Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

BSDA: Bayesian Random Semantic Data Augmentation for Medical Image Classification (2403.06138v2)

Published 10 Mar 2024 in cs.CV

Abstract: Data augmentation is a crucial regularization technique for deep neural networks, particularly in medical image classification. Mainstream data augmentation (DA) methods are usually applied at the image level. Due to the specificity and diversity of medical imaging, expertise is often required to design effective DA strategies, and improper augmentation operations can degrade model performance. Although automatic augmentation methods exist, they are computationally intensive. Semantic data augmentation can implemented by translating features in feature space. However, over-translation may violate the image label. To address these issues, we propose \emph{Bayesian Random Semantic Data Augmentation} (BSDA), a computationally efficient and handcraft-free feature-level DA method. BSDA uses variational Bayesian to estimate the distribution of the augmentable magnitudes, and then a sample from this distribution is added to the original features to perform semantic data augmentation. We performed experiments on nine 2D and five 3D medical image datasets. Experimental results show that BSDA outperforms current DA methods. Additionally, BSDA can be easily assembled into CNNs or Transformers as a plug-and-play module, improving the network's performance. The code is available online at \url{https://github.com/YaoyaoZhu19/BSDA}.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (1)
User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (6)
  1. Yaoyao Zhu (6 papers)
  2. Xiuding Cai (9 papers)
  3. Xueyao Wang (5 papers)
  4. Yu Yao (64 papers)
  5. Xiaoqing Chen (19 papers)
  6. Zhongliang Fu (3 papers)

Summary

We haven't generated a summary for this paper yet.