Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Micro-Fracture Detection in Photovoltaic Cells with Hardware-Constrained Devices and Computer Vision (2403.05694v1)

Published 8 Mar 2024 in cs.CV and cond-mat.mtrl-sci

Abstract: Solar energy is rapidly becoming a robust renewable energy source to conventional finite resources such as fossil fuels. It is harvested using interconnected photovoltaic panels, typically built with crystalline silicon cells, i.e. semiconducting materials that convert effectively the solar radiation into electricity. However, crystalline silicon is fragile and vulnerable to cracking over time or in predictive maintenance tasks, which can lead to electric isolation of parts of the solar cell and even failure, thus affecting the panel performance and reducing electricity generation. This work aims to developing a system for detecting cell cracks in solar panels to anticipate and alaert of a potential failure of the photovoltaic system by using computer vision techniques. Three scenarios are defined where these techniques will bring value. In scenario A, images are taken manually and the system detecting failures in the solar cells is not subject to any computationa constraints. In scenario B, an Edge device is placed near the solar farm, able to make inferences. Finally, in scenario C, a small microcontroller is placed in a drone flying over the solar farm and making inferences about the solar cells' states. Three different architectures are found the most suitable solutions, one for each scenario, namely the InceptionV3 model, an EfficientNetB0 model shrunk into full integer quantization, and a customized CNN architechture built with VGG16 blocks.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (39)
  1. A. M. Gabor, M. Ralli, S. Montminy, L. Alegria, C. M. Bordonaro, J. T. Woods, L. Felton, M. J. Davis, B. Atchley, and T. R. Williams, “Soldering induced damage to thin si solar cells and detection of cracked cells in modules,” 2006. [Online]. Available: https://api.semanticscholar.org/CorpusID:135204414
  2. D. Stromer, A. Vetter, H. C. Oezkan, C. Probst, and A. Maier, “Enhanced crack segmentation (ecs): A reference algorithm for segmenting cracks in multicrystalline silicon solar cells,” IEEE Journal of Photovoltaics, vol. 9, no. 3, pp. 752–758, 2019.
  3. C. M. Whitaker, B. G. Pierce, A. M. Karimi, R. H. French, and J. L. Braid, “Pv cell cracks and impacts on electrical performance,” in 2020 47th IEEE Photovoltaic Specialists Conference (PVSC), 2020, pp. 1417–1422.
  4. P. Xu, W. Zhou, and M. Fei, “Detection methods for micro-cracked defects of photovoltaic modules based on machine vision,” in 2014 IEEE 3rd International Conference on Cloud Computing and Intelligence Systems, 2014, pp. 609–613.
  5. S. Kajari-Schröder, I. Kunze, U. Eitner, and M. Köntges, “Spatial and orientational distribution of cracks in crystalline photovoltaic modules generated by mechanical load tests,” Solar Energy Materials and Solar Cells, vol. 95, pp. 3054–3059, 2011. [Online]. Available: https://api.semanticscholar.org/CorpusID:97976049
  6. F. Haase, J. Käsewieter, S. R. Nabavi, E. Jansen, R. Rolfes, and M. Köntges, “Fracture probability, crack patterns, and crack widths of multicrystalline silicon solar cells in pv modules during mechanical loading,” IEEE Journal of Photovoltaics, vol. 8, no. 6, pp. 1510–1524, 2018.
  7. M. Hoffmann, C. Buerhop‐Lutz, L. Reeb, T. Pickel, T. Winkler, B. Doll, T. Würfl, I. M. Peters, C. J. Brabec, A. K. Maier, and V. Christlein, “Deep learning-based pipeline for module power prediction from el measurements,” ArXiv, vol. abs/2009.14712, 2020. [Online]. Available: https://api.semanticscholar.org/CorpusID:222066680
  8. S. Spataru, P. Hacke, and D. Sera, “Automatic detection of inactive solar cell cracks in electroluminescence images,” in 2017 IEEE 44th Photovoltaic Specialist Conference (PVSC), 2017, pp. 1421–1426.
  9. M. Köntges, I. Kunze, S. Kajari-Schröder, X. Breitenmoser, and B. Bjørneklett, “The risk of power loss in crystalline silicon based photovoltaic modules due to micro-cracks,” Solar Energy Materials and Solar Cells, vol. 95, no. 4, pp. 1131–1137, 2011. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0927024810007129
  10. D.-M. Tsai, S.-C. Wu, and W.-Y. Chiu, “Defect detection in solar modules using ica basis images,” IEEE Transactions on Industrial Informatics, vol. 9, no. 1, pp. 122–131, 2013.
  11. Z. Zheng, Q. Chen, C. Hu, D. Wang, and F. Liu, “On-edge multi-task transfer learning: Model and practice with data-driven task allocation,” CoRR, vol. abs/2107.02466, 2021. [Online]. Available: https://arxiv.org/abs/2107.02466
  12. Y. Sasaki, “A Survey on IoT Big Data Analytic Systems: Current and Future,” IEEE Internet of Things Journal, vol. 9, no. 2, pp. 1024–1036, Jan. 2022. [Online]. Available: https://ieeexplore.ieee.org/document/9631963/
  13. S. Bak, J. Park, J. Lee, and J. Jeong, “Memristor-based cnns for detecting stress using brain imaging signals,” IEEE Transactions on Emerging Topics in Computational Intelligence, vol. 8, no. 1, pp. 140–149, 2024.
  14. G. Demosthenous and V. Vassiliades, “Continual learning on the edge with tensorflow lite,” CoRR, vol. abs/2105.01946, 2021. [Online]. Available: https://arxiv.org/abs/2105.01946
  15. Q. Wu, K. He, and X. Chen, “Personalized Federated Learning for Intelligent IoT Applications: A Cloud-Edge Based Framework,” IEEE Open Journal of the Computer Society, vol. 1, pp. 35–44, 2020. [Online]. Available: https://ieeexplore.ieee.org/document/9090366/
  16. O. Fagbohungbe, S. R. Reza, X. Dong, and L. Qian, “Efficient privacy preserving edge intelligent computing framework for image classification in iot,” IEEE Transactions on Emerging Topics in Computational Intelligence, vol. 6, no. 4, pp. 941–956, 2022.
  17. [Online]. Available: https://www.energy.gov/eere/solar/articles/role-advancements-photovoltaic-efficiency-reliability-and-costs
  18. “Monocrystalline vs. polycrystalline solar cells.” [Online]. Available: https://www.news.energysage.com/monocrystalline-vs-polycrystalline-solar/
  19. M. Köntges and C. P. Sarah Kurtz, “Review of failures of photovoltaic modules,” IEA-PVPS T13-01:2014, 2014. [Online]. Available: https://iea-pvps.org/wp-content/uploads/2020/01/IEA-PVPS_T13-01_2014_Review_of_Failures_of_Photovoltaic_Modules_Final.pdf
  20. G. A. dos Reis Benatto, N. Riedel, S. Thorsteinsson, P. B. Poulsen, A. Thorseth, C. Dam-Hansen, C. Mantel, S. Forchhammer, K. H. B. Frederiksen, J. Vedde, M. Petersen, H. Voss, M. Messerschmidt, H. Parikh, S. Spataru, and D. Sera, “Development of outdoor luminescence imaging for drone-based pv array inspection,” in 2017 IEEE 44th Photovoltaic Specialist Conference (PVSC), 2017, pp. 2682–2687.
  21. G. A. dos Reis Benatto, C. Mantel, A. A. Santamaria Lancia, P. B. Poulsen, S. Forchhammer, and S. V. Spataru, “Laser induced luminescence characterization of mechanically stressed pv cells,” in 2021 IEEE 48th Photovoltaic Specialists Conference (PVSC), 2021, pp. 1949–1953.
  22. B. P. Lockridge, O. Lavrova, and W. B. Hobbs, “Comparison of electroluminescence image capture methods,” in 2016 IEEE 43rd Photovoltaic Specialists Conference (PVSC), 2016, pp. 0876–0879.
  23. M. Israil, S. A. Anwar, and M. Z. Abdullah, “Automatic detection of micro-crack in solar wafers and cells: a review,” Transactions of the Institute of Measurement and Control, vol. 35, pp. 606 – 618, 2013. [Online]. Available: https://api.semanticscholar.org/CorpusID:111150783
  24. S. Johnston, “Contactless electroluminescence imaging for cell and module characterization,” in 2015 IEEE 42nd Photovoltaic Specialist Conference (PVSC), 2015, pp. 1–6.
  25. M. Guada, A. Moretón, S. Rodríguez-Conde, L. A. Sánchez, M. Martínez, M. A. González, J. Jiménez, L. Pérez, V. Parra, and O. Martínez, “Daylight luminescence system for silicon solar panels based on a bias switching method,” Energy Science and Engineering, vol. 8, pp. 3839–3853, 2019.
  26. M. R. U. Rahman and H. Chen, “Defects inspection in polycrystalline solar cells electroluminescence images using deep learning,” IEEE Access, vol. 8, pp. 40 547–40 558, 2020.
  27. H. Chen, X. Zhang, J. Liu, H. Zhao, and P. Yang, “Robust visual detection for vague scratches defect in inhomogeneous surface,” in 2018 24th International Conference on Automation and Computing (ICAC), 2018, pp. 1–6.
  28. S. Deitsch, V. Christlein, S. Berger, C. Buerhop-Lutz, A. Maier, F. Gallwitz, and C. Riess, “Automatic classification of defective photovoltaic module cells in electroluminescence images,” Solar Energy, vol. 185, pp. 455–468, jun 2019. [Online]. Available: https://doi.org/10.1016%2Fj.solener.2019.02.067
  29. C. Xu, M. Famouri, G. Bathla, S. Nair, M. J. Shafiee, and A. Wong, “Celldefectnet: A machine-designed attention condenser network for electroluminescence-based photovoltaic cell defect inspection,” 2022.
  30. A. Wong, M. J. Shafiee, B. Chwyl, and F. Li, “Ferminets: Learning generative machines to generate efficient neural networks via generative synthesis,” 2018.
  31. C. Buerhop-Lutz, S. Deitsch, A. Maier, F. Gallwitz, S. Berger, B. Doll, J. Hauch, C. Camus, and C. J. Brabec, “A benchmark for visual identification of defective solar cells in electroluminescence imagery,” in European PV Solar Energy Conference and Exhibition (EU PVSEC), 2018.
  32. S. Deitsch, V. Christlein, S. Berger, C. Buerhop-Lutz, A. Maier, F. Gallwitz, and C. Riess, “Automatic classification of defective photovoltaic module cells in electroluminescence images,” Solar Energy, vol. 185, pp. 455–468, Jun. 2019.
  33. S. Deitsch, C. Buerhop-Lutz, E. Sovetkin, A. Steland, A. Maier, F. Gallwitz, and C. Riess, “Segmentation of photovoltaic module cells in uncalibrated electroluminescence images,” Machine Vision and Applications, vol. 32, no. 4, 2021.
  34. G. Alves dos Reis Benatto, C. Mantel, S. Spataru, A. A. Santamaria Lancia, N. Riedel, S. Thorsteinsson, P. B. Poulsen, H. Parikh, S. Forchhammer, and D. Sera, “Drone-based daylight electroluminescence imaging of pv modules,” IEEE Journal of Photovoltaics, vol. 10, no. 3, pp. 872–877, 2020.
  35. A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand, M. Andreetto, and H. Adam, “Mobilenets: Efficient convolutional neural networks for mobile vision applications,” 2017.
  36. M. Tan and Q. V. Le, “Efficientnet: Rethinking model scaling for convolutional neural networks,” 2020.
  37. C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, “Rethinking the inception architecture for computer vision,” 2015.
  38. K.-Y. Feng, M. Gong, K. Pan, H. Zhao, Y. Wu, and K. Sheng, “Model sparsification for communication-efficient multi-party learning via contrastive distillation in image classification,” IEEE Transactions on Emerging Topics in Computational Intelligence, vol. 8, no. 1, pp. 150–163, 2024.
  39. K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale image recognition,” 2015.

Summary

We haven't generated a summary for this paper yet.