipatory haptic assistance considering human behavior uncertainty. IEEE Transactions on Robotics 31, 180–190 (2015) Martinez et al. [2018] Martinez, A., Lawson, B., Durrough, C., Goldfarb, M.: A velocity-field-based controller for assisting leg movement during walking with a bilateral hip and knee lower limb exoskeleton. IEEE Transactions on Robotics 35, 307–316 (2018) Shushtari et al. [2021] Shushtari, M., Nasiri, R., Arami, A.: Online reference trajectory adaptation: A personalized control strategy for lower limb exoskeletons. IEEE Robotics and Automation Letters 7, 128–134 (2021) Asl et al. [2020] Asl, H.J., Yamashita, M., Narikiyo, T., Kawanishi, M.: Field-based assist-as-needed control schemes for rehabilitation robots. IEEE/ASME Transactions on Mechatronics 25, 2100–2111 (2020) Dominijanni et al. [2023] Dominijanni, G., Pinheiro, D.L., Pollina, L., Orset, B., Gini, M., Anselmino, E., Pierella, C., Olivier, J., Shokur, S., Micera, S.: Human motor augmentation with an extra robotic arm without functional interference. Science Robotics 8 (2023) Losey et al. [2018] Losey, D.P., Mcdonald, C.G., Battaglia, E., O’Malley, M.: A review of intent detection, arbitration, and communication aspects of shared control for physical human-robot interaction. Applied Mechanics Reviews 70 (2018) https://doi.org/10.1115/1.4039145 Jackson and Collins [2019] Jackson, R.W., Collins, S.H.: Heuristic-based ankle exoskeleton control for co-adaptive assistance of human locomotion. IEEE Transactions on Neural Systems and Rehabilitation Engineering 27, 2059–2069 (2019) Banala et al. [2007] Banala, S.K., Agrawal, S.K., Scholz, J.P.: Active leg exoskeleton (alex) for gait rehabilitation of motor-impaired patients. In: 2007 IEEE 10th International Conference on Rehabilitation Robotics, pp. 401–407 (2007). 2007 IEEE 10th International Conference on Rehabilitation Robotics Dinovitzer et al. [2023a] Dinovitzer, H., Shushtari, M., Arami, A.: Feedforward control of lower limb exoskeletons: which torque profile should we use? IEEE Robotics and Automation Letters (2023) Dinovitzer et al. [2023b] Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Martinez, A., Lawson, B., Durrough, C., Goldfarb, M.: A velocity-field-based controller for assisting leg movement during walking with a bilateral hip and knee lower limb exoskeleton. IEEE Transactions on Robotics 35, 307–316 (2018) Shushtari et al. [2021] Shushtari, M., Nasiri, R., Arami, A.: Online reference trajectory adaptation: A personalized control strategy for lower limb exoskeletons. IEEE Robotics and Automation Letters 7, 128–134 (2021) Asl et al. [2020] Asl, H.J., Yamashita, M., Narikiyo, T., Kawanishi, M.: Field-based assist-as-needed control schemes for rehabilitation robots. IEEE/ASME Transactions on Mechatronics 25, 2100–2111 (2020) Dominijanni et al. [2023] Dominijanni, G., Pinheiro, D.L., Pollina, L., Orset, B., Gini, M., Anselmino, E., Pierella, C., Olivier, J., Shokur, S., Micera, S.: Human motor augmentation with an extra robotic arm without functional interference. Science Robotics 8 (2023) Losey et al. [2018] Losey, D.P., Mcdonald, C.G., Battaglia, E., O’Malley, M.: A review of intent detection, arbitration, and communication aspects of shared control for physical human-robot interaction. Applied Mechanics Reviews 70 (2018) https://doi.org/10.1115/1.4039145 Jackson and Collins [2019] Jackson, R.W., Collins, S.H.: Heuristic-based ankle exoskeleton control for co-adaptive assistance of human locomotion. IEEE Transactions on Neural Systems and Rehabilitation Engineering 27, 2059–2069 (2019) Banala et al. [2007] Banala, S.K., Agrawal, S.K., Scholz, J.P.: Active leg exoskeleton (alex) for gait rehabilitation of motor-impaired patients. In: 2007 IEEE 10th International Conference on Rehabilitation Robotics, pp. 401–407 (2007). 2007 IEEE 10th International Conference on Rehabilitation Robotics Dinovitzer et al. [2023a] Dinovitzer, H., Shushtari, M., Arami, A.: Feedforward control of lower limb exoskeletons: which torque profile should we use? IEEE Robotics and Automation Letters (2023) Dinovitzer et al. [2023b] Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Shushtari, M., Nasiri, R., Arami, A.: Online reference trajectory adaptation: A personalized control strategy for lower limb exoskeletons. IEEE Robotics and Automation Letters 7, 128–134 (2021) Asl et al. [2020] Asl, H.J., Yamashita, M., Narikiyo, T., Kawanishi, M.: Field-based assist-as-needed control schemes for rehabilitation robots. IEEE/ASME Transactions on Mechatronics 25, 2100–2111 (2020) Dominijanni et al. [2023] Dominijanni, G., Pinheiro, D.L., Pollina, L., Orset, B., Gini, M., Anselmino, E., Pierella, C., Olivier, J., Shokur, S., Micera, S.: Human motor augmentation with an extra robotic arm without functional interference. Science Robotics 8 (2023) Losey et al. [2018] Losey, D.P., Mcdonald, C.G., Battaglia, E., O’Malley, M.: A review of intent detection, arbitration, and communication aspects of shared control for physical human-robot interaction. Applied Mechanics Reviews 70 (2018) https://doi.org/10.1115/1.4039145 Jackson and Collins [2019] Jackson, R.W., Collins, S.H.: Heuristic-based ankle exoskeleton control for co-adaptive assistance of human locomotion. IEEE Transactions on Neural Systems and Rehabilitation Engineering 27, 2059–2069 (2019) Banala et al. [2007] Banala, S.K., Agrawal, S.K., Scholz, J.P.: Active leg exoskeleton (alex) for gait rehabilitation of motor-impaired patients. In: 2007 IEEE 10th International Conference on Rehabilitation Robotics, pp. 401–407 (2007). 2007 IEEE 10th International Conference on Rehabilitation Robotics Dinovitzer et al. [2023a] Dinovitzer, H., Shushtari, M., Arami, A.: Feedforward control of lower limb exoskeletons: which torque profile should we use? IEEE Robotics and Automation Letters (2023) Dinovitzer et al. [2023b] Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Asl, H.J., Yamashita, M., Narikiyo, T., Kawanishi, M.: Field-based assist-as-needed control schemes for rehabilitation robots. IEEE/ASME Transactions on Mechatronics 25, 2100–2111 (2020) Dominijanni et al. [2023] Dominijanni, G., Pinheiro, D.L., Pollina, L., Orset, B., Gini, M., Anselmino, E., Pierella, C., Olivier, J., Shokur, S., Micera, S.: Human motor augmentation with an extra robotic arm without functional interference. Science Robotics 8 (2023) Losey et al. [2018] Losey, D.P., Mcdonald, C.G., Battaglia, E., O’Malley, M.: A review of intent detection, arbitration, and communication aspects of shared control for physical human-robot interaction. Applied Mechanics Reviews 70 (2018) https://doi.org/10.1115/1.4039145 Jackson and Collins [2019] Jackson, R.W., Collins, S.H.: Heuristic-based ankle exoskeleton control for co-adaptive assistance of human locomotion. IEEE Transactions on Neural Systems and Rehabilitation Engineering 27, 2059–2069 (2019) Banala et al. [2007] Banala, S.K., Agrawal, S.K., Scholz, J.P.: Active leg exoskeleton (alex) for gait rehabilitation of motor-impaired patients. In: 2007 IEEE 10th International Conference on Rehabilitation Robotics, pp. 401–407 (2007). 2007 IEEE 10th International Conference on Rehabilitation Robotics Dinovitzer et al. [2023a] Dinovitzer, H., Shushtari, M., Arami, A.: Feedforward control of lower limb exoskeletons: which torque profile should we use? IEEE Robotics and Automation Letters (2023) Dinovitzer et al. [2023b] Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Dominijanni, G., Pinheiro, D.L., Pollina, L., Orset, B., Gini, M., Anselmino, E., Pierella, C., Olivier, J., Shokur, S., Micera, S.: Human motor augmentation with an extra robotic arm without functional interference. Science Robotics 8 (2023) Losey et al. [2018] Losey, D.P., Mcdonald, C.G., Battaglia, E., O’Malley, M.: A review of intent detection, arbitration, and communication aspects of shared control for physical human-robot interaction. Applied Mechanics Reviews 70 (2018) https://doi.org/10.1115/1.4039145 Jackson and Collins [2019] Jackson, R.W., Collins, S.H.: Heuristic-based ankle exoskeleton control for co-adaptive assistance of human locomotion. IEEE Transactions on Neural Systems and Rehabilitation Engineering 27, 2059–2069 (2019) Banala et al. [2007] Banala, S.K., Agrawal, S.K., Scholz, J.P.: Active leg exoskeleton (alex) for gait rehabilitation of motor-impaired patients. In: 2007 IEEE 10th International Conference on Rehabilitation Robotics, pp. 401–407 (2007). 2007 IEEE 10th International Conference on Rehabilitation Robotics Dinovitzer et al. [2023a] Dinovitzer, H., Shushtari, M., Arami, A.: Feedforward control of lower limb exoskeletons: which torque profile should we use? IEEE Robotics and Automation Letters (2023) Dinovitzer et al. [2023b] Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Losey, D.P., Mcdonald, C.G., Battaglia, E., O’Malley, M.: A review of intent detection, arbitration, and communication aspects of shared control for physical human-robot interaction. Applied Mechanics Reviews 70 (2018) https://doi.org/10.1115/1.4039145 Jackson and Collins [2019] Jackson, R.W., Collins, S.H.: Heuristic-based ankle exoskeleton control for co-adaptive assistance of human locomotion. IEEE Transactions on Neural Systems and Rehabilitation Engineering 27, 2059–2069 (2019) Banala et al. [2007] Banala, S.K., Agrawal, S.K., Scholz, J.P.: Active leg exoskeleton (alex) for gait rehabilitation of motor-impaired patients. In: 2007 IEEE 10th International Conference on Rehabilitation Robotics, pp. 401–407 (2007). 2007 IEEE 10th International Conference on Rehabilitation Robotics Dinovitzer et al. [2023a] Dinovitzer, H., Shushtari, M., Arami, A.: Feedforward control of lower limb exoskeletons: which torque profile should we use? IEEE Robotics and Automation Letters (2023) Dinovitzer et al. [2023b] Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Jackson, R.W., Collins, S.H.: Heuristic-based ankle exoskeleton control for co-adaptive assistance of human locomotion. IEEE Transactions on Neural Systems and Rehabilitation Engineering 27, 2059–2069 (2019) Banala et al. [2007] Banala, S.K., Agrawal, S.K., Scholz, J.P.: Active leg exoskeleton (alex) for gait rehabilitation of motor-impaired patients. In: 2007 IEEE 10th International Conference on Rehabilitation Robotics, pp. 401–407 (2007). 2007 IEEE 10th International Conference on Rehabilitation Robotics Dinovitzer et al. [2023a] Dinovitzer, H., Shushtari, M., Arami, A.: Feedforward control of lower limb exoskeletons: which torque profile should we use? IEEE Robotics and Automation Letters (2023) Dinovitzer et al. [2023b] Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Banala, S.K., Agrawal, S.K., Scholz, J.P.: Active leg exoskeleton (alex) for gait rehabilitation of motor-impaired patients. In: 2007 IEEE 10th International Conference on Rehabilitation Robotics, pp. 401–407 (2007). 2007 IEEE 10th International Conference on Rehabilitation Robotics Dinovitzer et al. [2023a] Dinovitzer, H., Shushtari, M., Arami, A.: Feedforward control of lower limb exoskeletons: which torque profile should we use? IEEE Robotics and Automation Letters (2023) Dinovitzer et al. [2023b] Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Dinovitzer, H., Shushtari, M., Arami, A.: Feedforward control of lower limb exoskeletons: which torque profile should we use? IEEE Robotics and Automation Letters (2023) Dinovitzer et al. [2023b] Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017)
  14. Ingraham, K.A., Remy, C.D., Rouse, E.J.: The role of user preference in the customized control of robotic exoskeletons. Science robotics 7 (2022) Pinto-Fernandez et al. [2020] Pinto-Fernandez, D., Diego, T., Carmen Sanchez-Villamanan, M., Aller, F., Mombaur, K., Conti, R., Vitiello, N., Moreno, J.C., Pons, J.L.: Performance evaluation of lower limb exoskeletons: A systematic review. IEEE Transactions on Neural Systems and Rehabilitation Engineering 28, 1573–1583 (2020) Slade et al. [2022] Slade, P., Kochenderfer, M.J., Delp, S.L., Collins, S.H.: Personalizing exoskeleton assistance while walking in the real world. Nature 610, 277–282 (2022) Medina et al. [2015] Medina, J.R., Lorenz, T., Hirche, S.: Synthesizing anticipatory haptic assistance considering human behavior uncertainty. IEEE Transactions on Robotics 31, 180–190 (2015) Martinez et al. [2018] Martinez, A., Lawson, B., Durrough, C., Goldfarb, M.: A velocity-field-based controller for assisting leg movement during walking with a bilateral hip and knee lower limb exoskeleton. IEEE Transactions on Robotics 35, 307–316 (2018) Shushtari et al. [2021] Shushtari, M., Nasiri, R., Arami, A.: Online reference trajectory adaptation: A personalized control strategy for lower limb exoskeletons. IEEE Robotics and Automation Letters 7, 128–134 (2021) Asl et al. [2020] Asl, H.J., Yamashita, M., Narikiyo, T., Kawanishi, M.: Field-based assist-as-needed control schemes for rehabilitation robots. IEEE/ASME Transactions on Mechatronics 25, 2100–2111 (2020) Dominijanni et al. [2023] Dominijanni, G., Pinheiro, D.L., Pollina, L., Orset, B., Gini, M., Anselmino, E., Pierella, C., Olivier, J., Shokur, S., Micera, S.: Human motor augmentation with an extra robotic arm without functional interference. Science Robotics 8 (2023) Losey et al. [2018] Losey, D.P., Mcdonald, C.G., Battaglia, E., O’Malley, M.: A review of intent detection, arbitration, and communication aspects of shared control for physical human-robot interaction. Applied Mechanics Reviews 70 (2018) https://doi.org/10.1115/1.4039145 Jackson and Collins [2019] Jackson, R.W., Collins, S.H.: Heuristic-based ankle exoskeleton control for co-adaptive assistance of human locomotion. IEEE Transactions on Neural Systems and Rehabilitation Engineering 27, 2059–2069 (2019) Banala et al. [2007] Banala, S.K., Agrawal, S.K., Scholz, J.P.: Active leg exoskeleton (alex) for gait rehabilitation of motor-impaired patients. In: 2007 IEEE 10th International Conference on Rehabilitation Robotics, pp. 401–407 (2007). 2007 IEEE 10th International Conference on Rehabilitation Robotics Dinovitzer et al. [2023a] Dinovitzer, H., Shushtari, M., Arami, A.: Feedforward control of lower limb exoskeletons: which torque profile should we use? IEEE Robotics and Automation Letters (2023) Dinovitzer et al. [2023b] Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Pinto-Fernandez, D., Diego, T., Carmen Sanchez-Villamanan, M., Aller, F., Mombaur, K., Conti, R., Vitiello, N., Moreno, J.C., Pons, J.L.: Performance evaluation of lower limb exoskeletons: A systematic review. IEEE Transactions on Neural Systems and Rehabilitation Engineering 28, 1573–1583 (2020) Slade et al. [2022] Slade, P., Kochenderfer, M.J., Delp, S.L., Collins, S.H.: Personalizing exoskeleton assistance while walking in the real world. Nature 610, 277–282 (2022) Medina et al. [2015] Medina, J.R., Lorenz, T., Hirche, S.: Synthesizing anticipatory haptic assistance considering human behavior uncertainty. IEEE Transactions on Robotics 31, 180–190 (2015) Martinez et al. [2018] Martinez, A., Lawson, B., Durrough, C., Goldfarb, M.: A velocity-field-based controller for assisting leg movement during walking with a bilateral hip and knee lower limb exoskeleton. IEEE Transactions on Robotics 35, 307–316 (2018) Shushtari et al. [2021] Shushtari, M., Nasiri, R., Arami, A.: Online reference trajectory adaptation: A personalized control strategy for lower limb exoskeletons. IEEE Robotics and Automation Letters 7, 128–134 (2021) Asl et al. [2020] Asl, H.J., Yamashita, M., Narikiyo, T., Kawanishi, M.: Field-based assist-as-needed control schemes for rehabilitation robots. IEEE/ASME Transactions on Mechatronics 25, 2100–2111 (2020) Dominijanni et al. [2023] Dominijanni, G., Pinheiro, D.L., Pollina, L., Orset, B., Gini, M., Anselmino, E., Pierella, C., Olivier, J., Shokur, S., Micera, S.: Human motor augmentation with an extra robotic arm without functional interference. Science Robotics 8 (2023) Losey et al. [2018] Losey, D.P., Mcdonald, C.G., Battaglia, E., O’Malley, M.: A review of intent detection, arbitration, and communication aspects of shared control for physical human-robot interaction. Applied Mechanics Reviews 70 (2018) https://doi.org/10.1115/1.4039145 Jackson and Collins [2019] Jackson, R.W., Collins, S.H.: Heuristic-based ankle exoskeleton control for co-adaptive assistance of human locomotion. IEEE Transactions on Neural Systems and Rehabilitation Engineering 27, 2059–2069 (2019) Banala et al. [2007] Banala, S.K., Agrawal, S.K., Scholz, J.P.: Active leg exoskeleton (alex) for gait rehabilitation of motor-impaired patients. In: 2007 IEEE 10th International Conference on Rehabilitation Robotics, pp. 401–407 (2007). 2007 IEEE 10th International Conference on Rehabilitation Robotics Dinovitzer et al. [2023a] Dinovitzer, H., Shushtari, M., Arami, A.: Feedforward control of lower limb exoskeletons: which torque profile should we use? IEEE Robotics and Automation Letters (2023) Dinovitzer et al. [2023b] Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Slade, P., Kochenderfer, M.J., Delp, S.L., Collins, S.H.: Personalizing exoskeleton assistance while walking in the real world. Nature 610, 277–282 (2022) Medina et al. [2015] Medina, J.R., Lorenz, T., Hirche, S.: Synthesizing anticipatory haptic assistance considering human behavior uncertainty. IEEE Transactions on Robotics 31, 180–190 (2015) Martinez et al. [2018] Martinez, A., Lawson, B., Durrough, C., Goldfarb, M.: A velocity-field-based controller for assisting leg movement during walking with a bilateral hip and knee lower limb exoskeleton. IEEE Transactions on Robotics 35, 307–316 (2018) Shushtari et al. [2021] Shushtari, M., Nasiri, R., Arami, A.: Online reference trajectory adaptation: A personalized control strategy for lower limb exoskeletons. IEEE Robotics and Automation Letters 7, 128–134 (2021) Asl et al. [2020] Asl, H.J., Yamashita, M., Narikiyo, T., Kawanishi, M.: Field-based assist-as-needed control schemes for rehabilitation robots. IEEE/ASME Transactions on Mechatronics 25, 2100–2111 (2020) Dominijanni et al. [2023] Dominijanni, G., Pinheiro, D.L., Pollina, L., Orset, B., Gini, M., Anselmino, E., Pierella, C., Olivier, J., Shokur, S., Micera, S.: Human motor augmentation with an extra robotic arm without functional interference. Science Robotics 8 (2023) Losey et al. [2018] Losey, D.P., Mcdonald, C.G., Battaglia, E., O’Malley, M.: A review of intent detection, arbitration, and communication aspects of shared control for physical human-robot interaction. Applied Mechanics Reviews 70 (2018) https://doi.org/10.1115/1.4039145 Jackson and Collins [2019] Jackson, R.W., Collins, S.H.: Heuristic-based ankle exoskeleton control for co-adaptive assistance of human locomotion. IEEE Transactions on Neural Systems and Rehabilitation Engineering 27, 2059–2069 (2019) Banala et al. [2007] Banala, S.K., Agrawal, S.K., Scholz, J.P.: Active leg exoskeleton (alex) for gait rehabilitation of motor-impaired patients. In: 2007 IEEE 10th International Conference on Rehabilitation Robotics, pp. 401–407 (2007). 2007 IEEE 10th International Conference on Rehabilitation Robotics Dinovitzer et al. [2023a] Dinovitzer, H., Shushtari, M., Arami, A.: Feedforward control of lower limb exoskeletons: which torque profile should we use? IEEE Robotics and Automation Letters (2023) Dinovitzer et al. [2023b] Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Medina, J.R., Lorenz, T., Hirche, S.: Synthesizing anticipatory haptic assistance considering human behavior uncertainty. IEEE Transactions on Robotics 31, 180–190 (2015) Martinez et al. [2018] Martinez, A., Lawson, B., Durrough, C., Goldfarb, M.: A velocity-field-based controller for assisting leg movement during walking with a bilateral hip and knee lower limb exoskeleton. IEEE Transactions on Robotics 35, 307–316 (2018) Shushtari et al. [2021] Shushtari, M., Nasiri, R., Arami, A.: Online reference trajectory adaptation: A personalized control strategy for lower limb exoskeletons. IEEE Robotics and Automation Letters 7, 128–134 (2021) Asl et al. [2020] Asl, H.J., Yamashita, M., Narikiyo, T., Kawanishi, M.: Field-based assist-as-needed control schemes for rehabilitation robots. IEEE/ASME Transactions on Mechatronics 25, 2100–2111 (2020) Dominijanni et al. [2023] Dominijanni, G., Pinheiro, D.L., Pollina, L., Orset, B., Gini, M., Anselmino, E., Pierella, C., Olivier, J., Shokur, S., Micera, S.: Human motor augmentation with an extra robotic arm without functional interference. Science Robotics 8 (2023) Losey et al. [2018] Losey, D.P., Mcdonald, C.G., Battaglia, E., O’Malley, M.: A review of intent detection, arbitration, and communication aspects of shared control for physical human-robot interaction. Applied Mechanics Reviews 70 (2018) https://doi.org/10.1115/1.4039145 Jackson and Collins [2019] Jackson, R.W., Collins, S.H.: Heuristic-based ankle exoskeleton control for co-adaptive assistance of human locomotion. IEEE Transactions on Neural Systems and Rehabilitation Engineering 27, 2059–2069 (2019) Banala et al. [2007] Banala, S.K., Agrawal, S.K., Scholz, J.P.: Active leg exoskeleton (alex) for gait rehabilitation of motor-impaired patients. In: 2007 IEEE 10th International Conference on Rehabilitation Robotics, pp. 401–407 (2007). 2007 IEEE 10th International Conference on Rehabilitation Robotics Dinovitzer et al. [2023a] Dinovitzer, H., Shushtari, M., Arami, A.: Feedforward control of lower limb exoskeletons: which torque profile should we use? IEEE Robotics and Automation Letters (2023) Dinovitzer et al. [2023b] Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Martinez, A., Lawson, B., Durrough, C., Goldfarb, M.: A velocity-field-based controller for assisting leg movement during walking with a bilateral hip and knee lower limb exoskeleton. IEEE Transactions on Robotics 35, 307–316 (2018) Shushtari et al. [2021] Shushtari, M., Nasiri, R., Arami, A.: Online reference trajectory adaptation: A personalized control strategy for lower limb exoskeletons. IEEE Robotics and Automation Letters 7, 128–134 (2021) Asl et al. [2020] Asl, H.J., Yamashita, M., Narikiyo, T., Kawanishi, M.: Field-based assist-as-needed control schemes for rehabilitation robots. IEEE/ASME Transactions on Mechatronics 25, 2100–2111 (2020) Dominijanni et al. [2023] Dominijanni, G., Pinheiro, D.L., Pollina, L., Orset, B., Gini, M., Anselmino, E., Pierella, C., Olivier, J., Shokur, S., Micera, S.: Human motor augmentation with an extra robotic arm without functional interference. Science Robotics 8 (2023) Losey et al. [2018] Losey, D.P., Mcdonald, C.G., Battaglia, E., O’Malley, M.: A review of intent detection, arbitration, and communication aspects of shared control for physical human-robot interaction. Applied Mechanics Reviews 70 (2018) https://doi.org/10.1115/1.4039145 Jackson and Collins [2019] Jackson, R.W., Collins, S.H.: Heuristic-based ankle exoskeleton control for co-adaptive assistance of human locomotion. IEEE Transactions on Neural Systems and Rehabilitation Engineering 27, 2059–2069 (2019) Banala et al. [2007] Banala, S.K., Agrawal, S.K., Scholz, J.P.: Active leg exoskeleton (alex) for gait rehabilitation of motor-impaired patients. In: 2007 IEEE 10th International Conference on Rehabilitation Robotics, pp. 401–407 (2007). 2007 IEEE 10th International Conference on Rehabilitation Robotics Dinovitzer et al. [2023a] Dinovitzer, H., Shushtari, M., Arami, A.: Feedforward control of lower limb exoskeletons: which torque profile should we use? IEEE Robotics and Automation Letters (2023) Dinovitzer et al. [2023b] Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Shushtari, M., Nasiri, R., Arami, A.: Online reference trajectory adaptation: A personalized control strategy for lower limb exoskeletons. IEEE Robotics and Automation Letters 7, 128–134 (2021) Asl et al. [2020] Asl, H.J., Yamashita, M., Narikiyo, T., Kawanishi, M.: Field-based assist-as-needed control schemes for rehabilitation robots. IEEE/ASME Transactions on Mechatronics 25, 2100–2111 (2020) Dominijanni et al. [2023] Dominijanni, G., Pinheiro, D.L., Pollina, L., Orset, B., Gini, M., Anselmino, E., Pierella, C., Olivier, J., Shokur, S., Micera, S.: Human motor augmentation with an extra robotic arm without functional interference. Science Robotics 8 (2023) Losey et al. [2018] Losey, D.P., Mcdonald, C.G., Battaglia, E., O’Malley, M.: A review of intent detection, arbitration, and communication aspects of shared control for physical human-robot interaction. Applied Mechanics Reviews 70 (2018) https://doi.org/10.1115/1.4039145 Jackson and Collins [2019] Jackson, R.W., Collins, S.H.: Heuristic-based ankle exoskeleton control for co-adaptive assistance of human locomotion. IEEE Transactions on Neural Systems and Rehabilitation Engineering 27, 2059–2069 (2019) Banala et al. [2007] Banala, S.K., Agrawal, S.K., Scholz, J.P.: Active leg exoskeleton (alex) for gait rehabilitation of motor-impaired patients. In: 2007 IEEE 10th International Conference on Rehabilitation Robotics, pp. 401–407 (2007). 2007 IEEE 10th International Conference on Rehabilitation Robotics Dinovitzer et al. [2023a] Dinovitzer, H., Shushtari, M., Arami, A.: Feedforward control of lower limb exoskeletons: which torque profile should we use? IEEE Robotics and Automation Letters (2023) Dinovitzer et al. [2023b] Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Asl, H.J., Yamashita, M., Narikiyo, T., Kawanishi, M.: Field-based assist-as-needed control schemes for rehabilitation robots. IEEE/ASME Transactions on Mechatronics 25, 2100–2111 (2020) Dominijanni et al. [2023] Dominijanni, G., Pinheiro, D.L., Pollina, L., Orset, B., Gini, M., Anselmino, E., Pierella, C., Olivier, J., Shokur, S., Micera, S.: Human motor augmentation with an extra robotic arm without functional interference. Science Robotics 8 (2023) Losey et al. [2018] Losey, D.P., Mcdonald, C.G., Battaglia, E., O’Malley, M.: A review of intent detection, arbitration, and communication aspects of shared control for physical human-robot interaction. Applied Mechanics Reviews 70 (2018) https://doi.org/10.1115/1.4039145 Jackson and Collins [2019] Jackson, R.W., Collins, S.H.: Heuristic-based ankle exoskeleton control for co-adaptive assistance of human locomotion. IEEE Transactions on Neural Systems and Rehabilitation Engineering 27, 2059–2069 (2019) Banala et al. [2007] Banala, S.K., Agrawal, S.K., Scholz, J.P.: Active leg exoskeleton (alex) for gait rehabilitation of motor-impaired patients. In: 2007 IEEE 10th International Conference on Rehabilitation Robotics, pp. 401–407 (2007). 2007 IEEE 10th International Conference on Rehabilitation Robotics Dinovitzer et al. [2023a] Dinovitzer, H., Shushtari, M., Arami, A.: Feedforward control of lower limb exoskeletons: which torque profile should we use? IEEE Robotics and Automation Letters (2023) Dinovitzer et al. [2023b] Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Dominijanni, G., Pinheiro, D.L., Pollina, L., Orset, B., Gini, M., Anselmino, E., Pierella, C., Olivier, J., Shokur, S., Micera, S.: Human motor augmentation with an extra robotic arm without functional interference. Science Robotics 8 (2023) Losey et al. [2018] Losey, D.P., Mcdonald, C.G., Battaglia, E., O’Malley, M.: A review of intent detection, arbitration, and communication aspects of shared control for physical human-robot interaction. Applied Mechanics Reviews 70 (2018) https://doi.org/10.1115/1.4039145 Jackson and Collins [2019] Jackson, R.W., Collins, S.H.: Heuristic-based ankle exoskeleton control for co-adaptive assistance of human locomotion. IEEE Transactions on Neural Systems and Rehabilitation Engineering 27, 2059–2069 (2019) Banala et al. [2007] Banala, S.K., Agrawal, S.K., Scholz, J.P.: Active leg exoskeleton (alex) for gait rehabilitation of motor-impaired patients. In: 2007 IEEE 10th International Conference on Rehabilitation Robotics, pp. 401–407 (2007). 2007 IEEE 10th International Conference on Rehabilitation Robotics Dinovitzer et al. [2023a] Dinovitzer, H., Shushtari, M., Arami, A.: Feedforward control of lower limb exoskeletons: which torque profile should we use? IEEE Robotics and Automation Letters (2023) Dinovitzer et al. [2023b] Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Losey, D.P., Mcdonald, C.G., Battaglia, E., O’Malley, M.: A review of intent detection, arbitration, and communication aspects of shared control for physical human-robot interaction. Applied Mechanics Reviews 70 (2018) https://doi.org/10.1115/1.4039145 Jackson and Collins [2019] Jackson, R.W., Collins, S.H.: Heuristic-based ankle exoskeleton control for co-adaptive assistance of human locomotion. IEEE Transactions on Neural Systems and Rehabilitation Engineering 27, 2059–2069 (2019) Banala et al. [2007] Banala, S.K., Agrawal, S.K., Scholz, J.P.: Active leg exoskeleton (alex) for gait rehabilitation of motor-impaired patients. In: 2007 IEEE 10th International Conference on Rehabilitation Robotics, pp. 401–407 (2007). 2007 IEEE 10th International Conference on Rehabilitation Robotics Dinovitzer et al. [2023a] Dinovitzer, H., Shushtari, M., Arami, A.: Feedforward control of lower limb exoskeletons: which torque profile should we use? IEEE Robotics and Automation Letters (2023) Dinovitzer et al. [2023b] Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Jackson, R.W., Collins, S.H.: Heuristic-based ankle exoskeleton control for co-adaptive assistance of human locomotion. IEEE Transactions on Neural Systems and Rehabilitation Engineering 27, 2059–2069 (2019) Banala et al. [2007] Banala, S.K., Agrawal, S.K., Scholz, J.P.: Active leg exoskeleton (alex) for gait rehabilitation of motor-impaired patients. In: 2007 IEEE 10th International Conference on Rehabilitation Robotics, pp. 401–407 (2007). 2007 IEEE 10th International Conference on Rehabilitation Robotics Dinovitzer et al. [2023a] Dinovitzer, H., Shushtari, M., Arami, A.: Feedforward control of lower limb exoskeletons: which torque profile should we use? IEEE Robotics and Automation Letters (2023) Dinovitzer et al. [2023b] Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Banala, S.K., Agrawal, S.K., Scholz, J.P.: Active leg exoskeleton (alex) for gait rehabilitation of motor-impaired patients. In: 2007 IEEE 10th International Conference on Rehabilitation Robotics, pp. 401–407 (2007). 2007 IEEE 10th International Conference on Rehabilitation Robotics Dinovitzer et al. [2023a] Dinovitzer, H., Shushtari, M., Arami, A.: Feedforward control of lower limb exoskeletons: which torque profile should we use? IEEE Robotics and Automation Letters (2023) Dinovitzer et al. [2023b] Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Dinovitzer, H., Shushtari, M., Arami, A.: Feedforward control of lower limb exoskeletons: which torque profile should we use? IEEE Robotics and Automation Letters (2023) Dinovitzer et al. [2023b] Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017)
  15. Pinto-Fernandez, D., Diego, T., Carmen Sanchez-Villamanan, M., Aller, F., Mombaur, K., Conti, R., Vitiello, N., Moreno, J.C., Pons, J.L.: Performance evaluation of lower limb exoskeletons: A systematic review. IEEE Transactions on Neural Systems and Rehabilitation Engineering 28, 1573–1583 (2020) Slade et al. [2022] Slade, P., Kochenderfer, M.J., Delp, S.L., Collins, S.H.: Personalizing exoskeleton assistance while walking in the real world. Nature 610, 277–282 (2022) Medina et al. [2015] Medina, J.R., Lorenz, T., Hirche, S.: Synthesizing anticipatory haptic assistance considering human behavior uncertainty. IEEE Transactions on Robotics 31, 180–190 (2015) Martinez et al. [2018] Martinez, A., Lawson, B., Durrough, C., Goldfarb, M.: A velocity-field-based controller for assisting leg movement during walking with a bilateral hip and knee lower limb exoskeleton. IEEE Transactions on Robotics 35, 307–316 (2018) Shushtari et al. [2021] Shushtari, M., Nasiri, R., Arami, A.: Online reference trajectory adaptation: A personalized control strategy for lower limb exoskeletons. IEEE Robotics and Automation Letters 7, 128–134 (2021) Asl et al. [2020] Asl, H.J., Yamashita, M., Narikiyo, T., Kawanishi, M.: Field-based assist-as-needed control schemes for rehabilitation robots. IEEE/ASME Transactions on Mechatronics 25, 2100–2111 (2020) Dominijanni et al. [2023] Dominijanni, G., Pinheiro, D.L., Pollina, L., Orset, B., Gini, M., Anselmino, E., Pierella, C., Olivier, J., Shokur, S., Micera, S.: Human motor augmentation with an extra robotic arm without functional interference. Science Robotics 8 (2023) Losey et al. [2018] Losey, D.P., Mcdonald, C.G., Battaglia, E., O’Malley, M.: A review of intent detection, arbitration, and communication aspects of shared control for physical human-robot interaction. Applied Mechanics Reviews 70 (2018) https://doi.org/10.1115/1.4039145 Jackson and Collins [2019] Jackson, R.W., Collins, S.H.: Heuristic-based ankle exoskeleton control for co-adaptive assistance of human locomotion. IEEE Transactions on Neural Systems and Rehabilitation Engineering 27, 2059–2069 (2019) Banala et al. [2007] Banala, S.K., Agrawal, S.K., Scholz, J.P.: Active leg exoskeleton (alex) for gait rehabilitation of motor-impaired patients. In: 2007 IEEE 10th International Conference on Rehabilitation Robotics, pp. 401–407 (2007). 2007 IEEE 10th International Conference on Rehabilitation Robotics Dinovitzer et al. [2023a] Dinovitzer, H., Shushtari, M., Arami, A.: Feedforward control of lower limb exoskeletons: which torque profile should we use? IEEE Robotics and Automation Letters (2023) Dinovitzer et al. [2023b] Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Slade, P., Kochenderfer, M.J., Delp, S.L., Collins, S.H.: Personalizing exoskeleton assistance while walking in the real world. Nature 610, 277–282 (2022) Medina et al. [2015] Medina, J.R., Lorenz, T., Hirche, S.: Synthesizing anticipatory haptic assistance considering human behavior uncertainty. IEEE Transactions on Robotics 31, 180–190 (2015) Martinez et al. [2018] Martinez, A., Lawson, B., Durrough, C., Goldfarb, M.: A velocity-field-based controller for assisting leg movement during walking with a bilateral hip and knee lower limb exoskeleton. IEEE Transactions on Robotics 35, 307–316 (2018) Shushtari et al. [2021] Shushtari, M., Nasiri, R., Arami, A.: Online reference trajectory adaptation: A personalized control strategy for lower limb exoskeletons. IEEE Robotics and Automation Letters 7, 128–134 (2021) Asl et al. [2020] Asl, H.J., Yamashita, M., Narikiyo, T., Kawanishi, M.: Field-based assist-as-needed control schemes for rehabilitation robots. IEEE/ASME Transactions on Mechatronics 25, 2100–2111 (2020) Dominijanni et al. [2023] Dominijanni, G., Pinheiro, D.L., Pollina, L., Orset, B., Gini, M., Anselmino, E., Pierella, C., Olivier, J., Shokur, S., Micera, S.: Human motor augmentation with an extra robotic arm without functional interference. Science Robotics 8 (2023) Losey et al. [2018] Losey, D.P., Mcdonald, C.G., Battaglia, E., O’Malley, M.: A review of intent detection, arbitration, and communication aspects of shared control for physical human-robot interaction. Applied Mechanics Reviews 70 (2018) https://doi.org/10.1115/1.4039145 Jackson and Collins [2019] Jackson, R.W., Collins, S.H.: Heuristic-based ankle exoskeleton control for co-adaptive assistance of human locomotion. IEEE Transactions on Neural Systems and Rehabilitation Engineering 27, 2059–2069 (2019) Banala et al. [2007] Banala, S.K., Agrawal, S.K., Scholz, J.P.: Active leg exoskeleton (alex) for gait rehabilitation of motor-impaired patients. In: 2007 IEEE 10th International Conference on Rehabilitation Robotics, pp. 401–407 (2007). 2007 IEEE 10th International Conference on Rehabilitation Robotics Dinovitzer et al. [2023a] Dinovitzer, H., Shushtari, M., Arami, A.: Feedforward control of lower limb exoskeletons: which torque profile should we use? IEEE Robotics and Automation Letters (2023) Dinovitzer et al. [2023b] Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Medina, J.R., Lorenz, T., Hirche, S.: Synthesizing anticipatory haptic assistance considering human behavior uncertainty. IEEE Transactions on Robotics 31, 180–190 (2015) Martinez et al. [2018] Martinez, A., Lawson, B., Durrough, C., Goldfarb, M.: A velocity-field-based controller for assisting leg movement during walking with a bilateral hip and knee lower limb exoskeleton. IEEE Transactions on Robotics 35, 307–316 (2018) Shushtari et al. [2021] Shushtari, M., Nasiri, R., Arami, A.: Online reference trajectory adaptation: A personalized control strategy for lower limb exoskeletons. IEEE Robotics and Automation Letters 7, 128–134 (2021) Asl et al. [2020] Asl, H.J., Yamashita, M., Narikiyo, T., Kawanishi, M.: Field-based assist-as-needed control schemes for rehabilitation robots. IEEE/ASME Transactions on Mechatronics 25, 2100–2111 (2020) Dominijanni et al. [2023] Dominijanni, G., Pinheiro, D.L., Pollina, L., Orset, B., Gini, M., Anselmino, E., Pierella, C., Olivier, J., Shokur, S., Micera, S.: Human motor augmentation with an extra robotic arm without functional interference. Science Robotics 8 (2023) Losey et al. [2018] Losey, D.P., Mcdonald, C.G., Battaglia, E., O’Malley, M.: A review of intent detection, arbitration, and communication aspects of shared control for physical human-robot interaction. Applied Mechanics Reviews 70 (2018) https://doi.org/10.1115/1.4039145 Jackson and Collins [2019] Jackson, R.W., Collins, S.H.: Heuristic-based ankle exoskeleton control for co-adaptive assistance of human locomotion. IEEE Transactions on Neural Systems and Rehabilitation Engineering 27, 2059–2069 (2019) Banala et al. [2007] Banala, S.K., Agrawal, S.K., Scholz, J.P.: Active leg exoskeleton (alex) for gait rehabilitation of motor-impaired patients. In: 2007 IEEE 10th International Conference on Rehabilitation Robotics, pp. 401–407 (2007). 2007 IEEE 10th International Conference on Rehabilitation Robotics Dinovitzer et al. [2023a] Dinovitzer, H., Shushtari, M., Arami, A.: Feedforward control of lower limb exoskeletons: which torque profile should we use? IEEE Robotics and Automation Letters (2023) Dinovitzer et al. [2023b] Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Martinez, A., Lawson, B., Durrough, C., Goldfarb, M.: A velocity-field-based controller for assisting leg movement during walking with a bilateral hip and knee lower limb exoskeleton. IEEE Transactions on Robotics 35, 307–316 (2018) Shushtari et al. [2021] Shushtari, M., Nasiri, R., Arami, A.: Online reference trajectory adaptation: A personalized control strategy for lower limb exoskeletons. IEEE Robotics and Automation Letters 7, 128–134 (2021) Asl et al. [2020] Asl, H.J., Yamashita, M., Narikiyo, T., Kawanishi, M.: Field-based assist-as-needed control schemes for rehabilitation robots. IEEE/ASME Transactions on Mechatronics 25, 2100–2111 (2020) Dominijanni et al. [2023] Dominijanni, G., Pinheiro, D.L., Pollina, L., Orset, B., Gini, M., Anselmino, E., Pierella, C., Olivier, J., Shokur, S., Micera, S.: Human motor augmentation with an extra robotic arm without functional interference. Science Robotics 8 (2023) Losey et al. [2018] Losey, D.P., Mcdonald, C.G., Battaglia, E., O’Malley, M.: A review of intent detection, arbitration, and communication aspects of shared control for physical human-robot interaction. Applied Mechanics Reviews 70 (2018) https://doi.org/10.1115/1.4039145 Jackson and Collins [2019] Jackson, R.W., Collins, S.H.: Heuristic-based ankle exoskeleton control for co-adaptive assistance of human locomotion. IEEE Transactions on Neural Systems and Rehabilitation Engineering 27, 2059–2069 (2019) Banala et al. [2007] Banala, S.K., Agrawal, S.K., Scholz, J.P.: Active leg exoskeleton (alex) for gait rehabilitation of motor-impaired patients. In: 2007 IEEE 10th International Conference on Rehabilitation Robotics, pp. 401–407 (2007). 2007 IEEE 10th International Conference on Rehabilitation Robotics Dinovitzer et al. [2023a] Dinovitzer, H., Shushtari, M., Arami, A.: Feedforward control of lower limb exoskeletons: which torque profile should we use? IEEE Robotics and Automation Letters (2023) Dinovitzer et al. [2023b] Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Shushtari, M., Nasiri, R., Arami, A.: Online reference trajectory adaptation: A personalized control strategy for lower limb exoskeletons. IEEE Robotics and Automation Letters 7, 128–134 (2021) Asl et al. [2020] Asl, H.J., Yamashita, M., Narikiyo, T., Kawanishi, M.: Field-based assist-as-needed control schemes for rehabilitation robots. IEEE/ASME Transactions on Mechatronics 25, 2100–2111 (2020) Dominijanni et al. [2023] Dominijanni, G., Pinheiro, D.L., Pollina, L., Orset, B., Gini, M., Anselmino, E., Pierella, C., Olivier, J., Shokur, S., Micera, S.: Human motor augmentation with an extra robotic arm without functional interference. Science Robotics 8 (2023) Losey et al. [2018] Losey, D.P., Mcdonald, C.G., Battaglia, E., O’Malley, M.: A review of intent detection, arbitration, and communication aspects of shared control for physical human-robot interaction. Applied Mechanics Reviews 70 (2018) https://doi.org/10.1115/1.4039145 Jackson and Collins [2019] Jackson, R.W., Collins, S.H.: Heuristic-based ankle exoskeleton control for co-adaptive assistance of human locomotion. IEEE Transactions on Neural Systems and Rehabilitation Engineering 27, 2059–2069 (2019) Banala et al. [2007] Banala, S.K., Agrawal, S.K., Scholz, J.P.: Active leg exoskeleton (alex) for gait rehabilitation of motor-impaired patients. In: 2007 IEEE 10th International Conference on Rehabilitation Robotics, pp. 401–407 (2007). 2007 IEEE 10th International Conference on Rehabilitation Robotics Dinovitzer et al. [2023a] Dinovitzer, H., Shushtari, M., Arami, A.: Feedforward control of lower limb exoskeletons: which torque profile should we use? IEEE Robotics and Automation Letters (2023) Dinovitzer et al. [2023b] Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Asl, H.J., Yamashita, M., Narikiyo, T., Kawanishi, M.: Field-based assist-as-needed control schemes for rehabilitation robots. IEEE/ASME Transactions on Mechatronics 25, 2100–2111 (2020) Dominijanni et al. [2023] Dominijanni, G., Pinheiro, D.L., Pollina, L., Orset, B., Gini, M., Anselmino, E., Pierella, C., Olivier, J., Shokur, S., Micera, S.: Human motor augmentation with an extra robotic arm without functional interference. Science Robotics 8 (2023) Losey et al. [2018] Losey, D.P., Mcdonald, C.G., Battaglia, E., O’Malley, M.: A review of intent detection, arbitration, and communication aspects of shared control for physical human-robot interaction. Applied Mechanics Reviews 70 (2018) https://doi.org/10.1115/1.4039145 Jackson and Collins [2019] Jackson, R.W., Collins, S.H.: Heuristic-based ankle exoskeleton control for co-adaptive assistance of human locomotion. IEEE Transactions on Neural Systems and Rehabilitation Engineering 27, 2059–2069 (2019) Banala et al. [2007] Banala, S.K., Agrawal, S.K., Scholz, J.P.: Active leg exoskeleton (alex) for gait rehabilitation of motor-impaired patients. In: 2007 IEEE 10th International Conference on Rehabilitation Robotics, pp. 401–407 (2007). 2007 IEEE 10th International Conference on Rehabilitation Robotics Dinovitzer et al. [2023a] Dinovitzer, H., Shushtari, M., Arami, A.: Feedforward control of lower limb exoskeletons: which torque profile should we use? IEEE Robotics and Automation Letters (2023) Dinovitzer et al. [2023b] Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Dominijanni, G., Pinheiro, D.L., Pollina, L., Orset, B., Gini, M., Anselmino, E., Pierella, C., Olivier, J., Shokur, S., Micera, S.: Human motor augmentation with an extra robotic arm without functional interference. Science Robotics 8 (2023) Losey et al. [2018] Losey, D.P., Mcdonald, C.G., Battaglia, E., O’Malley, M.: A review of intent detection, arbitration, and communication aspects of shared control for physical human-robot interaction. Applied Mechanics Reviews 70 (2018) https://doi.org/10.1115/1.4039145 Jackson and Collins [2019] Jackson, R.W., Collins, S.H.: Heuristic-based ankle exoskeleton control for co-adaptive assistance of human locomotion. IEEE Transactions on Neural Systems and Rehabilitation Engineering 27, 2059–2069 (2019) Banala et al. [2007] Banala, S.K., Agrawal, S.K., Scholz, J.P.: Active leg exoskeleton (alex) for gait rehabilitation of motor-impaired patients. In: 2007 IEEE 10th International Conference on Rehabilitation Robotics, pp. 401–407 (2007). 2007 IEEE 10th International Conference on Rehabilitation Robotics Dinovitzer et al. [2023a] Dinovitzer, H., Shushtari, M., Arami, A.: Feedforward control of lower limb exoskeletons: which torque profile should we use? IEEE Robotics and Automation Letters (2023) Dinovitzer et al. [2023b] Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Losey, D.P., Mcdonald, C.G., Battaglia, E., O’Malley, M.: A review of intent detection, arbitration, and communication aspects of shared control for physical human-robot interaction. Applied Mechanics Reviews 70 (2018) https://doi.org/10.1115/1.4039145 Jackson and Collins [2019] Jackson, R.W., Collins, S.H.: Heuristic-based ankle exoskeleton control for co-adaptive assistance of human locomotion. IEEE Transactions on Neural Systems and Rehabilitation Engineering 27, 2059–2069 (2019) Banala et al. [2007] Banala, S.K., Agrawal, S.K., Scholz, J.P.: Active leg exoskeleton (alex) for gait rehabilitation of motor-impaired patients. In: 2007 IEEE 10th International Conference on Rehabilitation Robotics, pp. 401–407 (2007). 2007 IEEE 10th International Conference on Rehabilitation Robotics Dinovitzer et al. [2023a] Dinovitzer, H., Shushtari, M., Arami, A.: Feedforward control of lower limb exoskeletons: which torque profile should we use? IEEE Robotics and Automation Letters (2023) Dinovitzer et al. [2023b] Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Jackson, R.W., Collins, S.H.: Heuristic-based ankle exoskeleton control for co-adaptive assistance of human locomotion. IEEE Transactions on Neural Systems and Rehabilitation Engineering 27, 2059–2069 (2019) Banala et al. [2007] Banala, S.K., Agrawal, S.K., Scholz, J.P.: Active leg exoskeleton (alex) for gait rehabilitation of motor-impaired patients. In: 2007 IEEE 10th International Conference on Rehabilitation Robotics, pp. 401–407 (2007). 2007 IEEE 10th International Conference on Rehabilitation Robotics Dinovitzer et al. [2023a] Dinovitzer, H., Shushtari, M., Arami, A.: Feedforward control of lower limb exoskeletons: which torque profile should we use? IEEE Robotics and Automation Letters (2023) Dinovitzer et al. [2023b] Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Banala, S.K., Agrawal, S.K., Scholz, J.P.: Active leg exoskeleton (alex) for gait rehabilitation of motor-impaired patients. In: 2007 IEEE 10th International Conference on Rehabilitation Robotics, pp. 401–407 (2007). 2007 IEEE 10th International Conference on Rehabilitation Robotics Dinovitzer et al. [2023a] Dinovitzer, H., Shushtari, M., Arami, A.: Feedforward control of lower limb exoskeletons: which torque profile should we use? IEEE Robotics and Automation Letters (2023) Dinovitzer et al. [2023b] Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Dinovitzer, H., Shushtari, M., Arami, A.: Feedforward control of lower limb exoskeletons: which torque profile should we use? IEEE Robotics and Automation Letters (2023) Dinovitzer et al. [2023b] Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017)
  16. Slade, P., Kochenderfer, M.J., Delp, S.L., Collins, S.H.: Personalizing exoskeleton assistance while walking in the real world. Nature 610, 277–282 (2022) Medina et al. [2015] Medina, J.R., Lorenz, T., Hirche, S.: Synthesizing anticipatory haptic assistance considering human behavior uncertainty. IEEE Transactions on Robotics 31, 180–190 (2015) Martinez et al. [2018] Martinez, A., Lawson, B., Durrough, C., Goldfarb, M.: A velocity-field-based controller for assisting leg movement during walking with a bilateral hip and knee lower limb exoskeleton. IEEE Transactions on Robotics 35, 307–316 (2018) Shushtari et al. [2021] Shushtari, M., Nasiri, R., Arami, A.: Online reference trajectory adaptation: A personalized control strategy for lower limb exoskeletons. IEEE Robotics and Automation Letters 7, 128–134 (2021) Asl et al. [2020] Asl, H.J., Yamashita, M., Narikiyo, T., Kawanishi, M.: Field-based assist-as-needed control schemes for rehabilitation robots. IEEE/ASME Transactions on Mechatronics 25, 2100–2111 (2020) Dominijanni et al. [2023] Dominijanni, G., Pinheiro, D.L., Pollina, L., Orset, B., Gini, M., Anselmino, E., Pierella, C., Olivier, J., Shokur, S., Micera, S.: Human motor augmentation with an extra robotic arm without functional interference. Science Robotics 8 (2023) Losey et al. [2018] Losey, D.P., Mcdonald, C.G., Battaglia, E., O’Malley, M.: A review of intent detection, arbitration, and communication aspects of shared control for physical human-robot interaction. Applied Mechanics Reviews 70 (2018) https://doi.org/10.1115/1.4039145 Jackson and Collins [2019] Jackson, R.W., Collins, S.H.: Heuristic-based ankle exoskeleton control for co-adaptive assistance of human locomotion. IEEE Transactions on Neural Systems and Rehabilitation Engineering 27, 2059–2069 (2019) Banala et al. [2007] Banala, S.K., Agrawal, S.K., Scholz, J.P.: Active leg exoskeleton (alex) for gait rehabilitation of motor-impaired patients. In: 2007 IEEE 10th International Conference on Rehabilitation Robotics, pp. 401–407 (2007). 2007 IEEE 10th International Conference on Rehabilitation Robotics Dinovitzer et al. [2023a] Dinovitzer, H., Shushtari, M., Arami, A.: Feedforward control of lower limb exoskeletons: which torque profile should we use? IEEE Robotics and Automation Letters (2023) Dinovitzer et al. [2023b] Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Medina, J.R., Lorenz, T., Hirche, S.: Synthesizing anticipatory haptic assistance considering human behavior uncertainty. IEEE Transactions on Robotics 31, 180–190 (2015) Martinez et al. [2018] Martinez, A., Lawson, B., Durrough, C., Goldfarb, M.: A velocity-field-based controller for assisting leg movement during walking with a bilateral hip and knee lower limb exoskeleton. IEEE Transactions on Robotics 35, 307–316 (2018) Shushtari et al. [2021] Shushtari, M., Nasiri, R., Arami, A.: Online reference trajectory adaptation: A personalized control strategy for lower limb exoskeletons. IEEE Robotics and Automation Letters 7, 128–134 (2021) Asl et al. [2020] Asl, H.J., Yamashita, M., Narikiyo, T., Kawanishi, M.: Field-based assist-as-needed control schemes for rehabilitation robots. IEEE/ASME Transactions on Mechatronics 25, 2100–2111 (2020) Dominijanni et al. [2023] Dominijanni, G., Pinheiro, D.L., Pollina, L., Orset, B., Gini, M., Anselmino, E., Pierella, C., Olivier, J., Shokur, S., Micera, S.: Human motor augmentation with an extra robotic arm without functional interference. Science Robotics 8 (2023) Losey et al. [2018] Losey, D.P., Mcdonald, C.G., Battaglia, E., O’Malley, M.: A review of intent detection, arbitration, and communication aspects of shared control for physical human-robot interaction. Applied Mechanics Reviews 70 (2018) https://doi.org/10.1115/1.4039145 Jackson and Collins [2019] Jackson, R.W., Collins, S.H.: Heuristic-based ankle exoskeleton control for co-adaptive assistance of human locomotion. IEEE Transactions on Neural Systems and Rehabilitation Engineering 27, 2059–2069 (2019) Banala et al. [2007] Banala, S.K., Agrawal, S.K., Scholz, J.P.: Active leg exoskeleton (alex) for gait rehabilitation of motor-impaired patients. In: 2007 IEEE 10th International Conference on Rehabilitation Robotics, pp. 401–407 (2007). 2007 IEEE 10th International Conference on Rehabilitation Robotics Dinovitzer et al. [2023a] Dinovitzer, H., Shushtari, M., Arami, A.: Feedforward control of lower limb exoskeletons: which torque profile should we use? IEEE Robotics and Automation Letters (2023) Dinovitzer et al. [2023b] Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Martinez, A., Lawson, B., Durrough, C., Goldfarb, M.: A velocity-field-based controller for assisting leg movement during walking with a bilateral hip and knee lower limb exoskeleton. IEEE Transactions on Robotics 35, 307–316 (2018) Shushtari et al. [2021] Shushtari, M., Nasiri, R., Arami, A.: Online reference trajectory adaptation: A personalized control strategy for lower limb exoskeletons. IEEE Robotics and Automation Letters 7, 128–134 (2021) Asl et al. [2020] Asl, H.J., Yamashita, M., Narikiyo, T., Kawanishi, M.: Field-based assist-as-needed control schemes for rehabilitation robots. IEEE/ASME Transactions on Mechatronics 25, 2100–2111 (2020) Dominijanni et al. [2023] Dominijanni, G., Pinheiro, D.L., Pollina, L., Orset, B., Gini, M., Anselmino, E., Pierella, C., Olivier, J., Shokur, S., Micera, S.: Human motor augmentation with an extra robotic arm without functional interference. Science Robotics 8 (2023) Losey et al. [2018] Losey, D.P., Mcdonald, C.G., Battaglia, E., O’Malley, M.: A review of intent detection, arbitration, and communication aspects of shared control for physical human-robot interaction. Applied Mechanics Reviews 70 (2018) https://doi.org/10.1115/1.4039145 Jackson and Collins [2019] Jackson, R.W., Collins, S.H.: Heuristic-based ankle exoskeleton control for co-adaptive assistance of human locomotion. IEEE Transactions on Neural Systems and Rehabilitation Engineering 27, 2059–2069 (2019) Banala et al. [2007] Banala, S.K., Agrawal, S.K., Scholz, J.P.: Active leg exoskeleton (alex) for gait rehabilitation of motor-impaired patients. In: 2007 IEEE 10th International Conference on Rehabilitation Robotics, pp. 401–407 (2007). 2007 IEEE 10th International Conference on Rehabilitation Robotics Dinovitzer et al. [2023a] Dinovitzer, H., Shushtari, M., Arami, A.: Feedforward control of lower limb exoskeletons: which torque profile should we use? IEEE Robotics and Automation Letters (2023) Dinovitzer et al. [2023b] Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Shushtari, M., Nasiri, R., Arami, A.: Online reference trajectory adaptation: A personalized control strategy for lower limb exoskeletons. IEEE Robotics and Automation Letters 7, 128–134 (2021) Asl et al. [2020] Asl, H.J., Yamashita, M., Narikiyo, T., Kawanishi, M.: Field-based assist-as-needed control schemes for rehabilitation robots. IEEE/ASME Transactions on Mechatronics 25, 2100–2111 (2020) Dominijanni et al. [2023] Dominijanni, G., Pinheiro, D.L., Pollina, L., Orset, B., Gini, M., Anselmino, E., Pierella, C., Olivier, J., Shokur, S., Micera, S.: Human motor augmentation with an extra robotic arm without functional interference. Science Robotics 8 (2023) Losey et al. [2018] Losey, D.P., Mcdonald, C.G., Battaglia, E., O’Malley, M.: A review of intent detection, arbitration, and communication aspects of shared control for physical human-robot interaction. Applied Mechanics Reviews 70 (2018) https://doi.org/10.1115/1.4039145 Jackson and Collins [2019] Jackson, R.W., Collins, S.H.: Heuristic-based ankle exoskeleton control for co-adaptive assistance of human locomotion. IEEE Transactions on Neural Systems and Rehabilitation Engineering 27, 2059–2069 (2019) Banala et al. [2007] Banala, S.K., Agrawal, S.K., Scholz, J.P.: Active leg exoskeleton (alex) for gait rehabilitation of motor-impaired patients. In: 2007 IEEE 10th International Conference on Rehabilitation Robotics, pp. 401–407 (2007). 2007 IEEE 10th International Conference on Rehabilitation Robotics Dinovitzer et al. [2023a] Dinovitzer, H., Shushtari, M., Arami, A.: Feedforward control of lower limb exoskeletons: which torque profile should we use? IEEE Robotics and Automation Letters (2023) Dinovitzer et al. [2023b] Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Asl, H.J., Yamashita, M., Narikiyo, T., Kawanishi, M.: Field-based assist-as-needed control schemes for rehabilitation robots. IEEE/ASME Transactions on Mechatronics 25, 2100–2111 (2020) Dominijanni et al. [2023] Dominijanni, G., Pinheiro, D.L., Pollina, L., Orset, B., Gini, M., Anselmino, E., Pierella, C., Olivier, J., Shokur, S., Micera, S.: Human motor augmentation with an extra robotic arm without functional interference. Science Robotics 8 (2023) Losey et al. [2018] Losey, D.P., Mcdonald, C.G., Battaglia, E., O’Malley, M.: A review of intent detection, arbitration, and communication aspects of shared control for physical human-robot interaction. Applied Mechanics Reviews 70 (2018) https://doi.org/10.1115/1.4039145 Jackson and Collins [2019] Jackson, R.W., Collins, S.H.: Heuristic-based ankle exoskeleton control for co-adaptive assistance of human locomotion. IEEE Transactions on Neural Systems and Rehabilitation Engineering 27, 2059–2069 (2019) Banala et al. [2007] Banala, S.K., Agrawal, S.K., Scholz, J.P.: Active leg exoskeleton (alex) for gait rehabilitation of motor-impaired patients. In: 2007 IEEE 10th International Conference on Rehabilitation Robotics, pp. 401–407 (2007). 2007 IEEE 10th International Conference on Rehabilitation Robotics Dinovitzer et al. [2023a] Dinovitzer, H., Shushtari, M., Arami, A.: Feedforward control of lower limb exoskeletons: which torque profile should we use? IEEE Robotics and Automation Letters (2023) Dinovitzer et al. [2023b] Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Dominijanni, G., Pinheiro, D.L., Pollina, L., Orset, B., Gini, M., Anselmino, E., Pierella, C., Olivier, J., Shokur, S., Micera, S.: Human motor augmentation with an extra robotic arm without functional interference. Science Robotics 8 (2023) Losey et al. [2018] Losey, D.P., Mcdonald, C.G., Battaglia, E., O’Malley, M.: A review of intent detection, arbitration, and communication aspects of shared control for physical human-robot interaction. Applied Mechanics Reviews 70 (2018) https://doi.org/10.1115/1.4039145 Jackson and Collins [2019] Jackson, R.W., Collins, S.H.: Heuristic-based ankle exoskeleton control for co-adaptive assistance of human locomotion. IEEE Transactions on Neural Systems and Rehabilitation Engineering 27, 2059–2069 (2019) Banala et al. [2007] Banala, S.K., Agrawal, S.K., Scholz, J.P.: Active leg exoskeleton (alex) for gait rehabilitation of motor-impaired patients. In: 2007 IEEE 10th International Conference on Rehabilitation Robotics, pp. 401–407 (2007). 2007 IEEE 10th International Conference on Rehabilitation Robotics Dinovitzer et al. [2023a] Dinovitzer, H., Shushtari, M., Arami, A.: Feedforward control of lower limb exoskeletons: which torque profile should we use? IEEE Robotics and Automation Letters (2023) Dinovitzer et al. [2023b] Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Losey, D.P., Mcdonald, C.G., Battaglia, E., O’Malley, M.: A review of intent detection, arbitration, and communication aspects of shared control for physical human-robot interaction. Applied Mechanics Reviews 70 (2018) https://doi.org/10.1115/1.4039145 Jackson and Collins [2019] Jackson, R.W., Collins, S.H.: Heuristic-based ankle exoskeleton control for co-adaptive assistance of human locomotion. IEEE Transactions on Neural Systems and Rehabilitation Engineering 27, 2059–2069 (2019) Banala et al. [2007] Banala, S.K., Agrawal, S.K., Scholz, J.P.: Active leg exoskeleton (alex) for gait rehabilitation of motor-impaired patients. In: 2007 IEEE 10th International Conference on Rehabilitation Robotics, pp. 401–407 (2007). 2007 IEEE 10th International Conference on Rehabilitation Robotics Dinovitzer et al. [2023a] Dinovitzer, H., Shushtari, M., Arami, A.: Feedforward control of lower limb exoskeletons: which torque profile should we use? IEEE Robotics and Automation Letters (2023) Dinovitzer et al. [2023b] Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Jackson, R.W., Collins, S.H.: Heuristic-based ankle exoskeleton control for co-adaptive assistance of human locomotion. IEEE Transactions on Neural Systems and Rehabilitation Engineering 27, 2059–2069 (2019) Banala et al. [2007] Banala, S.K., Agrawal, S.K., Scholz, J.P.: Active leg exoskeleton (alex) for gait rehabilitation of motor-impaired patients. In: 2007 IEEE 10th International Conference on Rehabilitation Robotics, pp. 401–407 (2007). 2007 IEEE 10th International Conference on Rehabilitation Robotics Dinovitzer et al. [2023a] Dinovitzer, H., Shushtari, M., Arami, A.: Feedforward control of lower limb exoskeletons: which torque profile should we use? IEEE Robotics and Automation Letters (2023) Dinovitzer et al. [2023b] Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Banala, S.K., Agrawal, S.K., Scholz, J.P.: Active leg exoskeleton (alex) for gait rehabilitation of motor-impaired patients. In: 2007 IEEE 10th International Conference on Rehabilitation Robotics, pp. 401–407 (2007). 2007 IEEE 10th International Conference on Rehabilitation Robotics Dinovitzer et al. [2023a] Dinovitzer, H., Shushtari, M., Arami, A.: Feedforward control of lower limb exoskeletons: which torque profile should we use? IEEE Robotics and Automation Letters (2023) Dinovitzer et al. [2023b] Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Dinovitzer, H., Shushtari, M., Arami, A.: Feedforward control of lower limb exoskeletons: which torque profile should we use? IEEE Robotics and Automation Letters (2023) Dinovitzer et al. [2023b] Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017)
  17. Medina, J.R., Lorenz, T., Hirche, S.: Synthesizing anticipatory haptic assistance considering human behavior uncertainty. IEEE Transactions on Robotics 31, 180–190 (2015) Martinez et al. [2018] Martinez, A., Lawson, B., Durrough, C., Goldfarb, M.: A velocity-field-based controller for assisting leg movement during walking with a bilateral hip and knee lower limb exoskeleton. IEEE Transactions on Robotics 35, 307–316 (2018) Shushtari et al. [2021] Shushtari, M., Nasiri, R., Arami, A.: Online reference trajectory adaptation: A personalized control strategy for lower limb exoskeletons. IEEE Robotics and Automation Letters 7, 128–134 (2021) Asl et al. [2020] Asl, H.J., Yamashita, M., Narikiyo, T., Kawanishi, M.: Field-based assist-as-needed control schemes for rehabilitation robots. IEEE/ASME Transactions on Mechatronics 25, 2100–2111 (2020) Dominijanni et al. [2023] Dominijanni, G., Pinheiro, D.L., Pollina, L., Orset, B., Gini, M., Anselmino, E., Pierella, C., Olivier, J., Shokur, S., Micera, S.: Human motor augmentation with an extra robotic arm without functional interference. Science Robotics 8 (2023) Losey et al. [2018] Losey, D.P., Mcdonald, C.G., Battaglia, E., O’Malley, M.: A review of intent detection, arbitration, and communication aspects of shared control for physical human-robot interaction. Applied Mechanics Reviews 70 (2018) https://doi.org/10.1115/1.4039145 Jackson and Collins [2019] Jackson, R.W., Collins, S.H.: Heuristic-based ankle exoskeleton control for co-adaptive assistance of human locomotion. IEEE Transactions on Neural Systems and Rehabilitation Engineering 27, 2059–2069 (2019) Banala et al. [2007] Banala, S.K., Agrawal, S.K., Scholz, J.P.: Active leg exoskeleton (alex) for gait rehabilitation of motor-impaired patients. In: 2007 IEEE 10th International Conference on Rehabilitation Robotics, pp. 401–407 (2007). 2007 IEEE 10th International Conference on Rehabilitation Robotics Dinovitzer et al. [2023a] Dinovitzer, H., Shushtari, M., Arami, A.: Feedforward control of lower limb exoskeletons: which torque profile should we use? IEEE Robotics and Automation Letters (2023) Dinovitzer et al. [2023b] Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Martinez, A., Lawson, B., Durrough, C., Goldfarb, M.: A velocity-field-based controller for assisting leg movement during walking with a bilateral hip and knee lower limb exoskeleton. IEEE Transactions on Robotics 35, 307–316 (2018) Shushtari et al. [2021] Shushtari, M., Nasiri, R., Arami, A.: Online reference trajectory adaptation: A personalized control strategy for lower limb exoskeletons. IEEE Robotics and Automation Letters 7, 128–134 (2021) Asl et al. [2020] Asl, H.J., Yamashita, M., Narikiyo, T., Kawanishi, M.: Field-based assist-as-needed control schemes for rehabilitation robots. IEEE/ASME Transactions on Mechatronics 25, 2100–2111 (2020) Dominijanni et al. [2023] Dominijanni, G., Pinheiro, D.L., Pollina, L., Orset, B., Gini, M., Anselmino, E., Pierella, C., Olivier, J., Shokur, S., Micera, S.: Human motor augmentation with an extra robotic arm without functional interference. Science Robotics 8 (2023) Losey et al. [2018] Losey, D.P., Mcdonald, C.G., Battaglia, E., O’Malley, M.: A review of intent detection, arbitration, and communication aspects of shared control for physical human-robot interaction. Applied Mechanics Reviews 70 (2018) https://doi.org/10.1115/1.4039145 Jackson and Collins [2019] Jackson, R.W., Collins, S.H.: Heuristic-based ankle exoskeleton control for co-adaptive assistance of human locomotion. IEEE Transactions on Neural Systems and Rehabilitation Engineering 27, 2059–2069 (2019) Banala et al. [2007] Banala, S.K., Agrawal, S.K., Scholz, J.P.: Active leg exoskeleton (alex) for gait rehabilitation of motor-impaired patients. In: 2007 IEEE 10th International Conference on Rehabilitation Robotics, pp. 401–407 (2007). 2007 IEEE 10th International Conference on Rehabilitation Robotics Dinovitzer et al. [2023a] Dinovitzer, H., Shushtari, M., Arami, A.: Feedforward control of lower limb exoskeletons: which torque profile should we use? IEEE Robotics and Automation Letters (2023) Dinovitzer et al. [2023b] Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Shushtari, M., Nasiri, R., Arami, A.: Online reference trajectory adaptation: A personalized control strategy for lower limb exoskeletons. IEEE Robotics and Automation Letters 7, 128–134 (2021) Asl et al. [2020] Asl, H.J., Yamashita, M., Narikiyo, T., Kawanishi, M.: Field-based assist-as-needed control schemes for rehabilitation robots. IEEE/ASME Transactions on Mechatronics 25, 2100–2111 (2020) Dominijanni et al. [2023] Dominijanni, G., Pinheiro, D.L., Pollina, L., Orset, B., Gini, M., Anselmino, E., Pierella, C., Olivier, J., Shokur, S., Micera, S.: Human motor augmentation with an extra robotic arm without functional interference. Science Robotics 8 (2023) Losey et al. [2018] Losey, D.P., Mcdonald, C.G., Battaglia, E., O’Malley, M.: A review of intent detection, arbitration, and communication aspects of shared control for physical human-robot interaction. Applied Mechanics Reviews 70 (2018) https://doi.org/10.1115/1.4039145 Jackson and Collins [2019] Jackson, R.W., Collins, S.H.: Heuristic-based ankle exoskeleton control for co-adaptive assistance of human locomotion. IEEE Transactions on Neural Systems and Rehabilitation Engineering 27, 2059–2069 (2019) Banala et al. [2007] Banala, S.K., Agrawal, S.K., Scholz, J.P.: Active leg exoskeleton (alex) for gait rehabilitation of motor-impaired patients. In: 2007 IEEE 10th International Conference on Rehabilitation Robotics, pp. 401–407 (2007). 2007 IEEE 10th International Conference on Rehabilitation Robotics Dinovitzer et al. [2023a] Dinovitzer, H., Shushtari, M., Arami, A.: Feedforward control of lower limb exoskeletons: which torque profile should we use? IEEE Robotics and Automation Letters (2023) Dinovitzer et al. [2023b] Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Asl, H.J., Yamashita, M., Narikiyo, T., Kawanishi, M.: Field-based assist-as-needed control schemes for rehabilitation robots. IEEE/ASME Transactions on Mechatronics 25, 2100–2111 (2020) Dominijanni et al. [2023] Dominijanni, G., Pinheiro, D.L., Pollina, L., Orset, B., Gini, M., Anselmino, E., Pierella, C., Olivier, J., Shokur, S., Micera, S.: Human motor augmentation with an extra robotic arm without functional interference. Science Robotics 8 (2023) Losey et al. [2018] Losey, D.P., Mcdonald, C.G., Battaglia, E., O’Malley, M.: A review of intent detection, arbitration, and communication aspects of shared control for physical human-robot interaction. Applied Mechanics Reviews 70 (2018) https://doi.org/10.1115/1.4039145 Jackson and Collins [2019] Jackson, R.W., Collins, S.H.: Heuristic-based ankle exoskeleton control for co-adaptive assistance of human locomotion. IEEE Transactions on Neural Systems and Rehabilitation Engineering 27, 2059–2069 (2019) Banala et al. [2007] Banala, S.K., Agrawal, S.K., Scholz, J.P.: Active leg exoskeleton (alex) for gait rehabilitation of motor-impaired patients. In: 2007 IEEE 10th International Conference on Rehabilitation Robotics, pp. 401–407 (2007). 2007 IEEE 10th International Conference on Rehabilitation Robotics Dinovitzer et al. [2023a] Dinovitzer, H., Shushtari, M., Arami, A.: Feedforward control of lower limb exoskeletons: which torque profile should we use? IEEE Robotics and Automation Letters (2023) Dinovitzer et al. [2023b] Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Dominijanni, G., Pinheiro, D.L., Pollina, L., Orset, B., Gini, M., Anselmino, E., Pierella, C., Olivier, J., Shokur, S., Micera, S.: Human motor augmentation with an extra robotic arm without functional interference. Science Robotics 8 (2023) Losey et al. [2018] Losey, D.P., Mcdonald, C.G., Battaglia, E., O’Malley, M.: A review of intent detection, arbitration, and communication aspects of shared control for physical human-robot interaction. Applied Mechanics Reviews 70 (2018) https://doi.org/10.1115/1.4039145 Jackson and Collins [2019] Jackson, R.W., Collins, S.H.: Heuristic-based ankle exoskeleton control for co-adaptive assistance of human locomotion. IEEE Transactions on Neural Systems and Rehabilitation Engineering 27, 2059–2069 (2019) Banala et al. [2007] Banala, S.K., Agrawal, S.K., Scholz, J.P.: Active leg exoskeleton (alex) for gait rehabilitation of motor-impaired patients. In: 2007 IEEE 10th International Conference on Rehabilitation Robotics, pp. 401–407 (2007). 2007 IEEE 10th International Conference on Rehabilitation Robotics Dinovitzer et al. [2023a] Dinovitzer, H., Shushtari, M., Arami, A.: Feedforward control of lower limb exoskeletons: which torque profile should we use? IEEE Robotics and Automation Letters (2023) Dinovitzer et al. [2023b] Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Losey, D.P., Mcdonald, C.G., Battaglia, E., O’Malley, M.: A review of intent detection, arbitration, and communication aspects of shared control for physical human-robot interaction. Applied Mechanics Reviews 70 (2018) https://doi.org/10.1115/1.4039145 Jackson and Collins [2019] Jackson, R.W., Collins, S.H.: Heuristic-based ankle exoskeleton control for co-adaptive assistance of human locomotion. IEEE Transactions on Neural Systems and Rehabilitation Engineering 27, 2059–2069 (2019) Banala et al. [2007] Banala, S.K., Agrawal, S.K., Scholz, J.P.: Active leg exoskeleton (alex) for gait rehabilitation of motor-impaired patients. In: 2007 IEEE 10th International Conference on Rehabilitation Robotics, pp. 401–407 (2007). 2007 IEEE 10th International Conference on Rehabilitation Robotics Dinovitzer et al. [2023a] Dinovitzer, H., Shushtari, M., Arami, A.: Feedforward control of lower limb exoskeletons: which torque profile should we use? IEEE Robotics and Automation Letters (2023) Dinovitzer et al. [2023b] Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Jackson, R.W., Collins, S.H.: Heuristic-based ankle exoskeleton control for co-adaptive assistance of human locomotion. IEEE Transactions on Neural Systems and Rehabilitation Engineering 27, 2059–2069 (2019) Banala et al. [2007] Banala, S.K., Agrawal, S.K., Scholz, J.P.: Active leg exoskeleton (alex) for gait rehabilitation of motor-impaired patients. In: 2007 IEEE 10th International Conference on Rehabilitation Robotics, pp. 401–407 (2007). 2007 IEEE 10th International Conference on Rehabilitation Robotics Dinovitzer et al. [2023a] Dinovitzer, H., Shushtari, M., Arami, A.: Feedforward control of lower limb exoskeletons: which torque profile should we use? IEEE Robotics and Automation Letters (2023) Dinovitzer et al. [2023b] Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Banala, S.K., Agrawal, S.K., Scholz, J.P.: Active leg exoskeleton (alex) for gait rehabilitation of motor-impaired patients. In: 2007 IEEE 10th International Conference on Rehabilitation Robotics, pp. 401–407 (2007). 2007 IEEE 10th International Conference on Rehabilitation Robotics Dinovitzer et al. [2023a] Dinovitzer, H., Shushtari, M., Arami, A.: Feedforward control of lower limb exoskeletons: which torque profile should we use? IEEE Robotics and Automation Letters (2023) Dinovitzer et al. [2023b] Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Dinovitzer, H., Shushtari, M., Arami, A.: Feedforward control of lower limb exoskeletons: which torque profile should we use? IEEE Robotics and Automation Letters (2023) Dinovitzer et al. [2023b] Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017)
  18. Martinez, A., Lawson, B., Durrough, C., Goldfarb, M.: A velocity-field-based controller for assisting leg movement during walking with a bilateral hip and knee lower limb exoskeleton. IEEE Transactions on Robotics 35, 307–316 (2018) Shushtari et al. [2021] Shushtari, M., Nasiri, R., Arami, A.: Online reference trajectory adaptation: A personalized control strategy for lower limb exoskeletons. IEEE Robotics and Automation Letters 7, 128–134 (2021) Asl et al. [2020] Asl, H.J., Yamashita, M., Narikiyo, T., Kawanishi, M.: Field-based assist-as-needed control schemes for rehabilitation robots. IEEE/ASME Transactions on Mechatronics 25, 2100–2111 (2020) Dominijanni et al. [2023] Dominijanni, G., Pinheiro, D.L., Pollina, L., Orset, B., Gini, M., Anselmino, E., Pierella, C., Olivier, J., Shokur, S., Micera, S.: Human motor augmentation with an extra robotic arm without functional interference. Science Robotics 8 (2023) Losey et al. [2018] Losey, D.P., Mcdonald, C.G., Battaglia, E., O’Malley, M.: A review of intent detection, arbitration, and communication aspects of shared control for physical human-robot interaction. Applied Mechanics Reviews 70 (2018) https://doi.org/10.1115/1.4039145 Jackson and Collins [2019] Jackson, R.W., Collins, S.H.: Heuristic-based ankle exoskeleton control for co-adaptive assistance of human locomotion. IEEE Transactions on Neural Systems and Rehabilitation Engineering 27, 2059–2069 (2019) Banala et al. [2007] Banala, S.K., Agrawal, S.K., Scholz, J.P.: Active leg exoskeleton (alex) for gait rehabilitation of motor-impaired patients. In: 2007 IEEE 10th International Conference on Rehabilitation Robotics, pp. 401–407 (2007). 2007 IEEE 10th International Conference on Rehabilitation Robotics Dinovitzer et al. [2023a] Dinovitzer, H., Shushtari, M., Arami, A.: Feedforward control of lower limb exoskeletons: which torque profile should we use? IEEE Robotics and Automation Letters (2023) Dinovitzer et al. [2023b] Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Shushtari, M., Nasiri, R., Arami, A.: Online reference trajectory adaptation: A personalized control strategy for lower limb exoskeletons. IEEE Robotics and Automation Letters 7, 128–134 (2021) Asl et al. [2020] Asl, H.J., Yamashita, M., Narikiyo, T., Kawanishi, M.: Field-based assist-as-needed control schemes for rehabilitation robots. IEEE/ASME Transactions on Mechatronics 25, 2100–2111 (2020) Dominijanni et al. [2023] Dominijanni, G., Pinheiro, D.L., Pollina, L., Orset, B., Gini, M., Anselmino, E., Pierella, C., Olivier, J., Shokur, S., Micera, S.: Human motor augmentation with an extra robotic arm without functional interference. Science Robotics 8 (2023) Losey et al. [2018] Losey, D.P., Mcdonald, C.G., Battaglia, E., O’Malley, M.: A review of intent detection, arbitration, and communication aspects of shared control for physical human-robot interaction. Applied Mechanics Reviews 70 (2018) https://doi.org/10.1115/1.4039145 Jackson and Collins [2019] Jackson, R.W., Collins, S.H.: Heuristic-based ankle exoskeleton control for co-adaptive assistance of human locomotion. IEEE Transactions on Neural Systems and Rehabilitation Engineering 27, 2059–2069 (2019) Banala et al. [2007] Banala, S.K., Agrawal, S.K., Scholz, J.P.: Active leg exoskeleton (alex) for gait rehabilitation of motor-impaired patients. In: 2007 IEEE 10th International Conference on Rehabilitation Robotics, pp. 401–407 (2007). 2007 IEEE 10th International Conference on Rehabilitation Robotics Dinovitzer et al. [2023a] Dinovitzer, H., Shushtari, M., Arami, A.: Feedforward control of lower limb exoskeletons: which torque profile should we use? IEEE Robotics and Automation Letters (2023) Dinovitzer et al. [2023b] Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Asl, H.J., Yamashita, M., Narikiyo, T., Kawanishi, M.: Field-based assist-as-needed control schemes for rehabilitation robots. IEEE/ASME Transactions on Mechatronics 25, 2100–2111 (2020) Dominijanni et al. [2023] Dominijanni, G., Pinheiro, D.L., Pollina, L., Orset, B., Gini, M., Anselmino, E., Pierella, C., Olivier, J., Shokur, S., Micera, S.: Human motor augmentation with an extra robotic arm without functional interference. Science Robotics 8 (2023) Losey et al. [2018] Losey, D.P., Mcdonald, C.G., Battaglia, E., O’Malley, M.: A review of intent detection, arbitration, and communication aspects of shared control for physical human-robot interaction. Applied Mechanics Reviews 70 (2018) https://doi.org/10.1115/1.4039145 Jackson and Collins [2019] Jackson, R.W., Collins, S.H.: Heuristic-based ankle exoskeleton control for co-adaptive assistance of human locomotion. IEEE Transactions on Neural Systems and Rehabilitation Engineering 27, 2059–2069 (2019) Banala et al. [2007] Banala, S.K., Agrawal, S.K., Scholz, J.P.: Active leg exoskeleton (alex) for gait rehabilitation of motor-impaired patients. In: 2007 IEEE 10th International Conference on Rehabilitation Robotics, pp. 401–407 (2007). 2007 IEEE 10th International Conference on Rehabilitation Robotics Dinovitzer et al. [2023a] Dinovitzer, H., Shushtari, M., Arami, A.: Feedforward control of lower limb exoskeletons: which torque profile should we use? IEEE Robotics and Automation Letters (2023) Dinovitzer et al. [2023b] Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Dominijanni, G., Pinheiro, D.L., Pollina, L., Orset, B., Gini, M., Anselmino, E., Pierella, C., Olivier, J., Shokur, S., Micera, S.: Human motor augmentation with an extra robotic arm without functional interference. Science Robotics 8 (2023) Losey et al. [2018] Losey, D.P., Mcdonald, C.G., Battaglia, E., O’Malley, M.: A review of intent detection, arbitration, and communication aspects of shared control for physical human-robot interaction. Applied Mechanics Reviews 70 (2018) https://doi.org/10.1115/1.4039145 Jackson and Collins [2019] Jackson, R.W., Collins, S.H.: Heuristic-based ankle exoskeleton control for co-adaptive assistance of human locomotion. IEEE Transactions on Neural Systems and Rehabilitation Engineering 27, 2059–2069 (2019) Banala et al. [2007] Banala, S.K., Agrawal, S.K., Scholz, J.P.: Active leg exoskeleton (alex) for gait rehabilitation of motor-impaired patients. In: 2007 IEEE 10th International Conference on Rehabilitation Robotics, pp. 401–407 (2007). 2007 IEEE 10th International Conference on Rehabilitation Robotics Dinovitzer et al. [2023a] Dinovitzer, H., Shushtari, M., Arami, A.: Feedforward control of lower limb exoskeletons: which torque profile should we use? IEEE Robotics and Automation Letters (2023) Dinovitzer et al. [2023b] Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Losey, D.P., Mcdonald, C.G., Battaglia, E., O’Malley, M.: A review of intent detection, arbitration, and communication aspects of shared control for physical human-robot interaction. Applied Mechanics Reviews 70 (2018) https://doi.org/10.1115/1.4039145 Jackson and Collins [2019] Jackson, R.W., Collins, S.H.: Heuristic-based ankle exoskeleton control for co-adaptive assistance of human locomotion. IEEE Transactions on Neural Systems and Rehabilitation Engineering 27, 2059–2069 (2019) Banala et al. [2007] Banala, S.K., Agrawal, S.K., Scholz, J.P.: Active leg exoskeleton (alex) for gait rehabilitation of motor-impaired patients. In: 2007 IEEE 10th International Conference on Rehabilitation Robotics, pp. 401–407 (2007). 2007 IEEE 10th International Conference on Rehabilitation Robotics Dinovitzer et al. [2023a] Dinovitzer, H., Shushtari, M., Arami, A.: Feedforward control of lower limb exoskeletons: which torque profile should we use? IEEE Robotics and Automation Letters (2023) Dinovitzer et al. [2023b] Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Jackson, R.W., Collins, S.H.: Heuristic-based ankle exoskeleton control for co-adaptive assistance of human locomotion. IEEE Transactions on Neural Systems and Rehabilitation Engineering 27, 2059–2069 (2019) Banala et al. [2007] Banala, S.K., Agrawal, S.K., Scholz, J.P.: Active leg exoskeleton (alex) for gait rehabilitation of motor-impaired patients. In: 2007 IEEE 10th International Conference on Rehabilitation Robotics, pp. 401–407 (2007). 2007 IEEE 10th International Conference on Rehabilitation Robotics Dinovitzer et al. [2023a] Dinovitzer, H., Shushtari, M., Arami, A.: Feedforward control of lower limb exoskeletons: which torque profile should we use? IEEE Robotics and Automation Letters (2023) Dinovitzer et al. [2023b] Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Banala, S.K., Agrawal, S.K., Scholz, J.P.: Active leg exoskeleton (alex) for gait rehabilitation of motor-impaired patients. In: 2007 IEEE 10th International Conference on Rehabilitation Robotics, pp. 401–407 (2007). 2007 IEEE 10th International Conference on Rehabilitation Robotics Dinovitzer et al. [2023a] Dinovitzer, H., Shushtari, M., Arami, A.: Feedforward control of lower limb exoskeletons: which torque profile should we use? IEEE Robotics and Automation Letters (2023) Dinovitzer et al. [2023b] Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Dinovitzer, H., Shushtari, M., Arami, A.: Feedforward control of lower limb exoskeletons: which torque profile should we use? IEEE Robotics and Automation Letters (2023) Dinovitzer et al. [2023b] Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017)
  19. Shushtari, M., Nasiri, R., Arami, A.: Online reference trajectory adaptation: A personalized control strategy for lower limb exoskeletons. IEEE Robotics and Automation Letters 7, 128–134 (2021) Asl et al. [2020] Asl, H.J., Yamashita, M., Narikiyo, T., Kawanishi, M.: Field-based assist-as-needed control schemes for rehabilitation robots. IEEE/ASME Transactions on Mechatronics 25, 2100–2111 (2020) Dominijanni et al. [2023] Dominijanni, G., Pinheiro, D.L., Pollina, L., Orset, B., Gini, M., Anselmino, E., Pierella, C., Olivier, J., Shokur, S., Micera, S.: Human motor augmentation with an extra robotic arm without functional interference. Science Robotics 8 (2023) Losey et al. [2018] Losey, D.P., Mcdonald, C.G., Battaglia, E., O’Malley, M.: A review of intent detection, arbitration, and communication aspects of shared control for physical human-robot interaction. Applied Mechanics Reviews 70 (2018) https://doi.org/10.1115/1.4039145 Jackson and Collins [2019] Jackson, R.W., Collins, S.H.: Heuristic-based ankle exoskeleton control for co-adaptive assistance of human locomotion. IEEE Transactions on Neural Systems and Rehabilitation Engineering 27, 2059–2069 (2019) Banala et al. [2007] Banala, S.K., Agrawal, S.K., Scholz, J.P.: Active leg exoskeleton (alex) for gait rehabilitation of motor-impaired patients. In: 2007 IEEE 10th International Conference on Rehabilitation Robotics, pp. 401–407 (2007). 2007 IEEE 10th International Conference on Rehabilitation Robotics Dinovitzer et al. [2023a] Dinovitzer, H., Shushtari, M., Arami, A.: Feedforward control of lower limb exoskeletons: which torque profile should we use? IEEE Robotics and Automation Letters (2023) Dinovitzer et al. [2023b] Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Asl, H.J., Yamashita, M., Narikiyo, T., Kawanishi, M.: Field-based assist-as-needed control schemes for rehabilitation robots. IEEE/ASME Transactions on Mechatronics 25, 2100–2111 (2020) Dominijanni et al. [2023] Dominijanni, G., Pinheiro, D.L., Pollina, L., Orset, B., Gini, M., Anselmino, E., Pierella, C., Olivier, J., Shokur, S., Micera, S.: Human motor augmentation with an extra robotic arm without functional interference. Science Robotics 8 (2023) Losey et al. [2018] Losey, D.P., Mcdonald, C.G., Battaglia, E., O’Malley, M.: A review of intent detection, arbitration, and communication aspects of shared control for physical human-robot interaction. Applied Mechanics Reviews 70 (2018) https://doi.org/10.1115/1.4039145 Jackson and Collins [2019] Jackson, R.W., Collins, S.H.: Heuristic-based ankle exoskeleton control for co-adaptive assistance of human locomotion. IEEE Transactions on Neural Systems and Rehabilitation Engineering 27, 2059–2069 (2019) Banala et al. [2007] Banala, S.K., Agrawal, S.K., Scholz, J.P.: Active leg exoskeleton (alex) for gait rehabilitation of motor-impaired patients. In: 2007 IEEE 10th International Conference on Rehabilitation Robotics, pp. 401–407 (2007). 2007 IEEE 10th International Conference on Rehabilitation Robotics Dinovitzer et al. [2023a] Dinovitzer, H., Shushtari, M., Arami, A.: Feedforward control of lower limb exoskeletons: which torque profile should we use? IEEE Robotics and Automation Letters (2023) Dinovitzer et al. [2023b] Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Dominijanni, G., Pinheiro, D.L., Pollina, L., Orset, B., Gini, M., Anselmino, E., Pierella, C., Olivier, J., Shokur, S., Micera, S.: Human motor augmentation with an extra robotic arm without functional interference. Science Robotics 8 (2023) Losey et al. [2018] Losey, D.P., Mcdonald, C.G., Battaglia, E., O’Malley, M.: A review of intent detection, arbitration, and communication aspects of shared control for physical human-robot interaction. Applied Mechanics Reviews 70 (2018) https://doi.org/10.1115/1.4039145 Jackson and Collins [2019] Jackson, R.W., Collins, S.H.: Heuristic-based ankle exoskeleton control for co-adaptive assistance of human locomotion. IEEE Transactions on Neural Systems and Rehabilitation Engineering 27, 2059–2069 (2019) Banala et al. [2007] Banala, S.K., Agrawal, S.K., Scholz, J.P.: Active leg exoskeleton (alex) for gait rehabilitation of motor-impaired patients. In: 2007 IEEE 10th International Conference on Rehabilitation Robotics, pp. 401–407 (2007). 2007 IEEE 10th International Conference on Rehabilitation Robotics Dinovitzer et al. [2023a] Dinovitzer, H., Shushtari, M., Arami, A.: Feedforward control of lower limb exoskeletons: which torque profile should we use? IEEE Robotics and Automation Letters (2023) Dinovitzer et al. [2023b] Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Losey, D.P., Mcdonald, C.G., Battaglia, E., O’Malley, M.: A review of intent detection, arbitration, and communication aspects of shared control for physical human-robot interaction. Applied Mechanics Reviews 70 (2018) https://doi.org/10.1115/1.4039145 Jackson and Collins [2019] Jackson, R.W., Collins, S.H.: Heuristic-based ankle exoskeleton control for co-adaptive assistance of human locomotion. IEEE Transactions on Neural Systems and Rehabilitation Engineering 27, 2059–2069 (2019) Banala et al. [2007] Banala, S.K., Agrawal, S.K., Scholz, J.P.: Active leg exoskeleton (alex) for gait rehabilitation of motor-impaired patients. In: 2007 IEEE 10th International Conference on Rehabilitation Robotics, pp. 401–407 (2007). 2007 IEEE 10th International Conference on Rehabilitation Robotics Dinovitzer et al. [2023a] Dinovitzer, H., Shushtari, M., Arami, A.: Feedforward control of lower limb exoskeletons: which torque profile should we use? IEEE Robotics and Automation Letters (2023) Dinovitzer et al. [2023b] Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Jackson, R.W., Collins, S.H.: Heuristic-based ankle exoskeleton control for co-adaptive assistance of human locomotion. IEEE Transactions on Neural Systems and Rehabilitation Engineering 27, 2059–2069 (2019) Banala et al. [2007] Banala, S.K., Agrawal, S.K., Scholz, J.P.: Active leg exoskeleton (alex) for gait rehabilitation of motor-impaired patients. In: 2007 IEEE 10th International Conference on Rehabilitation Robotics, pp. 401–407 (2007). 2007 IEEE 10th International Conference on Rehabilitation Robotics Dinovitzer et al. [2023a] Dinovitzer, H., Shushtari, M., Arami, A.: Feedforward control of lower limb exoskeletons: which torque profile should we use? IEEE Robotics and Automation Letters (2023) Dinovitzer et al. [2023b] Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Banala, S.K., Agrawal, S.K., Scholz, J.P.: Active leg exoskeleton (alex) for gait rehabilitation of motor-impaired patients. In: 2007 IEEE 10th International Conference on Rehabilitation Robotics, pp. 401–407 (2007). 2007 IEEE 10th International Conference on Rehabilitation Robotics Dinovitzer et al. [2023a] Dinovitzer, H., Shushtari, M., Arami, A.: Feedforward control of lower limb exoskeletons: which torque profile should we use? IEEE Robotics and Automation Letters (2023) Dinovitzer et al. [2023b] Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Dinovitzer, H., Shushtari, M., Arami, A.: Feedforward control of lower limb exoskeletons: which torque profile should we use? IEEE Robotics and Automation Letters (2023) Dinovitzer et al. [2023b] Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017)
  20. Asl, H.J., Yamashita, M., Narikiyo, T., Kawanishi, M.: Field-based assist-as-needed control schemes for rehabilitation robots. IEEE/ASME Transactions on Mechatronics 25, 2100–2111 (2020) Dominijanni et al. [2023] Dominijanni, G., Pinheiro, D.L., Pollina, L., Orset, B., Gini, M., Anselmino, E., Pierella, C., Olivier, J., Shokur, S., Micera, S.: Human motor augmentation with an extra robotic arm without functional interference. Science Robotics 8 (2023) Losey et al. [2018] Losey, D.P., Mcdonald, C.G., Battaglia, E., O’Malley, M.: A review of intent detection, arbitration, and communication aspects of shared control for physical human-robot interaction. Applied Mechanics Reviews 70 (2018) https://doi.org/10.1115/1.4039145 Jackson and Collins [2019] Jackson, R.W., Collins, S.H.: Heuristic-based ankle exoskeleton control for co-adaptive assistance of human locomotion. IEEE Transactions on Neural Systems and Rehabilitation Engineering 27, 2059–2069 (2019) Banala et al. [2007] Banala, S.K., Agrawal, S.K., Scholz, J.P.: Active leg exoskeleton (alex) for gait rehabilitation of motor-impaired patients. In: 2007 IEEE 10th International Conference on Rehabilitation Robotics, pp. 401–407 (2007). 2007 IEEE 10th International Conference on Rehabilitation Robotics Dinovitzer et al. [2023a] Dinovitzer, H., Shushtari, M., Arami, A.: Feedforward control of lower limb exoskeletons: which torque profile should we use? IEEE Robotics and Automation Letters (2023) Dinovitzer et al. [2023b] Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Dominijanni, G., Pinheiro, D.L., Pollina, L., Orset, B., Gini, M., Anselmino, E., Pierella, C., Olivier, J., Shokur, S., Micera, S.: Human motor augmentation with an extra robotic arm without functional interference. Science Robotics 8 (2023) Losey et al. [2018] Losey, D.P., Mcdonald, C.G., Battaglia, E., O’Malley, M.: A review of intent detection, arbitration, and communication aspects of shared control for physical human-robot interaction. Applied Mechanics Reviews 70 (2018) https://doi.org/10.1115/1.4039145 Jackson and Collins [2019] Jackson, R.W., Collins, S.H.: Heuristic-based ankle exoskeleton control for co-adaptive assistance of human locomotion. IEEE Transactions on Neural Systems and Rehabilitation Engineering 27, 2059–2069 (2019) Banala et al. [2007] Banala, S.K., Agrawal, S.K., Scholz, J.P.: Active leg exoskeleton (alex) for gait rehabilitation of motor-impaired patients. In: 2007 IEEE 10th International Conference on Rehabilitation Robotics, pp. 401–407 (2007). 2007 IEEE 10th International Conference on Rehabilitation Robotics Dinovitzer et al. [2023a] Dinovitzer, H., Shushtari, M., Arami, A.: Feedforward control of lower limb exoskeletons: which torque profile should we use? IEEE Robotics and Automation Letters (2023) Dinovitzer et al. [2023b] Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Losey, D.P., Mcdonald, C.G., Battaglia, E., O’Malley, M.: A review of intent detection, arbitration, and communication aspects of shared control for physical human-robot interaction. Applied Mechanics Reviews 70 (2018) https://doi.org/10.1115/1.4039145 Jackson and Collins [2019] Jackson, R.W., Collins, S.H.: Heuristic-based ankle exoskeleton control for co-adaptive assistance of human locomotion. IEEE Transactions on Neural Systems and Rehabilitation Engineering 27, 2059–2069 (2019) Banala et al. [2007] Banala, S.K., Agrawal, S.K., Scholz, J.P.: Active leg exoskeleton (alex) for gait rehabilitation of motor-impaired patients. In: 2007 IEEE 10th International Conference on Rehabilitation Robotics, pp. 401–407 (2007). 2007 IEEE 10th International Conference on Rehabilitation Robotics Dinovitzer et al. [2023a] Dinovitzer, H., Shushtari, M., Arami, A.: Feedforward control of lower limb exoskeletons: which torque profile should we use? IEEE Robotics and Automation Letters (2023) Dinovitzer et al. [2023b] Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Jackson, R.W., Collins, S.H.: Heuristic-based ankle exoskeleton control for co-adaptive assistance of human locomotion. IEEE Transactions on Neural Systems and Rehabilitation Engineering 27, 2059–2069 (2019) Banala et al. [2007] Banala, S.K., Agrawal, S.K., Scholz, J.P.: Active leg exoskeleton (alex) for gait rehabilitation of motor-impaired patients. In: 2007 IEEE 10th International Conference on Rehabilitation Robotics, pp. 401–407 (2007). 2007 IEEE 10th International Conference on Rehabilitation Robotics Dinovitzer et al. [2023a] Dinovitzer, H., Shushtari, M., Arami, A.: Feedforward control of lower limb exoskeletons: which torque profile should we use? IEEE Robotics and Automation Letters (2023) Dinovitzer et al. [2023b] Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Banala, S.K., Agrawal, S.K., Scholz, J.P.: Active leg exoskeleton (alex) for gait rehabilitation of motor-impaired patients. In: 2007 IEEE 10th International Conference on Rehabilitation Robotics, pp. 401–407 (2007). 2007 IEEE 10th International Conference on Rehabilitation Robotics Dinovitzer et al. [2023a] Dinovitzer, H., Shushtari, M., Arami, A.: Feedforward control of lower limb exoskeletons: which torque profile should we use? IEEE Robotics and Automation Letters (2023) Dinovitzer et al. [2023b] Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Dinovitzer, H., Shushtari, M., Arami, A.: Feedforward control of lower limb exoskeletons: which torque profile should we use? IEEE Robotics and Automation Letters (2023) Dinovitzer et al. [2023b] Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017)
  21. Dominijanni, G., Pinheiro, D.L., Pollina, L., Orset, B., Gini, M., Anselmino, E., Pierella, C., Olivier, J., Shokur, S., Micera, S.: Human motor augmentation with an extra robotic arm without functional interference. Science Robotics 8 (2023) Losey et al. [2018] Losey, D.P., Mcdonald, C.G., Battaglia, E., O’Malley, M.: A review of intent detection, arbitration, and communication aspects of shared control for physical human-robot interaction. Applied Mechanics Reviews 70 (2018) https://doi.org/10.1115/1.4039145 Jackson and Collins [2019] Jackson, R.W., Collins, S.H.: Heuristic-based ankle exoskeleton control for co-adaptive assistance of human locomotion. IEEE Transactions on Neural Systems and Rehabilitation Engineering 27, 2059–2069 (2019) Banala et al. [2007] Banala, S.K., Agrawal, S.K., Scholz, J.P.: Active leg exoskeleton (alex) for gait rehabilitation of motor-impaired patients. In: 2007 IEEE 10th International Conference on Rehabilitation Robotics, pp. 401–407 (2007). 2007 IEEE 10th International Conference on Rehabilitation Robotics Dinovitzer et al. [2023a] Dinovitzer, H., Shushtari, M., Arami, A.: Feedforward control of lower limb exoskeletons: which torque profile should we use? IEEE Robotics and Automation Letters (2023) Dinovitzer et al. [2023b] Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Losey, D.P., Mcdonald, C.G., Battaglia, E., O’Malley, M.: A review of intent detection, arbitration, and communication aspects of shared control for physical human-robot interaction. Applied Mechanics Reviews 70 (2018) https://doi.org/10.1115/1.4039145 Jackson and Collins [2019] Jackson, R.W., Collins, S.H.: Heuristic-based ankle exoskeleton control for co-adaptive assistance of human locomotion. IEEE Transactions on Neural Systems and Rehabilitation Engineering 27, 2059–2069 (2019) Banala et al. [2007] Banala, S.K., Agrawal, S.K., Scholz, J.P.: Active leg exoskeleton (alex) for gait rehabilitation of motor-impaired patients. In: 2007 IEEE 10th International Conference on Rehabilitation Robotics, pp. 401–407 (2007). 2007 IEEE 10th International Conference on Rehabilitation Robotics Dinovitzer et al. [2023a] Dinovitzer, H., Shushtari, M., Arami, A.: Feedforward control of lower limb exoskeletons: which torque profile should we use? IEEE Robotics and Automation Letters (2023) Dinovitzer et al. [2023b] Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Jackson, R.W., Collins, S.H.: Heuristic-based ankle exoskeleton control for co-adaptive assistance of human locomotion. IEEE Transactions on Neural Systems and Rehabilitation Engineering 27, 2059–2069 (2019) Banala et al. [2007] Banala, S.K., Agrawal, S.K., Scholz, J.P.: Active leg exoskeleton (alex) for gait rehabilitation of motor-impaired patients. In: 2007 IEEE 10th International Conference on Rehabilitation Robotics, pp. 401–407 (2007). 2007 IEEE 10th International Conference on Rehabilitation Robotics Dinovitzer et al. [2023a] Dinovitzer, H., Shushtari, M., Arami, A.: Feedforward control of lower limb exoskeletons: which torque profile should we use? IEEE Robotics and Automation Letters (2023) Dinovitzer et al. [2023b] Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Banala, S.K., Agrawal, S.K., Scholz, J.P.: Active leg exoskeleton (alex) for gait rehabilitation of motor-impaired patients. In: 2007 IEEE 10th International Conference on Rehabilitation Robotics, pp. 401–407 (2007). 2007 IEEE 10th International Conference on Rehabilitation Robotics Dinovitzer et al. [2023a] Dinovitzer, H., Shushtari, M., Arami, A.: Feedforward control of lower limb exoskeletons: which torque profile should we use? IEEE Robotics and Automation Letters (2023) Dinovitzer et al. [2023b] Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Dinovitzer, H., Shushtari, M., Arami, A.: Feedforward control of lower limb exoskeletons: which torque profile should we use? IEEE Robotics and Automation Letters (2023) Dinovitzer et al. [2023b] Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017)
  22. Losey, D.P., Mcdonald, C.G., Battaglia, E., O’Malley, M.: A review of intent detection, arbitration, and communication aspects of shared control for physical human-robot interaction. Applied Mechanics Reviews 70 (2018) https://doi.org/10.1115/1.4039145 Jackson and Collins [2019] Jackson, R.W., Collins, S.H.: Heuristic-based ankle exoskeleton control for co-adaptive assistance of human locomotion. IEEE Transactions on Neural Systems and Rehabilitation Engineering 27, 2059–2069 (2019) Banala et al. [2007] Banala, S.K., Agrawal, S.K., Scholz, J.P.: Active leg exoskeleton (alex) for gait rehabilitation of motor-impaired patients. In: 2007 IEEE 10th International Conference on Rehabilitation Robotics, pp. 401–407 (2007). 2007 IEEE 10th International Conference on Rehabilitation Robotics Dinovitzer et al. [2023a] Dinovitzer, H., Shushtari, M., Arami, A.: Feedforward control of lower limb exoskeletons: which torque profile should we use? IEEE Robotics and Automation Letters (2023) Dinovitzer et al. [2023b] Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Jackson, R.W., Collins, S.H.: Heuristic-based ankle exoskeleton control for co-adaptive assistance of human locomotion. IEEE Transactions on Neural Systems and Rehabilitation Engineering 27, 2059–2069 (2019) Banala et al. [2007] Banala, S.K., Agrawal, S.K., Scholz, J.P.: Active leg exoskeleton (alex) for gait rehabilitation of motor-impaired patients. In: 2007 IEEE 10th International Conference on Rehabilitation Robotics, pp. 401–407 (2007). 2007 IEEE 10th International Conference on Rehabilitation Robotics Dinovitzer et al. [2023a] Dinovitzer, H., Shushtari, M., Arami, A.: Feedforward control of lower limb exoskeletons: which torque profile should we use? IEEE Robotics and Automation Letters (2023) Dinovitzer et al. [2023b] Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Banala, S.K., Agrawal, S.K., Scholz, J.P.: Active leg exoskeleton (alex) for gait rehabilitation of motor-impaired patients. In: 2007 IEEE 10th International Conference on Rehabilitation Robotics, pp. 401–407 (2007). 2007 IEEE 10th International Conference on Rehabilitation Robotics Dinovitzer et al. [2023a] Dinovitzer, H., Shushtari, M., Arami, A.: Feedforward control of lower limb exoskeletons: which torque profile should we use? IEEE Robotics and Automation Letters (2023) Dinovitzer et al. [2023b] Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Dinovitzer, H., Shushtari, M., Arami, A.: Feedforward control of lower limb exoskeletons: which torque profile should we use? IEEE Robotics and Automation Letters (2023) Dinovitzer et al. [2023b] Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017)
  23. Jackson, R.W., Collins, S.H.: Heuristic-based ankle exoskeleton control for co-adaptive assistance of human locomotion. IEEE Transactions on Neural Systems and Rehabilitation Engineering 27, 2059–2069 (2019) Banala et al. [2007] Banala, S.K., Agrawal, S.K., Scholz, J.P.: Active leg exoskeleton (alex) for gait rehabilitation of motor-impaired patients. In: 2007 IEEE 10th International Conference on Rehabilitation Robotics, pp. 401–407 (2007). 2007 IEEE 10th International Conference on Rehabilitation Robotics Dinovitzer et al. [2023a] Dinovitzer, H., Shushtari, M., Arami, A.: Feedforward control of lower limb exoskeletons: which torque profile should we use? IEEE Robotics and Automation Letters (2023) Dinovitzer et al. [2023b] Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Banala, S.K., Agrawal, S.K., Scholz, J.P.: Active leg exoskeleton (alex) for gait rehabilitation of motor-impaired patients. In: 2007 IEEE 10th International Conference on Rehabilitation Robotics, pp. 401–407 (2007). 2007 IEEE 10th International Conference on Rehabilitation Robotics Dinovitzer et al. [2023a] Dinovitzer, H., Shushtari, M., Arami, A.: Feedforward control of lower limb exoskeletons: which torque profile should we use? IEEE Robotics and Automation Letters (2023) Dinovitzer et al. [2023b] Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Dinovitzer, H., Shushtari, M., Arami, A.: Feedforward control of lower limb exoskeletons: which torque profile should we use? IEEE Robotics and Automation Letters (2023) Dinovitzer et al. [2023b] Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017)
  24. Banala, S.K., Agrawal, S.K., Scholz, J.P.: Active leg exoskeleton (alex) for gait rehabilitation of motor-impaired patients. In: 2007 IEEE 10th International Conference on Rehabilitation Robotics, pp. 401–407 (2007). 2007 IEEE 10th International Conference on Rehabilitation Robotics Dinovitzer et al. [2023a] Dinovitzer, H., Shushtari, M., Arami, A.: Feedforward control of lower limb exoskeletons: which torque profile should we use? IEEE Robotics and Automation Letters (2023) Dinovitzer et al. [2023b] Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Dinovitzer, H., Shushtari, M., Arami, A.: Feedforward control of lower limb exoskeletons: which torque profile should we use? IEEE Robotics and Automation Letters (2023) Dinovitzer et al. [2023b] Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017)
  25. Dinovitzer, H., Shushtari, M., Arami, A.: Feedforward control of lower limb exoskeletons: which torque profile should we use? IEEE Robotics and Automation Letters (2023) Dinovitzer et al. [2023b] Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017)
  26. Dinovitzer, H., Shushtari, M., Arami, A.: Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Transactions on Biomedical Engineering 70, 2289–2297 (2023) Shushtari et al. [2022] Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017)
  27. Shushtari, M., Dinovitzer, H., Weng, J., Arami, A.: Ultra-robust estimation of gait phase. IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 2793–2801 (2022) Shushtari and Arami [2023] Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017)
  28. Shushtari, M., Arami, A.: Human–exoskeleton interaction force estimation in indego exoskeleton. Robotics 12, 66 (2023) Carroll et al. [2022] Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017)
  29. Carroll, K., Kennedy, R., Koutoulas, V., Bui, M., Kraan, C.: Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture 91, 19–25 (2022) Schwameder et al. [2015] Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017)
  30. Schwameder, H., Andress, M., Graf, E., Strutzenberger, G.: Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive (2015) Pedotti et al. [1978] Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017)
  31. Pedotti, A., Krishnan, V.V., Stark, L.: Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38, 57–76 (1978) Crowninshield and Brand [1981] Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017)
  32. Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics 14, 793–801 (1981) Lieber et al. [2017] Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017) Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017)
  33. Lieber, R.L., Roberts, T.J., Blemker, S.S., Lee, S.S.M., Herzog, W.: Skeletal muscle mechanics, energetics and plasticity. Journal of Neuroengineering and Rehabilitation 14, 1–16 (2017)
User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Mohammad Shushtari (1 paper)
  2. Julia Foellmer (1 paper)
  3. Arash Arami (3 papers)
Citations (1)