Low-Rank Variational Quantum Algorithm for the Dynamics of Open Quantum Systems (2403.05908v1)
Abstract: The simulation of many-body open quantum systems is key to solving numerous outstanding problems in physics, chemistry, material science, and in the development of quantum technologies. Near-term quantum computers may bring considerable advantage for the efficient simulation of their static and dynamical properties, thanks to hybrid quantum-classical variational algorithms to approximate the dynamics of the density matrix describing the quantum state in terms of an ensemble average. Here, a variational quantum algorithm is developed to simulate the real-time evolution of the density matrix governed by the Lindblad master equation, under the assumption that the quantum state has a bounded entropy along the dynamics, entailing a low-rank representation of its density matrix. The algorithm encodes each pure state of the statistical mixture as a parametrized quantum circuit, and the associated probabilities as additional variational parameters stored classically, thereby requiring a significantly lower number of qubits than algorithms where the full density matrix is encoded in the quantum memory. Two variational Ans\"atze are proposed, and their effectiveness is assessed in the simulation of the dynamics of a 2D dissipative transverse field Ising model. The results underscore the algorithm's efficiency in simulating the dynamics of open quantum systems in the low-rank regime with limited quantum resources on a near-term quantum device.
- The Theory of Open Quantum Systems. Oxford University Press, 2007.
- Andrew J. Daley. Quantum trajectories and open many-body quantum systems. Advances in Physics, 63(2):77–149, mar 2014. doi: 10.1080/00018732.2014.933502. URL https://doi.org/10.1080%2F00018732.2014.933502.
- Monte carlo simulation of the atomic master equation for spontaneous emission. Phys. Rev. A, 45:4879–4887, Apr 1992. doi: 10.1103/PhysRevA.45.4879. URL https://link.aps.org/doi/10.1103/PhysRevA.45.4879.
- Wave-function approach to dissipative processes in quantum optics. Phys. Rev. Lett., 68:580–583, Feb 1992. doi: 10.1103/PhysRevLett.68.580. URL https://link.aps.org/doi/10.1103/PhysRevLett.68.580.
- Howard Charmichael. An Open Systems Approach to Quantum Optics. Springer-Verlag, 1993. ISBN 978-0-387-56634-4.
- Simulation methods for open quantum many-body systems. Rev. Mod. Phys., 93:015008, Mar 2021. doi: 10.1103/RevModPhys.93.015008. URL https://link.aps.org/doi/10.1103/RevModPhys.93.015008.
- Comparing bipartite entropy growth in open-system matrix-product simulation methods. Phys. Rev. A, 108:012616, Jul 2023. doi: 10.1103/PhysRevA.108.012616. URL https://link.aps.org/doi/10.1103/PhysRevA.108.012616.
- Richard P. Feynman. Simulating physics with computers. International Journal of Theoretical Physics, 1982. doi: 10.1007/BF02650179.
- Seth Lloyd. Universal quantum simulators. Science, 273(5278):1073–1078, 1996. doi: 10.1126/science.273.5278.1073.
- Quantum computers as universal quantum simulators: State-of-the-art and perspectives. Advanced Quantum Technologies, 3(3):1900052, 2020. doi: https://doi.org/10.1002/qute.201900052. URL https://onlinelibrary.wiley.com/doi/abs/10.1002/qute.201900052.
- Theory of trotter error with commutator scaling. Phys. Rev. X, 11:011020, Feb 2021. doi: 10.1103/PhysRevX.11.011020. URL https://link.aps.org/doi/10.1103/PhysRevX.11.011020.
- John Preskill. Quantum Computing in the NISQ era and beyond. Quantum, 2:79, August 2018. ISSN 2521-327X. doi: 10.22331/q-2018-08-06-79. URL https://doi.org/10.22331/q-2018-08-06-79.
- Variational quantum algorithms. Nat Rev Phys, 3:625–644, 2021. doi: https://doi.org/10.1038/s42254-021-00348-9.
- Quantum algorithms for quantum chemistry and quantum materials science. Chemical Reviews, 120(22):12685–12717, 2020. doi: 10.1021/acs.chemrev.9b00829. URL https://doi.org/10.1021/acs.chemrev.9b00829. PMID: 33090772.
- Noisy intermediate-scale quantum algorithms. Rev. Mod. Phys., 94:015004, Feb 2022. doi: 10.1103/RevModPhys.94.015004. URL https://link.aps.org/doi/10.1103/RevModPhys.94.015004.
- An open-system quantum simulator with trapped ions. Nature, 470(7335):486–491, February 2011. ISSN 1476-4687. doi: 10.1038/nature09801. URL http://dx.doi.org/10.1038/nature09801.
- Quantum algorithm for simulating the dynamics of an open quantum system. Phys. Rev. A, 83:062317, Jun 2011. doi: 10.1103/PhysRevA.83.062317. URL https://link.aps.org/doi/10.1103/PhysRevA.83.062317.
- Simulation of single-qubit open quantum systems. Phys. Rev. A, 90:022331, Aug 2014. doi: 10.1103/PhysRevA.90.022331. URL https://link.aps.org/doi/10.1103/PhysRevA.90.022331.
- Universal simulation of markovian open quantum systems. Phys. Rev. A, 91:062308, Jun 2015. doi: 10.1103/PhysRevA.91.062308. URL https://link.aps.org/doi/10.1103/PhysRevA.91.062308.
- Quantum simulation of dissipative processes without reservoir engineering. Scientific Reports, 5(1), May 2015. ISSN 2045-2322. doi: 10.1038/srep09981. URL http://dx.doi.org/10.1038/srep09981.
- Digital quantum simulation of many-body non-markovian dynamics. Phys. Rev. A, 94:022317, Aug 2016. doi: 10.1103/PhysRevA.94.022317. URL https://link.aps.org/doi/10.1103/PhysRevA.94.022317.
- Quantum simulation of generic many-body open system dynamics using classical noise. Phys. Rev. Lett., 118:140403, Apr 2017. doi: 10.1103/PhysRevLett.118.140403. URL https://link.aps.org/doi/10.1103/PhysRevLett.118.140403.
- Efficient Quantum Algorithms for Simulating Lindblad Evolution. In Ioannis Chatzigiannakis, Piotr Indyk, Fabian Kuhn, and Anca Muscholl, editors, 44th International Colloquium on Automata, Languages, and Programming (ICALP 2017), volume 80 of Leibniz International Proceedings in Informatics (LIPIcs), pages 17:1–17:14, Dagstuhl, Germany, 2017. Schloss Dagstuhl – Leibniz-Zentrum für Informatik. ISBN 978-3-95977-041-5. doi: 10.4230/LIPIcs.ICALP.2017.17. URL https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2017.17.
- Ibm q experience as a versatile experimental testbed for simulating open quantum systems. npj Quantum Information, 6(1), January 2020. ISSN 2056-6387. doi: 10.1038/s41534-019-0235-y. URL http://dx.doi.org/10.1038/s41534-019-0235-y.
- Quantum algorithm for the simulation of open-system dynamics and thermalization. Phys. Rev. A, 101:012328, Jan 2020a. doi: 10.1103/PhysRevA.101.012328. URL https://link.aps.org/doi/10.1103/PhysRevA.101.012328.
- Variational quantum simulation of general processes. Phys. Rev. Lett., 125:010501, Jun 2020. doi: 10.1103/PhysRevLett.125.010501. URL https://link.aps.org/doi/10.1103/PhysRevLett.125.010501.
- Variational quantum algorithm for nonequilibrium steady states. Phys. Rev. Res., 2:043289, November 2020. doi: 10.1103/PhysRevResearch.2.043289. URL https://link.aps.org/doi/10.1103/PhysRevResearch.2.043289.
- A quantum algorithm for the direct estimation of the steady state of open quantum systems. Quantum, 5:399, February 2021. ISSN 2521-327X. doi: 10.22331/q-2021-02-22-399. URL https://doi.org/10.22331/q-2021-02-22-399.
- Experimental simulation of open quantum system dynamics via trotterization. Phys. Rev. Lett., 127:020504, Jul 2021. doi: 10.1103/PhysRevLett.127.020504. URL https://link.aps.org/doi/10.1103/PhysRevLett.127.020504.
- Digital quantum simulation of open quantum systems using quantum imaginary–time evolution. PRX Quantum, 3:010320, February 2022. doi: 10.1103/PRXQuantum.3.010320. URL https://link.aps.org/doi/10.1103/PRXQuantum.3.010320.
- Solving quantum master equations with deep quantum neural networks. Phys. Rev. Res., 4:013097, Feb 2022. doi: 10.1103/PhysRevResearch.4.013097. URL https://link.aps.org/doi/10.1103/PhysRevResearch.4.013097.
- A general quantum algorithm for open quantum dynamics demonstrated with the Fenna-Matthews-Olson complex. Quantum, 6:726, May 2022. ISSN 2521-327X. doi: 10.22331/q-2022-05-30-726. URL https://doi.org/10.22331/q-2022-05-30-726.
- Variational quantum algorithms for simulation of lindblad dynamics, May 2023. URL https://arxiv.org/abs/2305.02815.
- Adaptive variational simulation for open quantum systems. Quantum, 8:1252, February 2024. ISSN 2521-327X. doi: 10.22331/q-2024-02-13-1252. URL https://doi.org/10.22331/q-2024-02-13-1252.
- Problem of equilibration and the computation of correlation functions on a quantum computer. Phys. Rev. A, 61:022301, Jan 2000. doi: 10.1103/PhysRevA.61.022301. URL https://link.aps.org/doi/10.1103/PhysRevA.61.022301.
- Quantum mixed state compiling. Quantum Science and Technology, 8(3):035001, apr 2023. doi: 10.1088/2058-9565/acc4e3. URL https://dx.doi.org/10.1088/2058-9565/acc4e3.
- Quantum algorithm for the simulation of open-system dynamics and thermalization. Phys. Rev. A, 101:012328, Jan 2020b. doi: 10.1103/PhysRevA.101.012328. URL https://link.aps.org/doi/10.1103/PhysRevA.101.012328.
- Qubit-efficient simulation of thermal states with quantum tensor networks. Phys. Rev. B, 106:165126, Oct 2022. doi: 10.1103/PhysRevB.106.165126. URL https://link.aps.org/doi/10.1103/PhysRevB.106.165126.
- Continuous-time dynamics and error scaling of noisy highly entangling quantum circuits. Physical Review A, 104(6), December 2021. ISSN 2469-9934. doi: 10.1103/physreva.104.062407. URL http://dx.doi.org/10.1103/PhysRevA.104.062407.
- Variational fast forwarding for quantum simulation beyond the coherence time. npj Quantum Inf, 6:82, 2020. doi: https://doi.org/10.1038/s41534-020-00302-0.
- Adaptive variational low-rank dynamics for open quantum systems, November 2023. URL https://arxiv.org/abs/2312.13676.
- The complexity of the local hamiltonian problem. SIAM Journal on Computing, 35(5):1070–1097, 2006. doi: 10.1137/S0097539704445226. URL https://doi.org/10.1137/S0097539704445226.
- Quantum hamiltonian-based models and the variational quantum thermalizer algorithm, October 2019. URL https://arxiv.org/abs/1910.02071.
- Solving quantum statistical mechanics with variational autoregressive networks and quantum circuits. Machine Learning: Science and Technology, 2(2), February 2021. doi: 10.1088/2632-2153/aba19d. URL https://dx.doi.org/10.1088/2632-2153/aba19d.
- Fast computation of dissipative quantum systems with ensemble rank truncation. Physical Review Research, 3(1), January 2021. ISSN 2643-1564. doi: 10.1103/physrevresearch.3.013017. URL http://dx.doi.org/10.1103/PhysRevResearch.3.013017.
- Low-rank density-matrix evolution for noisy quantum circuits. npj Quantum Information, 7(1):61, Apr 2021. ISSN 2056-6387. doi: 10.1038/s41534-021-00392-4. URL https://doi.org/10.1038/s41534-021-00392-4.
- C. Le Bris and P. Rouchon. Low-rank numerical approximations for high-dimensional lindblad equations. Physical Review A, 87(2), February 2013. ISSN 1094-1622. doi: 10.1103/physreva.87.022125. URL http://dx.doi.org/10.1103/PhysRevA.87.022125.
- Theory of variational quantum simulation. Quantum, 3:191, October 2019. ISSN 2521-327X. doi: 10.22331/q-2019-10-07-191. URL https://doi.org/10.22331/q-2019-10-07-191.
- Problem-free time-dependent variational principle for open quantum systems. The Journal of Chemical Physics, 142(13), 04 2015. ISSN 0021-9606. doi: 10.1063/1.4916384. URL https://doi.org/10.1063/1.4916384. 134107.
- Quantum error mitigation. Rev. Mod. Phys., 95:045005, Dec 2023. doi: 10.1103/RevModPhys.95.045005. URL https://link.aps.org/doi/10.1103/RevModPhys.95.045005.
- Extending quantum probabilistic error cancellation by noise scaling. Physical Review A, 104(5), nov 2021. doi: 10.1103/physreva.104.052607. URL https://doi.org/10.1103%2Fphysreva.104.052607.
- Probabilistic error cancellation with sparse pauli–lindblad models on noisy quantum processors. Nature Physics, 19(8):1116–1121, Aug 2023. ISSN 1745-2481. doi: 10.1038/s41567-023-02042-2. URL https://doi.org/10.1038/s41567-023-02042-2.
- Practical quantum error mitigation for near-future applications. Physical Review X, 8(3), jul 2018. doi: 10.1103/physrevx.8.031027. URL https://doi.org/10.1103%2Fphysrevx.8.031027.
- Hybrid quantum-classical algorithms and quantum error mitigation. Journal of the Physical Society of Japan, 90(3):032001, mar 2021. doi: 10.7566/jpsj.90.032001. URL https://doi.org/10.7566%2Fjpsj.90.032001.
- Scalable mitigation of measurement errors on quantum computers. PRX Quantum, 2(4), November 2021. ISSN 2691-3399. doi: 10.1103/prxquantum.2.040326. URL http://dx.doi.org/10.1103/PRXQuantum.2.040326.
- Efficient quantum readout-error mitigation for sparse measurement outcomes of near-term quantum devices. Physical Review A, 106(1), July 2022. ISSN 2469-9934. doi: 10.1103/physreva.106.012423. URL http://dx.doi.org/10.1103/PhysRevA.106.012423.
- Yao.jl: Extensible, Efficient Framework for Quantum Algorithm Design. Quantum, 4:341, October 2020. ISSN 2521-327X. doi: 10.22331/q-2020-10-11-341. URL https://doi.org/10.22331/q-2020-10-11-341.
- Qutip: An open-source python framework for the dynamics of open quantum systems. Computer Physics Communications, 183(8):1760–1772, August 2012. ISSN 0010-4655. doi: 10.1016/j.cpc.2012.02.021. URL http://dx.doi.org/10.1016/j.cpc.2012.02.021.
- Qutip 2: A python framework for the dynamics of open quantum systems. Computer Physics Communications, 184(4):1234–1240, April 2013. ISSN 0010-4655. doi: 10.1016/j.cpc.2012.11.019. URL http://dx.doi.org/10.1016/j.cpc.2012.11.019.
- An efficient quantum algorithm for the time evolution of parameterized circuits. Quantum, 5:512, July 2021. ISSN 2521-327X. doi: 10.22331/q-2021-07-28-512. URL https://doi.org/10.22331/q-2021-07-28-512.
- Gadi Aleksandrowicz et al. Qiskit: An Open-source Framework for Quantum Computing. 2019. doi: 10.5281/zenodo.2562111. URL https://doi.org/10.5281/zenodo.2562111.
- Random density matrices: Analytical results for mean root fidelity and the mean-square bures distance. Physical Review A, 104(2), aug 2021. doi: 10.1103/physreva.104.022438. URL https://doi.org/10.1103%2Fphysreva.104.022438.
- Variational quantum time evolution without the quantum geometric tensor. Phys. Rev. Res., 6:013143, Feb 2024. doi: 10.1103/PhysRevResearch.6.013143. URL https://link.aps.org/doi/10.1103/PhysRevResearch.6.013143.
- Unbiasing time-dependent variational monte carlo by projected quantum evolution. Quantum, 7:1131, October 2023. ISSN 2521-327X. doi: 10.22331/q-2023-10-10-1131. URL http://dx.doi.org/10.22331/q-2023-10-10-1131.
- Tetsuji Kimura. Explicit description of the zassenhaus formula. Progress of Theoretical and Experimental Physics, 2017(4), April 2017. ISSN 2050-3911. doi: 10.1093/ptep/ptx044. URL http://dx.doi.org/10.1093/ptep/ptx044.
- Methodology for replacing indirect measurements with direct measurements. Phys. Rev. Res., 1:013006, August 2019. doi: 10.1103/PhysRevResearch.1.013006. URL https://link.aps.org/doi/10.1103/PhysRevResearch.1.013006.
- Error bounds for variational quantum time evolution. Phys. Rev. Appl., 20:044059, Oct 2023. doi: 10.1103/PhysRevApplied.20.044059. URL https://link.aps.org/doi/10.1103/PhysRevApplied.20.044059.
- Variational quantum dynamics of two-dimensional rotor models. PRX Quantum, 4(4), October 2023. ISSN 2691-3399. doi: 10.1103/prxquantum.4.040302. URL http://dx.doi.org/10.1103/PRXQuantum.4.040302.