Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Safe Merging in Mixed Traffic with Confidence (2403.05742v1)

Published 9 Mar 2024 in eess.SY, cs.RO, and cs.SY

Abstract: In this letter, we present an approach for learning human driving behavior, without relying on specific model structures or prior distributions, in a mixed-traffic environment where connected and automated vehicles (CAVs) coexist with human-driven vehicles (HDVs). We employ conformal prediction to obtain theoretical safety guarantees and use real-world traffic data to validate our approach. Then, we design a controller that ensures effective merging of CAVs with HDVs with safety guarantees. We provide numerical simulations to illustrate the efficacy of the control approach.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (25)
  1. A. A. Malikopoulos and L. Zhao, “A closed-form analytical solution for optimal coordination of connected and automated vehicles,” in 2019 American Control Conference (ACC).   IEEE, 2019, pp. 3599–3604.
  2. H. Bang and A. A. Malikopoulos, “A hierarchical approach to optimal flow-based routing and coordination of connected and automated vehicles,” in Proceedings of the 62nd IEEE Conference on Decision and Control (CDC), 2023, pp. 7100–7105.
  3. A. A. Malikopoulos, L. E. Beaver, and I. V. Chremos, “Optimal time trajectory and coordination for connected and automated vehicles,” Automatica, vol. 125, no. 109469, 2021.
  4. B. Chalaki, V. Tadiparthi, H. N. Mahjoub, J. D’sa, E. Moradi-Pari, A. S. C. Armijos, A. Li, and C. G. Cassandras, “Minimally disruptive cooperative lane-change maneuvers,” IEEE Control Systems Letters, 2023.
  5. H. Bang, A. Dave, and A. A. Malikopoulos, “Routing in Mixed Transportation Systems for Mobility Equity,” Proceedings of the 2024 American Control Conference, 2024 (to appear, arXiv:2309.03981).
  6. W. Schwarting, A. Pierson, J. Alonso-Mora, S. Karaman, and D. Rus, “Social behavior for autonomous vehicles,” Proceedings of the National Academy of Sciences, vol. 116, no. 50, pp. 24 972–24 978, 2019.
  7. K. Liu, N. Li, H. E. Tseng, I. Kolmanovsky, A. Girard, and D. Filev, “Cooperation-aware decision making for autonomous vehicles in merge scenarios,” in 2021 60th IEEE Conference on Decision and Control (CDC).   IEEE, 2021, pp. 5006–5012.
  8. M. Liu, I. Kolmanovsky, H. E. Tseng, S. Huang, D. Filev, and A. Girard, “Potential game-based decision-making for autonomous driving,” IEEE Transactions on Intelligent Transportation Systems, 2023.
  9. J. Guo, S. Cheng, and Y. Liu, “Merging and diverging impact on mixed traffic of regular and autonomous vehicles,” IEEE Transactions on Intelligent Transportation Systems, vol. 22, no. 3, pp. 1639–1649, 2020.
  10. V.-A. Le, B. Chalaki, F. N. Tzortzoglou, and A. A. Malikopoulos, “Stochastic Time-Optimal Trajectory Planning for Connected and Automated Vehicles in Mixed-Traffic Merging Scenarios,” arXiv preprint arXiv:2311.00126, 2023.
  11. F. Altché and A. de La Fortelle, “An lstm network for highway trajectory prediction,” in 2017 IEEE 20th international conference on intelligent transportation systems (ITSC).   IEEE, 2017, pp. 353–359.
  12. S. H. Park, B. Kim, C. M. Kang, C. C. Chung, and J. W. Choi, “Sequence-to-sequence prediction of vehicle trajectory via lstm encoder-decoder architecture,” in 2018 IEEE intelligent vehicles symposium (IV).   IEEE, 2018, pp. 1672–1678.
  13. N. Deo and M. M. Trivedi, “Convolutional social pooling for vehicle trajectory prediction,” in Proceedings of the IEEE conference on computer vision and pattern recognition workshops, 2018, pp. 1468–1476.
  14. N. Venkatesh, V.-A. Le, A. Dave, and A. A. Malikopoulos, “Connected and automated vehicles in mixed-traffic: Learning human driver behavior for effective on-ramp merging,” in Proceedings of the 62nd IEEE Conference on Decision and Control (CDC).   IEEE, 2023, pp. 92–97.
  15. Z. el abidine Kherroubi, S. Aknine, and R. Bacha, “Novel decision-making strategy for connected and autonomous vehicles in highway on-ramp merging,” IEEE Transactions on Intelligent Transportation Systems, vol. 23, no. 8, pp. 12 490–12 502, 2021.
  16. Z. Yan and C. Wu, “Reinforcement learning for mixed autonomy intersections,” in 2021 IEEE International Intelligent Transportation Systems Conference (ITSC).   IEEE, 2021, pp. 2089–2094.
  17. B. Peng, M. F. Keskin, B. Kulcsár, and H. Wymeersch, “Connected autonomous vehicles for improving mixed traffic efficiency in unsignalized intersections with deep reinforcement learning,” Communications in Transportation Research, vol. 1, p. 100017, 2021.
  18. A. N. Angelopoulos and S. Bates, “Conformal prediction: A gentle introduction,” Foundations and Trends® in Machine Learning, vol. 16, no. 4, pp. 494–591, 2023.
  19. M. Zaffran, O. Féron, Y. Goude, J. Josse, and A. Dieuleveut, “Adaptive conformal predictions for time series,” in International Conference on Machine Learning.   PMLR, 2022, pp. 25 834–25 866.
  20. K. Stankeviciute, A. M Alaa, and M. van der Schaar, “Conformal time-series forecasting,” Advances in neural information processing systems, vol. 34, pp. 6216–6228, 2021.
  21. B. Nettasinghe, S. Chatterjee, R. Tipireddy, and M. M. Halappanavar, “Extending conformal prediction to hidden markov models with exact validity via de finetti’s theorem for markov chains,” in International Conference on Machine Learning.   PMLR, 2023, pp. 25 890–25 903.
  22. L. Lindemann, M. Cleaveland, G. Shim, and G. J. Pappas, “Safe planning in dynamic environments using conformal prediction,” IEEE Robotics and Automation Letters, 2023.
  23. J. Subramanian, A. Sinha, R. Seraj, and A. Mahajan, “Approximate information state for approximate planning and reinforcement learning in partially observed systems,” The Journal of Machine Learning Research, vol. 23, no. 1, pp. 483–565, 2022.
  24. T. Moers, L. Vater, R. Krajewski, J. Bock, A. Zlocki, and L. Eckstein, “The exid dataset: A real-world trajectory dataset of highly interactive highway scenarios in germany,” in 2022 IEEE Intelligent Vehicles Symposium (IV), 2022, pp. 958–964.
  25. R. J. Tibshirani, R. Foygel Barber, E. Candes, and A. Ramdas, “Conformal prediction under covariate shift,” Advances in neural information processing systems, vol. 32, 2019.
Citations (3)

Summary

We haven't generated a summary for this paper yet.