Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Dynamics of matrix coupled Kuramoto oscillators on modular networks: excitable behavior and global decoherence (2403.06689v2)

Published 11 Mar 2024 in physics.soc-ph and nlin.PS

Abstract: Synchronization is observed in many natural systems, with examples ranging from neuronal activation to walking pedestrians. The models proposed by Winfree and Kuramoto stand as the classic frameworks for investigating these phenomena. The Kuramoto model, in particular, has been extended in different ways since its original formulation to account for more general scenarios. One such extension replaces the coupling parameter with a coupling matrix, describing a form of generalized frustration with broken rotational symmetry. A key feature of this model is the existence of {\it phase tuned states}, characterized by having the phase of the order parameter pointing in the direction of the dominant eigenvector of the coupling matrix. Here we investigate the matrix coupled Kuramoto model on networks with two modules, such that one module is in the phase tuned state and the other in a state where the order parameter rotates. We identified different regimes in which one or the other module dominates the dynamics. We found, in particular, that the phase tuned module can create a bottleneck for the oscillation of the rotating module, leading to a behavior similar to the charge and fire regimes of excitable systems. We also found an extended region in the parameter space where motion is globally disordered, even though one of the modules presented high levels of synchronization when uncoupled.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (34)
  1. A. Winfree, The Geometry of Biological Time. Interdisciplinary Applied Mathematics, Springer New York, 2001.
  2. S. Strogatz, Sync: The Emerging Science of Spontaneous Order. Hyperion Books, 2003.
  3. C. M. Gray, “Synchronous oscillations in neuronal systems: mechanisms and functions,” J Comput Neurosci, vol. 1, pp. 11–38, June 1994.
  4. J. Buck, “Synchronous rhythmic flashing of fireflies. ii.,” The Quarterly Review of Biology, vol. 63, no. 3, pp. 265–289, 1988. PMID: 3059390.
  5. A. Moiseff and J. Copeland, “Firefly synchrony: a behavioral strategy to minimize visual clutter,” Science, vol. 329, p. 181, July 2010.
  6. Cambridge University Press, 2018.
  7. E. Tognoli and J. Kelso, “The metastable brain,” Neuron, vol. 81, no. 1, pp. 35–48, 2014.
  8. P. J. Uhlhaas and W. Singer, “Neural synchrony in brain disorders: Relevance for cognitive dysfunctions and pathophysiology,” Neuron, vol. 52, pp. 155–168, Oct. 2006.
  9. Y. Kuramoto, “Self-entrainment of a population of coupled non-linear oscillators,” in International Symposium on Mathematical Problems in Theoretical Physics (H. Araki, ed.), (Berlin, Heidelberg), pp. 420–422, Springer Berlin Heidelberg, 1975.
  10. J. Gómez-Gardeñes, S. Gómez, A. Arenas, and Y. Moreno, “Explosive synchronization transitions in scale-free networks,” Phys. Rev. Lett., vol. 106, p. 128701, Mar 2011.
  11. F. A. Rodrigues, T. K. D. Peron, P. Ji, and J. Kurths, “The kuramoto model in complex networks,” Physics Reports, vol. 610, pp. 1–98, 2016. The Kuramoto model in complex networks.
  12. L. M. Childs and S. H. Strogatz, “Stability diagram for the forced kuramoto model,” Chaos: An Interdisciplinary Journal of Nonlinear Science, vol. 18, no. 4, p. 043128, 2008.
  13. C. A. Moreira and M. A. de Aguiar, “Global synchronization of partially forced kuramoto oscillators on networks,” Physica A: Statistical Mechanics and its Applications, vol. 514, pp. 487–496, 2019.
  14. K. P. O’Keeffe, H. Hong, and S. H. Strogatz, “Oscillators that sync and swarm,” Nature Communications, vol. 8, Nov. 2017.
  15. J. U. F. Lizárraga and M. A. M. de Aguiar, “Synchronization of sakaguchi swarmalators,” Phys. Rev. E, vol. 108, p. 024212, Aug 2023.
  16. G. L. Buzanello, A. E. D. Barioni, and M. A. M. de Aguiar, “Matrix coupling and generalized frustration in kuramoto oscillators,” Chaos: An Interdisciplinary Journal of Nonlinear Science, vol. 32, no. 9, p. 093130, 2022.
  17. R. Fariello and M. A. M. de Aguiar, “Exploring the phase diagrams of multidimensional Kuramoto models,” Chaos, Solitons & Fractals, vol. 179, p. 114431, Feb. 2024.
  18. S. Chandra, M. Girvan, and E. Ott, “Continuous versus discontinuous transitions in the d𝑑ditalic_d-dimensional generalized kuramoto model: Odd d𝑑ditalic_d is different,” Phys. Rev. X, vol. 9, p. 011002, Jan 2019.
  19. J. Zhu, “Synchronization of kuramoto model in a high-dimensional linear space,” Physics Letters A, vol. 377, no. 41, pp. 2939–2943, 2013.
  20. H. Sakaguchi and Y. Kuramoto, “A Soluble Active Rotater Model Showing Phase Transitions via Mutual Entertainment,” Progress of Theoretical Physics, vol. 76, pp. 576–581, Sept. 1986.
  21. M. A. M. de Aguiar, “Generalized frustration in the multidimensional Kuramoto model,” Physical Review E, vol. 107, p. 044205, Apr. 2023.
  22. E. Oh, K. Rho, H. Hong, and B. Kahng, “Modular synchronization in complex networks,” Physical Review E, vol. 72, p. 047101, Oct. 2005.
  23. K. Park, Y.-C. Lai, S. Gupte, and J.-W. Kim, “Synchronization in complex networks with a modular structure,” Chaos: An Interdisciplinary Journal of Nonlinear Science, vol. 16, p. 015105, Mar. 2006.
  24. P. S. Skardal and J. G. Restrepo, “Hierarchical synchrony of phase oscillators in modular networks,” Physical Review E, vol. 85, p. 016208, Jan. 2012.
  25. S. R. Ujjwal, N. Punetha, and R. Ramaswamy, “Phase oscillators in modular networks: The effect of nonlocal coupling,” Physical Review E, vol. 93, p. 012207, Jan. 2016.
  26. A. Lancichinetti, S. Fortunato, and F. Radicchi, “Benchmark graphs for testing community detection algorithms,” Phys. Rev. E, vol. 78, p. 046110, Oct 2008.
  27. M. Winding, B. D. Pedigo, C. L. Barnes, H. G. Patsolic, Y. Park, T. Kazimiers, A. Fushiki, I. V. Andrade, A. Khandelwal, J. Valdes-Aleman, F. Li, N. Randel, E. Barsotti, A. Correia, R. D. Fetter, V. Hartenstein, C. E. Priebe, J. T. Vogelstein, A. Cardona, and M. Zlatic, “The connectome of an insect brain,” Science, vol. 379, no. 6636, p. eadd9330, 2023.
  28. L. M. Sanchez-Rodriguez, Y. Iturria-Medina, P. Mouches, and R. C. Sotero, “Detecting brain network communities: Considering the role of information flow and its different temporal scales,” NeuroImage, vol. 225, p. 117431, 2021.
  29. M. A. Porter, J. Onnela, and P. J. Mucha, “Communities in networks.”.
  30. E. Ott and T. M. Antonsen, “Low dimensional behavior of large systems of globally coupled oscillators,” Chaos: An Interdisciplinary Journal of Nonlinear Science, vol. 18, p. 037113, 09 2008.
  31. T. Tanaka, “Solvable model of the collective motion of heterogeneous particles interacting on a sphere,” New Journal of Physics, vol. 16, p. 023016, Feb. 2014.
  32. P. S. Skardal and A. Arenas, “Higher order interactions in complex networks of phase oscillators promote abrupt synchronization switching,” Communications Physics, vol. 3, pp. 1–6, Nov. 2020.
  33. A. E. D. Barioni and M. A. M. de Aguiar, “Complexity reduction in the 3D Kuramoto model,” Chaos, Solitons & Fractals, vol. 149, p. 111090, Aug. 2021.
  34. U. Brandes, M. Gaertler, and D. Wagner, “Experiments on graph clustering algorithms,” in Algorithms - ESA 2003 (G. Di Battista and U. Zwick, eds.), (Berlin, Heidelberg), pp. 568–579, Springer Berlin Heidelberg, 2003.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com