Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Stochastic Geometry Analysis for Distributed RISs-Assisted mmWave Communications (2403.06073v2)

Published 10 Mar 2024 in cs.IT, eess.SP, and math.IT

Abstract: Millimeter wave (mmWave) has attracted considerable attention due to its wide bandwidth and high frequency. However, it is highly susceptible to blockages, resulting in significant degradation of the coverage and the sum rate. A promising approach is deploying distributed reconfigurable intelligent surfaces (RISs), which can establish extra communication links. In this paper, we investigate the impact of distributed RISs on the coverage probability and the sum rate in mmWave wireless communication systems. Specifically, we first introduce the system model, which includes the blockage, the RIS and the user distribution models, leveraging the Poisson point process. Then, we define the association criterion and derive the conditional coverage probabilities for the two cases of direct association and reflective association through RISs. Finally, we combine the two cases using Campbell's theorem and the total probability theorem to obtain the closed-form expressions for the ergodic coverage probability and the sum rate. Simulation results validate the effectiveness of the proposed analytical approach, demonstrating that the deployment of distributed RISs significantly improves the ergodic coverage probability by 45.4% and the sum rate by over 1.5 times.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (24)
  1. F. Jameel, S. Wyne, S. J. Nawaz, and Z. Chang, “Propagation channels for mmWave vehicular communications: State-of-the-art and future research directions,” IEEE Wireless Commun., vol. 26, no. 1, pp. 144–150, Feb. 2019.
  2. Z. Lodro, N. Shah, E. Mahar, S. B. Tirmizi, and M. Lodro, “Mmwave novel multiband microstrip patch antenna design for 5G communication,” in Int. Conf. Comput., Math. Eng. Technol. (iCoMET), Jan. 2019.
  3. X. Yang, M. Matthaiou, J. Yang, C. K. Wen, F. Gao, and S. Jin, “Hardware-constrained millimeter-wave systems for 5G: Challenges, opportunities, and solutions,” IEEE Commun. Mag., vol. 57, no. 1, pp. 44–50, Jan. 2019.
  4. S. Kutty and D. Sen, “Beamforming for millimeter wave communications: An inclusive survey,” IEEE Commun. Surveys Tuts., vol. 18, no. 2, pp. 949–973, 2nd Quart. 2016.
  5. Y. Niu, Y. Lia, D. Jin, L. Su, and A. V. Vasilakos, “A survey of millimeter wave (mmWave) communications for 5G: Opportunities and challenges,” Wireles Netw., vol. 21, pp. 2657–2676, Nov. 2015.
  6. C. Huang, A. Zappone, G. C. Alexandropoulos, M. Debbah, and C. Yuen, “Reconfigurable intelligent surfaces for energy efficiency in wireless communication,” IEEE Trans. Wireless Commun., vol. 18, no. 8, pp. 4157–4170, Aug. 2019.
  7. L. W. et al., “Joint channel estimation and signal recovery for RIS-empowered multiuser communications,” IEEE Trans. Commun., vol. 70, no. 7, pp. 4640–4655, July 2022.
  8. X. Gan, C. Zhong, C. Huang, Z. Yang, and Z. Zhang, “Multiple RISs assisted cell-free networks with two-timescale CSI: Performance analysis and system design,” IEEE Trans. Commun., vol. 70, no. 11, pp. 7696–7710, Nov. 2022.
  9. A. Faisal, I. Al-Nahhal, O. A. Dobre, and T. M. N. Ngatched, “Deep reinforcement learning for RIS-assisted FD systems: Single or distributed RIS?” IEEE Commun. Lett., vol. 26, no. 7, pp. 1563–1567, July 2022.
  10. M. Z. Win, P. C. Pinto, A. Giorgetti, M. Chiani, and L. A. Shepp, “Error performance of ultrawideband systems in a poisson field of narrowband interferers,” IEEE Int. Symp. Spread Spectrum Tech. Appl., pp. 410–416, Aug. 2006.
  11. M. Z. Win, P. C. Pinto, and L. A. Shepp, “A mathematical theory of network interference and its applications,” Proc. IEEE, vol. 97, pp. 205–230, Feb. 2009.
  12. M. Haenggi, J. G. Andrews, F. Baccelli, O. Dousse, and M. Franceschetti, “Stochastic geometry and random graphs for the analysis and design of wireless networks,” IEEE J. Sel. Areas Commun., vol. 27, no. 7, pp. 1029–1046, Sept. 2009.
  13. T. Bai, R. Vaze, and R. W. Heath, “Analysis of blockage effects on urban cellular networks,” IEEE Wireless Commun., vol. 13, no. 9, pp. 5070–5083, Sept. 2014.
  14. T. Bai and R. W. Heath, “Coverage and rate analysis for millimeter-wave cellular networks,” IEEE Trans. Wireless Commun., vol. 14, no. 2, pp. 1100–1114, Feb. 2015.
  15. M. Rebato, J. Park, P. Popovski, E. D. Carvalho, and M. Zorzi, “Stochastic geometric coverage analysis in mmWave cellular networks with realistic channel and antenna radiation models,” IEEE Trans. Commun., vol. 67, no. 5, pp. 3736–3752, May 2019.
  16. M. A. Kishk and M. S. Alouini, “Exploiting randomly located blockages for large-scale deployment of intelligent surfaces,” IEEE J. Sel. Areas Commun., vol. 39, no. 4, pp. 1043–1056, Apr. 2021.
  17. Y. Zhu, G. Zheng, and K. K. Wong, “Stochastic geometry analysis of large intelligent surface-assisted millimeter wave networks,” IEEE J. Sel. Areas Commun., vol. 38, no. 8, pp. 1749–1762, Aug. 2020.
  18. R. Cowan, “Objects arranged randomly in space: An accessible theory,” Adv. Appl. Probab., vol. 21, no. 3, pp. 543–569, Sep. 1989.
  19. Q. H. Spencer, A. L. Swindlehurst, and M. Haardt, “Zero-forcing methods for downlink spatial multiplexing in multiuser MIMO channels,” IEEE Trans. Signal Process., vol. 52, no. 2, pp. 461–471, Feb. 2004.
  20. D. H. N. Nguyen, L. B. Le, T. Le-Ngoc, and R. W. Heath, “Hybrid MMSE precoding and combining designs for mmwave multiuser systems,” IEEE Access, vol. 5, pp. 19 167–19 181, Sept. 2017.
  21. A. Li and C. Masouros, “Hybrid precoding and combining design for millimeter-wave multi-user MIMO based on SVD,” in 2017 IEEE Int. Conf. Commun. (ICC), May 2017.
  22. D. Moltchanov, “Distance distributions in random networks,” Ad Hoc Networks, vol. 10, no. 6, pp. 1146–1166, 2012.
  23. Baddeley, A., J. Møller, and R. Waagepetersen., “Non- and semi-parametric estimation of interaction in inhomogeneous point patterns,” Stat. Neerl., vol. 54, no. 3, pp. 329–350, 2000.
  24. H. P. Keeler, “Campbell’s theorem,” 2015.
Citations (1)

Summary

We haven't generated a summary for this paper yet.