Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Kinetic theories of state- and generation-dependent cell populations (2403.05691v1)

Published 8 Mar 2024 in q-bio.PE, cond-mat.stat-mech, and q-bio.QM

Abstract: We formulate a general, high-dimensional kinetic theory describing the internal state (such as gene expression or protein levels) of cells in a stochastically evolving population. The resolution of our kinetic theory also allows one to track subpopulations associated with each generation. Both intrinsic noise of the cell's internal attribute and randomness in a cell's division times (demographic stochasticity) are fundamental to the development of our model. Based on this general framework, we are able to marginalize the high-dimensional kinetic PDEs in a number of different ways to derive equations that describe the dynamics of marginalized or "macroscopic" quantities such as structured population densities, moments of generation-dependent cellular states, and moments of the total population. We also show how nonlinear "interaction" terms in lower-dimensional integrodifferential equations can arise from high-dimensional linear kinetic models that contain rate parameters of a cell (birth and death rates) that depend on variables associated with other cells, generating couplings in the dynamics. Our analysis provides a general, more complete mathematical framework that resolves the coevolution of cell populations and cell states. The approach may be tailored for studying, e.g., gene expression in developing tissues, or other more general particle systems which exhibit Brownian noise in individual attributes and population-level demographic noise.

Summary

We haven't generated a summary for this paper yet.