Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Turán problems for star-path forests in hypergraphs (2403.06637v2)

Published 11 Mar 2024 in math.CO

Abstract: An $r$-uniform hypergraph ($r$-graph for short) is linear if any two edges intersect at most one vertex. Let $\mathcal{F}$ be a given family of $r$-graphs. An $r$-graph $H$ is called $\mathcal{F}$-free if $H$ does not contain any member of $\mathcal{F}$ as a subgraph. The Tur\'{a}n number of $\mathcal{F}$ is the maximum number of edges in any $\mathcal{F}$-free $r$-graph on $n$ vertices, and the linear Tur\'{a}n number of $\mathcal{F}$ is defined as the Tur\'{a}n number of $\mathcal{F}$ in linear host hypergraphs. An $r$-uniform linear path $Pr_\ell$ of length $\ell$ is an $r$-graph with edges $e_1,\dots,e_\ell$ such that $|V(e_i)\cap V(e_j)|=1$ if $|i-j|=1$, and $V(e_i)\cap V(e_j)=\emptyset$ for $i\neq j$ otherwise. Gy\'{a}rf\'{a}s et al. [\textit{European J. Combin.} (2022) 103435] obtained an upper bound for the linear Tur\'{a}n number of $P_\ell3$. In this paper, an upper bound for the linear Tur\'{a}n number of $P_\ellr$ is obtained, which generalizes the known result of $P_\ell3$ to any $P_\ellr$. Furthermore, some results for the linear Tur\'{a}n number and Tur\'{a}n number of several linear star-path forests are obtained.

Summary

We haven't generated a summary for this paper yet.