Papers
Topics
Authors
Recent
2000 character limit reached

On Wilks' joint moment formulas for embedded principal minors of Wishart random matrices

Published 10 Mar 2024 in math.ST, math.PR, and stat.TH | (2403.06330v2)

Abstract: In 1934, the American statistician Samuel S. Wilks derived remarkable formulas for the joint moments of embedded principal minors of sample covariance matrices in multivariate Gaussian populations, and he used them to compute the moments of sample statistics in various applications related to multivariate linear regression. These important but little-known moment results were extended in 1963 by the Australian statistician A. Graham Constantine using Bartlett's decomposition. In this note, a new proof of Wilks' results is derived using the concept of iterated Schur complements, thereby bypassing Bartlett's decomposition. Furthermore, Wilks' open problem of evaluating joint moments of disjoint principal minors of Wishart random matrices is related to the Gaussian product inequality conjecture.

Citations (1)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 1 like about this paper.