Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Constraining Cosmological Parameters with Viscous Modified Chaplygin Gas and Generalized Cosmic Chaplygin Gas Models in Horava-Lifshitz Gravity: Utilizing Late-time Datasets (2403.06286v3)

Published 10 Mar 2024 in astro-ph.CO and gr-qc

Abstract: This study examines accelerated cosmic expansion using the Viscous Modified Chaplygin Gas (VMMG) and Generalized Cosmic Chaplygin Gas (GCCM) within Horava-Lifshitz gravity. Our aim is to constrain essential cosmological parameters, such as the Hubble Parameter ($H_{0}$) and Sound Horizon ($r_{d}$). We utilize late-time datasets: 17 Baryon Acoustic Oscillation observations, 33 Cosmic Chronometer measurements, 40 Type Ia Supernovae data points, 24 quasar Hubble diagram data points, and 162 Gamma Ray Bursts data points, along with the latest determination of the Hubble constant (R22). Treating $r_{d}$ as a free parameter offers several advantages, including mitigating bias, enhancing precision, and improving compatibility with various datasets. By introducing random correlations in the covariance matrix during simulation, errors are effectively reduced. Our estimated values of the Hubble constant ($H_0$) and $r_{d}$ consistently align with measurements from both the Planck and SDSS experiments. Cosmographic tests provide valuable insights into the dynamics of various cosmological models, enriching our understanding of cosmic evolution. Statefinder diagnostics offer deeper insights into cosmic expansion dynamics, aiding in distinguishing between cosmological frameworks. Furthermore, the $o_{m}$ diagnostic test reveals that at late times, VMMG falls into the phantom region, while GCCM falls into the quintessence region. The Akaike Information Criterion (AIC) and Bayesian Information Criterion (BIC) support all models, indicating plausible explanations. Notably, the $\Lambda$CDM model emerges with the lowest AIC score, suggesting its relatively superior fit. Validation via the reduced $\chi_{\text{red}}{2}$ statistic confirms satisfactory fits across all models, reinforcing their credibility.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (96)
  1. S. Weinberg, “The cosmological constant problem,” Reviews of modern physics, vol. 61, no. 1, p. 1, 1989.
  2. I. Zlatev, L. Wang, and P. J. Steinhardt, “Quintessence, cosmic coincidence, and the cosmological constant,” Physical Review Letters, vol. 82, no. 5, p. 896, 1999.
  3. S. M. Carroll, “The cosmological constant,” Living reviews in relativity, vol. 4, no. 1, pp. 1–56, 2001.
  4. V. Sahni, “The cosmological constant problem and quintessence,” Classical and Quantum Gravity, vol. 19, no. 13, p. 3435, 2002.
  5. P. J. E. Peebles and B. Ratra, “The cosmological constant and dark energy,” Reviews of modern physics, vol. 75, no. 2, p. 559, 2003.
  6. E. V. Linder, “The dynamics of quintessence, the quintessence of dynamics,” General Relativity and Gravitation, vol. 40, pp. 329–356, 2008.
  7. A. Sen, “Tachyon matter,” Journal of High Energy Physics, vol. 2002, no. 07, p. 065, 2002.
  8. S. Nojiri and S. D. Odintsov, “Effective equation of state and energy conditions in phantom/tachyon inflationary cosmology perturbed by quantum effects,” Physics Letters B, vol. 571, no. 1-2, pp. 1–10, 2003.
  9. E. J. Copeland, M. Sami, and S. Tsujikawa, “Dynamics of dark energy,” International Journal of Modern Physics D, vol. 15, no. 11, pp. 1753–1935, 2006.
  10. H. Wei and R.-G. Cai, “A new model of agegraphic dark energy,” Physics Letters B, vol. 660, no. 3, pp. 113–117, 2008.
  11. S. Maity and U. Debnath, “Co-existence of modified chaplygin gas and other dark energies in the framework of fractal universe,” International Journal of Theoretical Physics, vol. 55, pp. 2668–2681, 2016.
  12. S. Maity, M. Biswas, and U. Debnath, “Analysis of entropy corrected holographic and new agegraphic dark energy models in generalized rastall gravity,” International Journal of Modern Physics A, vol. 35, no. 28, p. 2050175, 2020.
  13. S. Maity and U. Debnath, “Tsallis, rényi and sharma-mittal holographic and new agegraphic dark energy models in d-dimensional fractal universe,” The European Physical Journal Plus, vol. 134, no. 10, p. 514, 2019.
  14. S. Maity and U. Debnath, “Study of tsallis, rényi and sharma–mittal holographic dark energies for entropy corrected modified field equations in hořava–lifshitz gravity,” International Journal of Geometric Methods in Modern Physics, vol. 17, no. 11, p. 2050170, 2020.
  15. A. De Felice and S. Tsujikawa, “f (r) theories,” Living Reviews in Relativity, vol. 13, no. 1, pp. 1–161, 2010.
  16. R. Ferraro and F. Fiorini, “Non-trivial frames for f (t) theories of gravity and beyond,” Physics Letters B, vol. 702, no. 1, pp. 75–80, 2011.
  17. C. Bogdanos and E. N. Saridakis, “Perturbative instabilities in hořava gravity,” Classical and Quantum Gravity, vol. 27, no. 7, p. 075005, 2010.
  18. E. N. Saridakis, “Hořava–lifshitz dark energy,” The European Physical Journal C, vol. 67, pp. 229–235, 2010.
  19. A. Pasqua, S. Chattopadhyay, and R. Myrzakulov, “Power-law entropy-corrected holographic dark energy in hořava-lifshitz cosmology with granda-oliveros cut-off,” The European Physical Journal Plus, vol. 131, pp. 1–51, 2016.
  20. S. Maity and P. Rudra, “Gravitational baryogenesis in hořava–lifshitz gravity,” Modern Physics Letters A, vol. 34, no. 25, p. 1950203, 2019.
  21. T. R. Choudhury and T. Padmanabhan, “Cosmological parameters from supernova observations: A critical comparison of three data sets,” Astronomy & Astrophysics, vol. 429, no. 3, pp. 807–818, 2005.
  22. J. L. Tonry, B. P. Schmidt, B. Barris, P. Candia, P. Challis, A. Clocchiatti, A. L. Coil, A. V. Filippenko, P. Garnavich, C. Hogan, et al., “Cosmological results from high-z supernovae,” The Astrophysical Journal, vol. 594, no. 1, p. 1, 2003.
  23. A. Mehrabi, S. Basilakos, and F. Pace, “How clustering dark energy affects matter perturbations,” Monthly Notices of the Royal Astronomical Society, vol. 452, no. 3, pp. 2930–2939, 2015.
  24. M. Malekjani, S. Basilakos, A. Mehrabi, Z. Davari, and M. Rezaei, “Agegraphic dark energy: growth index and cosmological implications,” Monthly Notices of the Royal Astronomical Society, vol. 464, no. 1, pp. 1192–1201, 2017.
  25. M. Rezaei, M. Malekjani, S. Basilakos, A. Mehrabi, and D. F. Mota, “Constraints to dark energy using pade parameterizations,” The Astrophysical Journal, vol. 843, no. 1, p. 65, 2017.
  26. M. Rezaei, “Structure formation in dark energy cosmologies described by pade parametrization,” Monthly Notices of the Royal Astronomical Society, vol. 485, no. 4, pp. 4841–4851, 2019.
  27. S. Dutta and E. N. Saridakis, “Overall observational constraints on the running parameter λ𝜆\lambdaitalic_λ of horava lifshitz gravity,” JCAP, vol. 5, no. arXiv: 1002.3373, p. 013, 2010.
  28. N. Frusciante and M. Benetti, “Cosmological constraints on hořava gravity revised in light of gw170817 and grb170817a and the degeneracy with massive neutrinos,” Physical Review D, vol. 103, no. 10, p. 104060, 2021.
  29. S. M. Carroll and E. A. Lim, “Lorentz-violating vector fields slow the universe down,” Physical Review D, vol. 70, no. 12, p. 123525, 2004.
  30. J. A. Zuntz, P. Ferreira, and T. Zlosnik, “Constraining lorentz violation with cosmology,” Physical review letters, vol. 101, no. 26, p. 261102, 2008.
  31. B. Audren, D. Blas, M. Ivanov, J. Lesgourgues, and S. Sibiryakov, “Cosmological constraints on deviations from lorentz invariance in gravity and dark matter,” Journal of Cosmology and Astroparticle Physics, vol. 2015, no. 03, p. 016, 2015.
  32. N. Frusciante, M. Raveri, D. Vernieri, B. Hu, and A. Silvestri, “Hořava gravity in the effective field theory formalism: From cosmology to observational constraints,” Physics of the dark universe, vol. 13, pp. 7–24, 2016.
  33. Y. Gong, S. Hou, E. Papantonopoulos, D. Tzortzis, et al., “Gravitational waves and the polarizations in hořava gravity after gw170817,” Physical Review D, vol. 98, no. 10, p. 104017, 2018.
  34. M. Khurana, H. Chaudhary, U. Debnath, A. Sardar, and G. Mustafa, “Exploring late-time cosmic acceleration with eos parameterizations in horava-lifshitz gravity via baryon acoustic oscillations,” Fortschritte der Physik, p. 2300238, 2023.
  35. A. Kamenshchik, U. Moschella, and V. Pasquier, “An alternative to quintessence,” Physics Letters B, vol. 511, no. 2-4, pp. 265–268, 2001.
  36. V. Gorini, A. Kamenshchik, U. Moschella, and V. Pasquier, “The chaplygin gas as a model for dark energy,” in The Tenth Marcel Grossmann Meeting: On Recent Developments in Theoretical and Experimental General Relativity, Gravitation and Relativistic Field Theories (In 3 Volumes), pp. 840–859, World Scientific, 2005.
  37. U. Debnath, A. Banerjee, and S. Chakraborty, “Role of modified chaplygin gas in accelerated universe,” Classical and Quantum Gravity, vol. 21, no. 23, p. 5609, 2004.
  38. V. Gorini, A. Kamenshchik, and U. Moschella, “Can the chaplygin gas be a plausible model for dark energy?,” Physical Review D, vol. 67, no. 6, p. 063509, 2003.
  39. P. F. González-Díaz, “You need not be afraid of phantom energy,” Physical Review D, vol. 68, no. 2, p. 021303, 2003.
  40. U. Debnath, “Variable modified chaplygin gas and accelerating universe,” Astrophysics and Space Science, vol. 312, no. 3-4, pp. 295–299, 2007.
  41. W. Chakraborty and U. Debnath, “A new variable modified chaplygin gas model interacting with a scalar field,” Gravitation and Cosmology, vol. 16, no. 3, pp. 223–227, 2010.
  42. H. Benaoum, “Modified chaplygin gas cosmology with bulk viscosity,” International Journal of Modern Physics D, vol. 23, no. 10, p. 1450082, 2014.
  43. M. Jamil, M. U. Farooq, and M. A. Rashid, “Generalized holographic dark energy model,” The European Physical Journal C, vol. 61, pp. 471–476, 2009.
  44. M. Jamil, “Evolution of a schwarzschild black hole in phantom-like chaplygin gas cosmologies,” The European Physical Journal C, vol. 62, pp. 609–614, 2009.
  45. U. Debnath and M. Jamil, “Spherical top-hat collapse of viscous modified chaplygin gas in einstein’s gravity and loop quantum cosmology,” arXiv preprint arXiv:1501.00486, 2015.
  46. T. Barreiro, O. Bertolami, and P. Torres, “Wmap five-year data constraints on the unified model of dark energy and dark matter,” Physical Review D, vol. 78, no. 4, p. 043530, 2008.
  47. L. Xin-Zhou, H. Jian-Gang, and L. Dao-Jun, “Can quintessence be the rolling tachyon?,” Chinese Physics Letters, vol. 19, no. 11, p. 1584, 2002.
  48. J. Lu, L. Xu, J. Li, B. Chang, Y. Gui, and H. Liu, “Constraints on modified chaplygin gas from recent observations and a comparison of its status with other models,” Physics Letters B, vol. 662, no. 2, pp. 87–91, 2008.
  49. U. Debnath et al., “Reconstructions of einstein-aether gravity from ordinary and entropy-corrected versions of holographic and new agegraphic dark energy models,” Advances in High Energy Physics, vol. 2014, 2014.
  50. H. Chaudhary, U. Debnath, S. K. J. Pacif, N. U. Molla, G. Mustafa, and S. K. Maurya, “Investigating ω⁢(z)𝜔𝑧\omega(z)italic_ω ( italic_z ) Parametrizations in Horava-Lifshitz Gravity: Observational Constraints with Covariance Matrix Simulation,” 2 2024.
  51. H. Chaudhary, N. U. Molla, M. Khurana, U. Debnath, and G. Mustafa, “Cosmological test of dark energy parameterizations in Hořava–Lifshitz gravity,” Eur. Phys. J. C, vol. 84, no. 3, p. 223, 2024.
  52. B. Paul, P. Thakur, and M. Verma, “Observational constraints on modified chaplygin gas in horava–lifshitz gravity with dark radiation,” Pramana, vol. 81, pp. 691–718, 2013.
  53. M. Khurana, H. Chaudhary, S. Mumtaz, S. Pacif, and G. Mustafa, “Cosmic evolution in f (q, t) gravity: Exploring a higher-order time-dependent function of deceleration parameter with observational constraints,” Physics of the Dark Universe, vol. 43, p. 101408, 2024.
  54. A. Bouali, H. Chaudhary, A. Mehrotra, and S. Pacif, “Model-independent study for a quintessence model of dark energy: Analysis and observational constraints,” arXiv preprint arXiv:2304.02652, 2023.
  55. S. Pacif, “Dark energy models from a parametrization of h: a comprehensive analysis and observational constraints,” The European Physical Journal Plus, vol. 135, no. 10, pp. 1–34, 2020.
  56. G. Calcagni, “Cosmology of the lifshitz universe,” Journal of High Energy Physics, vol. 2009, no. 09, p. 112, 2009.
  57. G. Calcagni, “Detailed balance in hořava-lifshitz gravity,” Physical Review D, vol. 81, no. 4, p. 044006, 2010.
  58. E. Kiritsis, “Spherically symmetric solutions in modified hořava-lifshitz gravity,” Physical Review D, vol. 81, no. 4, p. 044009, 2010.
  59. P. Hořava, “Membranes at quantum criticality,” Journal of High Energy Physics, vol. 2009, no. 03, p. 020, 2009.
  60. P. Hořava, “Quantum gravity at a lifshitz point,” Physical Review D, vol. 79, no. 8, p. 084008, 2009.
  61. E. Lifshitz, “On the theory of second-order phase transitions i & ii,” Zh. Eksp. Teor. Fiz, vol. 11, no. 255, p. 269, 1941.
  62. M. Jamil and E. N. Saridakis, “New agegraphic dark energy in hořava-lifshitz cosmology,” Journal of Cosmology and Astroparticle Physics, vol. 2010, no. 07, p. 028, 2010.
  63. B. Paul, P. Thakur, and A. Saha, “Modified chaplygin gas in horava-lifshitz gravity and constraints on its b parameter,” Physical Review D, vol. 85, no. 2, p. 024039, 2012.
  64. R. Biswas and U. Debnath, “Observational constraints of red-shift parametrization parameters of dark energy in horava-lifshitz gravity,” International Journal of Theoretical Physics, vol. 54, pp. 341–357, 2015.
  65. W. Chakraborty, U. Debnath, and S. Chakraborty, “Generalized cosmic chaplygin gas model with or without interaction,” arXiv preprint arXiv:0711.0079, 2007.
  66. A. J. Ross, L. Samushia, C. Howlett, W. J. Percival, A. Burden, and M. Manera, “The clustering of the sdss dr7 main galaxy sample–i. a 4 per cent distance measure at z= 0.15,” Monthly Notices of the Royal Astronomical Society, vol. 449, no. 1, pp. 835–847, 2015.
  67. S. Alam, M. Ata, S. Bailey, F. Beutler, D. Bizyaev, J. A. Blazek, A. S. Bolton, J. R. Brownstein, A. Burden, C.-H. Chuang, et al., “The clustering of galaxies in the completed sdss-iii baryon oscillation spectroscopic survey: cosmological analysis of the dr12 galaxy sample,” Monthly Notices of the Royal Astronomical Society, vol. 470, no. 3, pp. 2617–2652, 2017.
  68. H. Gil-Marín, J. E. Bautista, R. Paviot, M. Vargas-Magaña, S. de La Torre, S. Fromenteau, S. Alam, S. Ávila, E. Burtin, C.-H. Chuang, et al., “The completed sdss-iv extended baryon oscillation spectroscopic survey: measurement of the bao and growth rate of structure of the luminous red galaxy sample from the anisotropic power spectrum between redshifts 0.6 and 1.0,” Monthly Notices of the Royal Astronomical Society, vol. 498, no. 2, pp. 2492–2531, 2020.
  69. A. Raichoor, A. De Mattia, A. J. Ross, C. Zhao, S. Alam, S. Avila, J. Bautista, J. Brinkmann, J. R. Brownstein, E. Burtin, et al., “The completed sdss-iv extended baryon oscillation spectroscopic survey: large-scale structure catalogues and measurement of the isotropic bao between redshift 0.6 and 1.1 for the emission line galaxy sample,” Monthly Notices of the Royal Astronomical Society, vol. 500, no. 3, pp. 3254–3274, 2021.
  70. J. Hou, A. G. Sánchez, A. J. Ross, A. Smith, R. Neveux, J. Bautista, E. Burtin, C. Zhao, R. Scoccimarro, K. S. Dawson, et al., “The completed sdss-iv extended baryon oscillation spectroscopic survey: Bao and rsd measurements from anisotropic clustering analysis of the quasar sample in configuration space between redshift 0.8 and 2.2,” Monthly Notices of the Royal Astronomical Society, vol. 500, no. 1, pp. 1201–1221, 2021.
  71. H. D. M. Des Bourboux, J. Rich, A. Font-Ribera, V. de Sainte Agathe, J. Farr, T. Etourneau, J.-M. Le Goff, A. Cuceu, C. Balland, J. E. Bautista, et al., “The completed sdss-iv extended baryon oscillation spectroscopic survey: baryon acoustic oscillations with lyα𝛼\alphaitalic_α forests,” The Astrophysical Journal, vol. 901, no. 2, p. 153, 2020.
  72. T. Abbott, M. Aguena, S. Allam, A. Amon, F. Andrade-Oliveira, J. Asorey, S. Avila, G. Bernstein, E. Bertin, A. Brandao-Souza, et al., “Dark energy survey year 3 results: A 2.7% measurement of baryon acoustic oscillation distance scale at redshift 0.835,” Physical Review D, vol. 105, no. 4, p. 043512, 2022.
  73. S. Sridhar, Y.-S. Song, A. J. Ross, R. Zhou, J. A. Newman, C.-H. Chuang, R. Blum, E. Gaztanaga, M. Landriau, and F. Prada, “Clustering of lrgs in the decals dr8 footprint: Distance constraints from baryon acoustic oscillations using photometric redshifts,” The Astrophysical Journal, vol. 904, no. 1, p. 69, 2020.
  74. F. Beutler, C. Blake, M. Colless, D. H. Jones, L. Staveley-Smith, L. Campbell, Q. Parker, W. Saunders, and F. Watson, “The 6df galaxy survey: baryon acoustic oscillations and the local hubble constant,” Monthly Notices of the Royal Astronomical Society, vol. 416, no. 4, pp. 3017–3032, 2011.
  75. M. Moresco, “Raising the bar: new constraints on the hubble parameter with cosmic chronometers at z  2,” Monthly Notices of the Royal Astronomical Society: Letters, vol. 450, no. 1, pp. L16–L20, 2015.
  76. M. Moresco, L. Pozzetti, A. Cimatti, R. Jimenez, C. Maraston, L. Verde, D. Thomas, A. Citro, R. Tojeiro, and D. Wilkinson, “A 6% measurement of the hubble parameter at z  0.45: direct evidence of the epoch of cosmic re-acceleration,” Journal of Cosmology and Astroparticle Physics, vol. 2016, no. 05, pp. 014–014, 2016.
  77. M. Moresco, L. Verde, L. Pozzetti, R. Jimenez, and A. Cimatti, “New constraints on cosmological parameters and neutrino properties using the expansion rate of the universe to z  1.75,” Journal of Cosmology and Astroparticle Physics, vol. 2012, no. 07, p. 053, 2012.
  78. M. Moresco, A. Cimatti, R. Jimenez, L. Pozzetti, G. Zamorani, M. Bolzonella, J. Dunlop, F. Lamareille, M. Mignoli, H. Pearce, et al., “Improved constraints on the expansion rate of the universe up to z  1.1 from the spectroscopic evolution of cosmic chronometers,” Journal of Cosmology and Astroparticle Physics, vol. 2012, no. 08, pp. 006–006, 2012.
  79. D. M. Scolnic, D. Jones, A. Rest, Y. Pan, R. Chornock, R. Foley, M. Huber, R. Kessler, G. Narayan, A. Riess, et al., “The complete light-curve sample of spectroscopically confirmed sne ia from pan-starrs1 and cosmological constraints from the combined pantheon sample,” The Astrophysical Journal, vol. 859, no. 2, p. 101, 2018.
  80. C. Roberts, K. Horne, A. O. Hodson, and A. D. Leggat, “Tests of λ𝜆\lambdaitalic_λcdm and conformal gravity using grb and quasars as standard candles out to z∼8similar-to𝑧8z\sim 8italic_z ∼ 8,” arXiv preprint arXiv:1711.10369, 2017.
  81. M. Demianski, E. Piedipalumbo, D. Sawant, and L. Amati, “Cosmology with gamma-ray bursts-ii. cosmography challenges and cosmological scenarios for the accelerated universe,” Astronomy & Astrophysics, vol. 598, p. A113, 2017.
  82. A. G. Riess, W. Yuan, L. M. Macri, D. Scolnic, D. Brout, S. Casertano, D. O. Jones, Y. Murakami, G. S. Anand, L. Breuval, et al., “A comprehensive measurement of the local value of the hubble constant with 1 km s- 1 mpc- 1 uncertainty from the hubble space telescope and the sh0es team,” The Astrophysical journal letters, vol. 934, no. 1, p. L7, 2022.
  83. W. Handley, M. Hobson, and A. Lasenby, “Polychord: nested sampling for cosmology,” Monthly Notices of the Royal Astronomical Society: Letters, vol. 450, no. 1, pp. L61–L65, 2015.
  84. A. Lewis, “Getdist: a python package for analysing monte carlo samples,” arXiv preprint arXiv:1910.13970, 2019.
  85. S. Weinberg, “Gravitation and cosmology: principles and applications of the general theory of relativity,” 1972.
  86. V. Sahni and A. Starobinsky, “The case for a positive cosmological λ𝜆\lambdaitalic_λ-term,” International Journal of Modern Physics D, vol. 9, no. 04, pp. 373–443, 2000.
  87. M. Visser, “Jerk, snap and the cosmological equation of state,” Classical and Quantum Gravity, vol. 21, no. 11, p. 2603, 2004.
  88. M. Visser, “Cosmography: Cosmology without the einstein equations,” General Relativity and Gravitation, vol. 37, pp. 1541–1548, 2005.
  89. V. Sahni, T. D. Saini, A. A. Starobinsky, and U. Alam, “Statefinder—a new geometrical diagnostic of dark energy,” Journal of Experimental and Theoretical Physics Letters, vol. 77, pp. 201–206, 2003.
  90. U. Alam, V. Sahni, T. Deep Saini, and A. Starobinsky, “Exploring the expanding universe and dark energy using the statefinder diagnostic,” Monthly Notices of the Royal Astronomical Society, vol. 344, no. 4, pp. 1057–1074, 2003.
  91. M. Sami, M. Shahalam, M. Skugoreva, and A. Toporensky, “Cosmological dynamics of a nonminimally coupled scalar field system and its late time cosmic relevance,” Physical Review D, vol. 86, no. 10, p. 103532, 2012.
  92. R. Myrzakulov and M. Shahalam, “Statefinder hierarchy of bimetric and galileon models for concordance cosmology,” Journal of Cosmology and Astroparticle Physics, vol. 2013, no. 10, p. 047, 2013.
  93. V. Sahni, A. Shafieloo, and A. A. Starobinsky, “Two new diagnostics of dark energy,” Physical Review D, vol. 78, no. 10, p. 103502, 2008.
  94. C. Escamilla-Rivera and J. C. Fabris, “Nonparametric reconstruction of the om diagnostic to test λ𝜆\lambdaitalic_λcdm,” Galaxies, vol. 4, no. 4, p. 76, 2016.
  95. P. Collaboration, N. Aghanim, Y. Akrami, M. Ashdown, J. Aumont, C. Baccigalupi, M. Ballardini, A. Banday, R. Barreiro, N. Bartolo, et al., “Planck 2018 results. vi. cosmological parameters,” 2020.
  96. L. Verde, J. L. Bernal, A. F. Heavens, and R. Jimenez, “The length of the low-redshift standard ruler,” Monthly Notices of the Royal Astronomical Society, vol. 467, no. 1, pp. 731–736, 2017.
Citations (2)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com