Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Structure-Aware Computing, Partial Quantifier Elimination And SAT (2403.05928v6)

Published 9 Mar 2024 in cs.LO

Abstract: Virtually all efficient algorithms of hardware verification are formula-specific i.e., take into account the structure of the formula at hand. So, those algorithms can be viewed as $\mathit{structure}$-$\mathit{aware\;computing}$ (SAC). We relate SAC and $\mathit{partial\;quantifier\;elimination}$ (PQE), a generalization of regular quantifier elimination. In PQE, one can take a $\mathit{part}$ of the formula out of the scope of quantifiers. Interpolation can be viewed as a special case of PQE. The objective of this paper is twofold. First, we want to show that new powerful methods of SAC can be formulated in terms of PQE. We use three hardware verification problems (testing by property generation, equivalence checking and model checking) to explain how SAC is performed by PQE. Second, we want to demonstrate that PQE solving itself can benefit from SAC. To this end, we describe a new SAT procedure based on SAC and then use it to introduce a structure-aware PQE algorithm.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (38)
  1. J. Marques-Silva and K. Sakallah, “Grasp – a new search algorithm for satisfiability,” in ICCAD-96, 1996, pp. 220–227.
  2. E. Goldberg and P. Manolios, “Partial quantifier elimination,” in Proc. of HVC-14.   Springer-Verlag, 2014, pp. 148–164.
  3. E. Goldberg, “Equivalence checking by logic relaxation,” in FMCAD-16, 2016, pp. 49–56.
  4. ——, “Partial quantifier elimination and propertry generation,” in Enea, C., Lal, A. (eds) Computer Aided Verification, CAV-23,Lecture Notes in Computer Science, Part II, vol. 13965, 2023, pp. 110–131.
  5. O. Kullmann, “New methods for 3-sat decision and worst-case analysis,” Theor. Comput. Sci., vol. 223, no. 1-2, pp. 1–72, 1999.
  6. E. Goldberg, “Partial quantifier elimination by certificate clauses,” Tech. Rep. arXiv:2003.09667 [cs.LO], 2020.
  7. K. McMillan, “Applying sat methods in unbounded symbolic model checking,” in Proc. of CAV-02.   Springer-Verlag, 2002, pp. 250–264.
  8. J. Jiang, “Quantifier elimination via functional composition,” in Proceedings of the 21st International Conference on Computer Aided Verification, ser. CAV-09, 2009, pp. 383–397.
  9. J. Brauer, A. King, and J. Kriener, “Existential quantification as incremental sat,” ser. CAV-11, 2011, pp. 191–207.
  10. W. Klieber, M. Janota, J.Marques-Silva, and E. Clarke, “Solving qbf with free variables,” in CP, 2013, pp. 415–431.
  11. N. Bjorner and M. Janota, “Playing with quantified satisfaction,” in LPAR, 2015.
  12. M. Rabe, “Incremental determinization for quantifier elimination and functional synthesis,” in CAV, 2019.
  13. E. Goldberg and P. Manolios, “Quantifier elimination by dependency sequents,” in FMCAD-12, 2012, pp. 34–44.
  14. ——, “Quantifier elimination via clause redundancy,” in FMCAD-13, 2013, pp. 85–92.
  15. The source of 𝐷𝑆𝐷𝑆\mathit{DS}italic_DS-𝑃𝑄𝐸𝑃𝑄𝐸\mathit{PQE}italic_PQE, http://eigold.tripod.com/software/ds-pqe.tar.gz.
  16. The source of 𝐸𝐺𝐸𝐺\mathit{EG}italic_EG-𝑃𝑄𝐸+superscript𝑃𝑄𝐸\mathit{PQE}^{+}italic_PQE start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT, http://eigold.tripod.com/software/eg-pqe-pl.1.0.tar.gz.
  17. N. Bombieri, F. Fummi, and G. Pravadelli, “Hardware design and simulation for verification,” in 6th International School on Formal Methods for the Design of Computer, Communication, and Software Systems, SFM 2006, vol. 3965, pp. 1–29.
  18. G. Tseitin, “On the complexity of derivation in the propositional calculus,” Zapiski nauchnykh seminarov LOMI, vol. 8, pp. 234–259, 1968, english translation of this volume: Consultants Bureau, N.Y., 1970, pp. 115–125.
  19. C. Berman and L. Trevillyan, “Functional comparison of logic designs for vlsi circuits,” pp. 456–459, 1989.
  20. D. Brand, “Verification of large synthesized designs,” pp. 534–537, 1993.
  21. A. Kuehlmann and F. Krohm, “Equivalence Checking Using Cuts And Heaps,” DAC, pp. 263–268, 1997.
  22. E. Goldberg, M. Prasad, and R. Brayton, “Using SAT for combinational equivalence checking,” in DATE-01, 2001, pp. 114–121.
  23. A. Mishchenko, S. Chatterjee, R. Brayton, and N. Een, “Improvements to combinational equivalence checking,” in ICCAD-06, 2006, pp. 836–843.
  24. B. L. Synthesis and V. Group, “ABC: A system for sequential synthesis and verification,” 2017, http://www.eecs.berkeley.edu/∼similar-to\sim∼alanmi/abc.
  25. A. Biere, A. Cimatti, E. Clarke, M. Fujita, and Y. Zhu, “Symbolic model checking using sat procedures instead of bdds,” in DAC, 1999, pp. 317–320.
  26. D. Kroening and O.Strichman, “Efficient computation of recurrence diameters,” in Proceedings of the 4th International Conference on Verification, Model Checking, and Abstract Interpretation, 2002, p. 298–309.
  27. M. Davis, G. Logemann, and D. Loveland, “A machine program for theorem proving,” Communications of the ACM, vol. 5, no. 7, pp. 394–397, July 1962.
  28. M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, and S. Malik, “Chaff: engineering an efficient sat solver,” in DAC-01, New York, NY, USA, 2001, pp. 530–535.
  29. N. Eén and N. Sörensson, “An extensible sat-solver,” in SAT, Santa Margherita Ligure, Italy, 2003, pp. 502–518.
  30. A. Biere, “Picosat essentials,” JSAT, vol. 4, no. 2-4, pp. 75–97, 2008.
  31. N. Eén and A. Biere, “Effective preprocessing in sat through variable and clause elimination,” in SAT, 2005, pp. 61–75.
  32. M. Järvisalo, M. Heule, and A. Biere, “Inprocessing rules,” ser. IJCAR-12, 2012, pp. 355–370.
  33. R. Joseph, M. Heule, and R. Bryant, “Preprocessing of propagation redundant clauses,” in Automated Reasoning.   Springer International Publishing, 2022, pp. 106–124.
  34. W. Craig, “Three uses of the herbrand-gentzen theorem in relating model theory and proof theory,” The Journal of Symbolic Logic, vol. 22, no. 3, pp. 269–285, 1957.
  35. K. McMillan, “Interpolation and sat-based model checking,” in CAV-03.   Springer, 2003, pp. 1–13.
  36. A. R. Bradley, “Sat-based model checking without unrolling,” in VMCAI, 2011, pp. 70–87.
  37. B. Selman, H. J. Levesque, and D. G. Mitchell, “A new method for solving hard satisfiability problems,” in Proceedings of the 10th National Conference on Artificial Intelligence, San Jose, CA, USA, July 12-16, 1992, 1992, pp. 440–446.
  38. H. Kautz and B. Selman, “Pushing the envelope: Planning, propositional logic, and stochastic search,” in Proceedings of the Thirteenth National Conference on Artificial Intelligence - Volume 2, ser. AAAI’96.   AAAI Press, 1996, p. 1194–1201.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com