Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Unconventional topological mixed-state transition and critical phase induced by self-dual coherent errors (2403.06553v1)

Published 11 Mar 2024 in quant-ph, cond-mat.stat-mech, and cond-mat.str-el

Abstract: A topological phase can undergo a phase transition driven by anyon condensation. A potential obstruction to such a mechanism could arise if there exists a symmetry between anyons that have non-trivial mutual statistics. Here we consider toric code subjected to errors that tend to proliferate anyons with non-trivial mutual statistics. Using triangle inequality, we show that in the presence of electromagnetic duality and a partial-transpose symmetry, a decoherence induced phase transition out of the topological phase must be rather unconventional and lie beyond standard rules of anyon condensation. To explore such physics, we first subject toric code to a self-dual quantum channel where Kraus operators are proportional to X+Z. We find that the topological phase is stable up to the maximal error rate, when viewing density matrix as a pure state in the double Hilbert space. To access an unconventional transition, we then consider a perturbed toric code subjected to the self-dual channel, and find numerical evidence that beyond a critical error rate, the topological phase is destroyed resulting in a critical phase where anyons are only power-law condensed.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (45)
  1. X.-G. Wen, Quantum field theory of many-body systems: from the origin of sound to an origin of light and electrons, oup oxford,   (2004).
  2. F. J. Burnell, Anyon condensation and its applications, Annual Review of Condensed Matter Physics 9, 307 (2018).
  3. F. A. Bais, B. J. Schroers, and J. K. Slingerland, Broken quantum symmetry and confinement phases in planar physics, Physical review letters 89, 181601 (2002).
  4. F. Bais and C. Mathy, The breaking of quantum double symmetries by defect condensation, Annals of Physics 322, 552 (2007).
  5. F. A. Bais and J. K. Slingerland, Condensate-induced transitions between topologically ordered phases, Phys. Rev. B 79, 045316 (2009).
  6. G. A. Jongeward, J. D. Stack, and C. Jayaprakash, Monte carlo calculations on z 2 gauge-higgs theories, Physical Review D 21, 3360 (1980).
  7. J. Vidal, S. Dusuel, and K. P. Schmidt, Low-energy effective theory of the toric code model in a parallel magnetic field, Phys. Rev. B 79, 033109 (2009).
  8. F. Wu, Y. Deng, and N. Prokof’ev, Phase diagram of the toric code model in a parallel magnetic field, Physical Review B 85, 195104 (2012).
  9. G.-Y. Zhu and G.-M. Zhang, Gapless coulomb state emerging from a self-dual topological tensor-network state, Phys. Rev. Lett. 122, 176401 (2019).
  10. A. M. Somoza, P. Serna, and A. Nahum, Self-dual criticality in three-dimensional z 2 gauge theory with matter, Physical Review X 11, 041008 (2021).
  11. A. Y. Kitaev, Fault-tolerant quantum computation by anyons, Annals of Physics 303, 2 (2003).
  12. F. J. Wegner, Duality in generalized ising models and phase transitions without local order parameters, Journal of Mathematical Physics 12, 2259 (1971).
  13. E. Fradkin and S. H. Shenker, Phase diagrams of lattice gauge theories with higgs fields, Physical Review D 19, 3682 (1979).
  14. C. Wang, J. Harrington, and J. Preskill, Confinement-higgs transition in a disordered gauge theory and the accuracy threshold for quantum memory, Annals of Physics 303, 31 (2003).
  15. J. Y. Lee, C.-M. Jian, and C. Xu, Quantum criticality under decoherence or weak measurement, PRX Quantum 4, 030317 (2023).
  16. Y.-H. Chen and T. Grover, Separability transitions in topological states induced by local decoherence, arXiv preprint arXiv:2309.11879  (2023a).
  17. S. Sang, Y. Zou, and T. H. Hsieh, Mixed-state quantum phases: Renormalization and quantum error correction, arXiv preprint arXiv:2310.08639  (2023).
  18. Z. Li and R. S. Mong, Replica topological order in quantum mixed states and quantum error correction, arXiv preprint arXiv:2402.09516  (2024).
  19. K. Su, Z. Yang, and C.-M. Jian, Tapestry of dualities in decohered quantum error correction codes, arXiv preprint arXiv:2401.17359  (2024).
  20. J. Y. Lee, Exact calculations of coherent information for toric codes under decoherence: Identifying the fundamental error threshold, arXiv preprint arXiv:2402.16937  (2024).
  21. A. Lyons, Understanding stabilizer codes under local decoherence through a general statistical mechanics mapping,   (2024), arXiv:2403.03955 [quant-ph] .
  22. J. Y. Lee, Y.-Z. You, and C. Xu, Symmetry protected topological phases under decoherence, arXiv preprint arXiv:2210.16323  (2022).
  23. M. Schmutz, Real-time green’s functions in many body problems, Zeitschrift für Physik B Condensed Matter 30, 97 (1978).
  24. T. Prosen, Third quantization: a general method to solve master equations for quadratic open fermi systems, New Journal of Physics 10, 043026 (2008).
  25. A. Jamiołkowski, Linear transformations which preserve trace and positive semidefiniteness of operators, Reports on Mathematical Physics 3, 275 (1972).
  26. M.-D. Choi, Completely positive linear maps on complex matrices, Linear algebra and its applications 10, 285 (1975).
  27. Y.-H. Chen and T. Grover, Symmetry-enforced many-body separability transitions, arXiv preprint arXiv:2310.07286  (2023b).
  28. C. de Groot, A. Turz illo, and N. Schuch, Symmetry Protected Topological Order in Open Quantum Systems, Quantum 6, 856 (2022).
  29. V. Berezinskii, Destruction of long-range order in one-dimensional and two-dimensional systems having a continuous symmetry group i. classical systems, Sov. Phys. JETP 32, 493 (1971).
  30. J. M. Kosterlitz and D. J. Thouless, Ordering, metastability and phase transitions in two-dimensional systems, Journal of Physics C: Solid State Physics 6, 1181 (1973).
  31. H. A. Kramers and G. H. Wannier, Statistics of the two-dimensional ferromagnet. part i, Phys. Rev. 60, 252 (1941).
  32. A. Kubica and B. Yoshida, Ungauging quantum error-correcting codes, arXiv preprint arXiv:1805.01836  (2018).
  33. R. Raussendorf, S. Bravyi, and J. Harrington, Long-range quantum entanglement in noisy cluster states, Phys. Rev. A 71, 062313 (2005).
  34. M. Levin, Constraints on order and disorder parameters in quantum spin chains, Communications in Mathematical Physics 378, 1081 (2020).
  35. E. O’Brien and P. Fendley, Lattice supersymmetry and order-disorder coexistence in the tricritical ising model, Phys. Rev. Lett. 120, 206403 (2018).
  36. R. J. Baxter, Exactly solved models in statistical mechanics (Elsevier, 2016).
  37. S. Wiseman and E. Domany, Critical behavior of the random-bond ashkin-teller model: A monte carlo study, Physical Review E 51, 3074 (1995).
  38. J. Eisert, M. Cramer, and M. B. Plenio, Colloquium: Area laws for the entanglement entropy, Rev. Mod. Phys. 82, 277 (2010).
  39. A. B. Zamolodchikov, Irreversibility of the flux of the renormalization group in a 2d field theory, JETP lett 43, 730 (1986).
  40. A. Honecker, M. Picco, and P. Pujol, Universality class of the nishimori point in the 2d ±Jplus-or-minus𝐽\pm{}\mathit{J}± italic_J random-bond ising model, Phys. Rev. Lett. 87, 047201 (2001).
  41. C. Castelnovo and C. Chamon, Quantum topological phase transition at the microscopic level, Physical Review B 77, 054433 (2008).
  42. T. D. Schultz, D. C. Mattis, and E. H. Lieb, Two-dimensional ising model as a soluble problem of many fermions, Reviews of Modern Physics 36, 856 (1964).
  43. P. Jordan and E. P. Wigner, Über das paulische äquivalenzverbot (Springer, 1993).
  44. S. Beigi, P. W. Shor, and D. Whalen, The quantum double model with boundary: condensations and symmetries, Communications in mathematical physics 306, 663 (2011).
  45. G. S. Grest and M. Widom, n𝑛nitalic_n-color ashkin-teller model, Phys. Rev. B 24, 6508 (1981).
Citations (24)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com