Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Edge Information Hub: Orchestrating Satellites, UAVs, MEC, Sensing and Communications for 6G Closed-Loop Controls (2403.06579v2)

Published 11 Mar 2024 in eess.SY and cs.SY

Abstract: An increasing number of field robots would be used for mission-critical tasks in remote or post-disaster areas. Due to the limited individual abilities, these robots usually require an edge information hub (EIH), with not only communication but also sensing and computing functions. Such EIH could be deployed on a flexibly-dispatched unmanned aerial vehicle (UAV). Different from traditional aerial base stations or mobile edge computing (MEC), the EIH would direct the operations of robots via sensing-communication-computing-control ($\textbf{SC}3$) closed-loop orchestration. This paper aims to optimize the closed-loop control performance of multiple $\textbf{SC}3$ loops, with constraints on satellite-backhaul rate, computing capability, and on-board energy. Specifically, the linear quadratic regulator (LQR) control cost is used to measure the closed-loop utility, and a sum LQR cost minimization problem is formulated to jointly optimize the splitting of sensor data and allocation of communication and computing resources. We first derive the optimal splitting ratio of sensor data, and then recast the problem to a more tractable form. An iterative algorithm is finally proposed to provide a sub-optimal solution. Simulation results demonstrate the superiority of the proposed algorithm. We also uncover the influence of $\textbf{SC}3$ parameters on closed-loop controls, highlighting more systematic understanding.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (34)
  1. R. Ventura and P. U. Lima, “Search and rescue robots: The civil protection teams of the future,” in Proc. 3rd In. Conf. IEEE Emerg. Secur. Technol., Lisbon, Portugal, 2012, pp. 12-19.
  2. Q. Huang and J. Jiang, “A radiation-tolerant wireless communication system for severe accident monitoring without relying on rad-hardened electronic components,” Nuclear Technology vol. 207, no. 5, pp. 711-725, May 2021.
  3. H. Li and A. V. Savkin, “Wireless sensor network based navigation of micro flying robots in the industrial internet of things,” IEEE Trans. Ind. Informat., vol. 14, no. 8, pp. 3524-3533, Aug. 2018.
  4. V. K. Sarker, J. Peña Queralta, T. N. Gia, H. Tenhunen and T. Westerlund, “Offloading SLAM for indoor mobile robots with edge-fog-cloud computing,” in Proc. 1st Int. Conf. Adv. Sci., Eng. Robot. Technol. (ICASERT), Dhaka, Bangladesh, 2019, pp. 1-6.
  5. Y. Kantaros and M. M. Zavlanos, “Global planning for multi-robot communication networks in complex environments,” IEEE Trans. Robot., vol. 32, no. 5, pp. 1045-1061, Oct. 2016.
  6. F. Zhou, Y. Wu, R. Q. Hu and Y. Qian, “Computation rate maximization in UAV-enabled wireless-powered mobile-edge computing systems,” IEEE J. Sel. Areas Commun., vol. 36, no. 9, pp. 1927-1941, Sep. 2018.
  7. P. McEnroe, S. Wang and M. Liyanage, “A survey on the convergence of edge computing and AI for UAVs: Opportunities and challenges,” IEEE Internet Things J., vol. 9, no. 17, pp. 15435-15459, 1 Sep, 2022.
  8. L. Chua and C. Ng, “Frequency domain analysis of nonlinear systems: General theory.” IEE J. Electron. Circuits Syst. vol. 3, no. 4, pp. 165–185, Jul., 1979.
  9. M. Athans, “The role and use of the stochastic linear-quadratic-Gaussian problem in control system design,” IEEE Trans. Auto. Control, vol. 16, no. 6, pp. 529-552, Dec. 1971.
  10. R. E. Kalman “Contributions to the theory of optimal control,” Bol. Soc. Mat. Mexicana, vol. 5, no. 1, pp. 102–119, 1960.
  11. G. N. Nair, F. Fagnani, S. Zampieri, and R. J. Evans, “Feedback control under data rate constraintsa: An overview,” Proc. IEEE, vol. 95, no. 1, pp. 108-137, Jan. 2007.
  12. J. P. Hespanha, P. Naghshtabrizi and Y. Xu, “A survey of recent results in networked control systems,” Proc. IEEE, vol. 95, no. 1, pp. 138-162, Jan. 2007.
  13. M. S. Mahmoud and M. M. Hamdan, “Fundamental issues in networked control systems,” IEEE/CAA J. Automatica Sinica, vol. 5, no. 5, pp. 902-922, Sep. 2018.
  14. M. S. Branicky, S. M. Phillips, and W. Zhang, “Stability of networked control systems: Explicit analysis of delay” in Proc. Amer. Contr. Conf., Chicago, USA, Jun. 2000, vol. 4, pp. 2352–2357.
  15. Y. Feng, X. Chen and G. Gu, “Output feedback stabilization for discrete-time systems under limited communication,” IEEE Trans. Auto. Control, vol. 62, no. 4, pp. 1927-1932, Apr. 2017.
  16. C. Tan, H. Sui, Y. Li, Z. Zhang and W. S. Wong, “Integrated stabilizing control for sampled-data NCSs with intermittent observation and multiple random transmission delays,” IEEE Trans. Control Netw. Syst., vol. 10, no. 4, pp. 2035-2047, Dec. 2023.
  17. D. E. Quevedo, E. I. Silva and G. C. Goodwin, “Control over unreliable networks affected by packet erasures and variable transmission delays,” IEEE J. Sel. Areas Commun., vol. 26, no. 4, pp. 672-685, May 2008.
  18. D. Yue, E. Tian and Q. -L. Han, “A delay system method for designing event-triggered controllers of networked control systems,” IEEE Trans. Auto. Control, vol. 58, no. 2, pp. 475-481, Feb. 2013.
  19. K. Gatsis, A. Ribeiro and G. J. Pappas, “Optimal power management in wireless control systems,” IEEE Trans. Auto. Control, vol. 59, no. 6, pp. 1495-1510, Jun. 2014.
  20. T. Soleymani, J. S. Baras, S. Hirche, and K. H. Johansson, “Value of information in feedback control: Global optimality,” IEEE Trans. Auto. Control, vol. 68, no. 6, pp. 3641-3647, Jun. 2023.
  21. Y. Qiao, Y. Fu and M. Yuan, “Communication–control co-design in wireless networks: A cloud control AGV example,” IEEE Internet Things J., vol. 10, no. 3, pp. 2346-2359, Feb. 2023.
  22. V. Kostina and B. Hassibi, “Rate-cost tradeoffs in control,” IEEE Trans. Auto. Control, vol. 64, no. 11, pp. 4525-4540, Nov. 2019.
  23. T. Nguyen, L. Y. Wang, G. Yin, H. Zhang, S. E. Li and K. Li, “Impact of communication erasure channels on control performance of connected and automated vehicles,” IEEE Trans. Veh. Technol., vol. 67, no. 1, pp. 29-43, Jan. 2018.
  24. M. Barforooshan, M. S. Derpich, P. A. Stavrou and J. Østergaard, “The effect of time delay on the average data rate and performance in networked control systems,” IEEE Trans. Auto. Control, vol. 67, no. 1, pp. 16-31, Jan. 2022.
  25. B. Chang, L. Zhang, L. Li, G. Zhao and Z. Chen, “Optimizing resource allocation in URLLC for real-time wireless control systems,” IEEE Trans. Veh. Technol., vol. 68, no. 9, pp. 8916-8927, Sep. 2019.
  26. P. M. de Sant Ana, N. Marchenko, P. Popovski and B. Soret, “Control-aware scheduling optimization of industrial IoT,” in Proc. IEEE 95th Veh. Technol. Conf. (VTC-Spring), Helsinki, Finland, 2022, pp. 1-6.
  27. Q. Hu, Y. Cai, G. Yu, Z. Qin, M. Zhao and G. Y. Li, “Joint offloading and trajectory design for UAV-enabled mobile edge computing systems” IEEE Internet Things J., vol. 6, no. 2, pp. 1879-1892, Apr. 2019.
  28. H. Peng and X. Shen, “Multi-agent reinforcement learning based resource management in MEC- and UAV-assisted vehicular networks,” IEEE J. Sel. Areas Commun., vol. 39, no. 1, pp. 131-141, Jan. 2021.
  29. X. Dai, Z. Xiao, H. Jiang and J. C. S. Lui, “UAV-assisted task offloading in vehicular edge computing networks,” IEEE Trans. Mobile Comput. early access, 2023.
  30. Y. Zeng, R. Zhang, and T. J. Lim, “Throughput maximization for UAV-enabled mobile relaying systems,” IEEE Trans. Commun., vol. 64, no. 12, pp. 4983-4996, Dec. 2016.
  31. Y. Sun, P. Babu and D. P. Palomar, “Majorization-minimization algorithms in signal processing, communications, and machine learning,” IEEE Trans. Signal Process., vol. 65, no. 3, pp. 794-816, Feb, 2017.
  32. Y. Du, K. Yang, K. Wang, G. Zhang, Y. Zhao and D. Chen, “Joint resources and workflow scheduling in UAV-enabled wirelessly-powered MEC for IoT systems,” IEEE Trans. Veh. Technol., vol. 68, no. 10, pp. 10187-10200, Oct. 2019.
  33. M. Hua, Y. Wang, Z. Zhang, C. Li, Y. Huang, and L. Yang, “Power-efficient communication in UAV-aided wireless sensor networks,” IEEE Commun. Lett., vol. 22, no. 6, pp. 1264-1267, Jun. 2018.
  34. J. Ren, G. Yu, Y. He and G. Y. Li, “Collaborative cloud and edge computing for latency minimization,” IEEE Trans. Veh. Technol., vol. 68, no. 5, pp. 5031-5044, May 2019.
Citations (3)

Summary

We haven't generated a summary for this paper yet.