DivCon: Divide and Conquer for Progressive Text-to-Image Generation (2403.06400v2)
Abstract: Diffusion-driven text-to-image (T2I) generation has achieved remarkable advancements. To further improve T2I models' capability in numerical and spatial reasoning, the layout is employed as an intermedium to bridge LLMs and layout-based diffusion models. However, these methods still struggle with generating images from textural prompts with multiple objects and complicated spatial relationships. To tackle this challenge, we introduce a divide-and-conquer approach which decouples the T2I generation task into simple subtasks. Our approach divides the layout prediction stage into numerical & spatial reasoning and bounding box prediction. Then, the layout-to-image generation stage is conducted in an iterative manner to reconstruct objects from easy ones to difficult ones. We conduct experiments on the HRS and NSR-1K benchmarks and our approach outperforms previous state-of-the-art models with notable margins. In addition, visual results demonstrate that our approach significantly improves the controllability and consistency in generating multiple objects from complex textural prompts.
- Yuhao Jia (2 papers)
- Wenhan Tan (1 paper)