Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Q-CHOP: Quantum constrained Hamiltonian optimization (2403.05653v1)

Published 8 Mar 2024 in quant-ph and cs.ET

Abstract: Combinatorial optimization problems that arise in science and industry typically have constraints. Yet the presence of constraints makes them challenging to tackle using both classical and quantum optimization algorithms. We propose a new quantum algorithm for constrained optimization, which we call quantum constrained Hamiltonian optimization (Q-CHOP). Our algorithm leverages the observation that for many problems, while the best solution is difficult to find, the worst feasible (constraint-satisfying) solution is known. The basic idea is to to enforce a Hamiltonian constraint at all times, thereby restricting evolution to the subspace of feasible states, and slowly "rotate" an objective Hamiltonian to trace an adiabatic path from the worst feasible state to the best feasible state. We additionally propose a version of Q-CHOP that can start in any feasible state. Finally, we benchmark Q-CHOP against the commonly-used adiabatic algorithm with constraints enforced using a penalty term and find that Q-CHOP performs consistently better on a wide range of problems, including textbook problems on graphs, knapsack, combinatorial auction, as well as a real-world financial use case, namely bond exchange-traded fund basket optimization.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (31)
  1. C. Durr and P. Hoyer, A Quantum Algorithm for Finding the Minimum (1999), arxiv:quant-ph/9607014 .
  2. M. B. Hastings, A Short Path Quantum Algorithm for Exact Optimization, Quantum 2, 78 (2018).
  3. A. Montanaro, Quantum walk speedup of backtracking algorithms (2016), arxiv:1509.02374 [quant-ph] .
  4. E. Campbell, A. Khurana, and A. Montanaro, Applying quantum algorithms to constraint satisfaction problems, Quantum 3, 167 (2019).
  5. A. Montanaro, Quantum speedup of branch-and-bound algorithms, Physical Review Research 2, 013056 (2020).
  6. S. Boixo, G. Ortiz, and R. Somma, Fast quantum methods for optimization, The European Physical Journal Special Topics 224, 35 (2015).
  7. T. Hogg and D. Portnov, Quantum optimization, Information Sciences 128, 181 (2000).
  8. E. Farhi, J. Goldstone, and S. Gutmann, A Quantum Approximate Optimization Algorithm, arXiv  (2014), arXiv:1411.4028 [quant-ph] .
  9. T. Albash and D. A. Lidar, Adiabatic quantum computation, Reviews of Modern Physics 90, 015002 (2018).
  10. M. Zaman, K. Tanahashi, and S. Tanaka, PyQUBO: Python Library for Mapping Combinatorial Optimization Problems to QUBO Form, IEEE Transactions on Computers 71, 838 (2022).
  11. Q. O. D. Team, Converters for Quadratic Programs (2024).
  12. J. T. Iosue, Welcome to qubovert’s documentation! (2024).
  13. I. Hen and F. M. Spedalieri, Quantum Annealing for Constrained Optimization, Physical Review Applied 5, 034007 (2016).
  14. B. Wu, H. Yu, and F. Wilczek, Quantum independent-set problem and non-abelian adiabatic mixing, Physical Review A 101, 10.1103/physreva.101.012318 (2020).
  15. H. Yu, F. Wilczek, and B. Wu, Quantum Algorithm for Approximating Maximum Independent Sets , Chinese Physics Letters 38, 030304 (2021).
  16. S. Marsh and J. Wang, A quantum walk assisted approximate algorithm for bounded NP optimisation problems, Quantum Information Processing 18, 61 (2019), arxiv:1804.08227 [quant-ph] .
  17. S. Marsh and J. B. Wang, Combinatorial optimization via highly efficient quantum walks, Physical Review Research 2, 023302 (2020).
  18. E. Farhi, J. Goldstone, and S. Gutmann, Quantum Adiabatic Evolution Algorithms with Different Paths, arXiv  (2002), arXiv:quant-ph/0208135 .
  19. D. Sels and A. Polkovnikov, Minimizing irreversible losses in quantum systems by local counterdiabatic driving, Proceedings of the National Academy of Sciences 114, E3909 (2017).
  20. D. Gottesman, A. Kitaev, and J. Preskill, Encoding a qubit in an oscillator, Physical Review A 64, 012310 (2001).
  21. K. Noh, S. M. Girvin, and L. Jiang, Encoding an Oscillator into Many Oscillators, Physical Review Letters 125, 080503 (2020).
  22. G. Perboli, R. Tadei, and L. Gobbato, The Multi-Handler Knapsack Problem under Uncertainty, European Journal of Operational Research Vehicle Routing and Distribution Logistics, 236, 1000 (2014).
  23. F. Vaezi, S. J. Sadjadi, and A. Makui, A portfolio selection model based on the knapsack problem under uncertainty, PLOS ONE 14, e0213652 (2019).
  24. J. Jooken, P. Leyman, and P. De Causmaecker, A new class of hard problem instances for the 0–1 knapsack problem, European Journal of Operational Research 301, 841 (2022).
  25. J. Jooken, KnapsackProblemInstances, https://github.com/JorikJooken/knapsackProblemInstances (2022).
  26. S. de Vries and R. V. Vohra, Combinatorial Auctions: A Survey, INFORMS Journal on Computing 15, 284 (2003).
  27. K. Zhu and E. Hossain, Virtualization of 5G Cellular Networks as a Hierarchical Combinatorial Auction, IEEE Transactions on Mobile Computing 15, 2640 (2016).
  28. L. M. Ausubel and O. Baranov, A Practical Guide to the Combinatorial Clock Auction, The Economic Journal 127, F334 (2017).
  29. G. V. Prasad, A. S. Prasad, and S. Rao, A Combinatorial Auction Mechanism for Multiple Resource Procurement in Cloud Computing, IEEE Transactions on Cloud Computing 6, 904 (2018).
  30. P. Kayal and J. Liebeherr, Distributed Service Placement in Fog Computing: An Iterative Combinatorial Auction Approach, in 2019 IEEE 39th International Conference on Distributed Computing Systems (ICDCS) (2019) pp. 2145–2156.
  31. E. Bae and S. Lee, Recursive QAOA outperforms the original QAOA for the MAX-CUT problem on complete graphs, Quantum Information Processing 23, 78 (2024), arxiv:2211.15832 [quant-ph] .
Citations (1)

Summary

  • The paper introduces the Q-CHOP algorithm, which enforces constraints during adiabatic quantum evolution to reliably target optimal solutions.
  • It methodically rotates the objective Hamiltonian from a worst feasible state to a solution state, eliminating the need for extraneous driver Hamiltonians.
  • Numerical tests on problems like Maximum Independent Set and Knapsack demonstrate Q-CHOP’s superior success probability and scalability compared to penalty-based methods.

Quantum Constrained Hamiltonian Optimization: A New Algorithm for Quantum Optimization

Quantum Optimization in Constrained Problem Spaces

Advances in quantum computing have positioned quantum optimization algorithms as promising tools for solving complex combinatorial problems, which are widespread in fields ranging from finance to logistics and beyond. One critical challenge in leveraging quantum computing for these applications is handling constraints that naturally arise in real-world problems. This paper introduces a novel quantum algorithm, Quantum Constrained Hamiltonian Optimization (Q-CHOP), designed to navigate the challenges posed by constrained optimization landscapes effectively.

The Q-CHOP Algorithm: An Overview

Q-CHOP builds upon the foundation of adiabatic quantum computation, where the aim is to evolve a quantum system's initial ground state into the ground state of a final Hamiltonian encoding the solution to the optimization problem. Central to Q-CHOP is the methodical enforcement of constraints throughout the adiabatic process, ensuring that the evolution is restricted to plausible, constraint-satisfying states. The algorithm identifies the worst feasible solution for a given problem as easily obtainable, then constructs an adiabatic path from this initial state to the optimal feasible solution by "rotating" an objective Hamiltonian. This strategy eliminates the necessity for non-problem-related initial states and driver Hamiltonians, distinct from typical approaches in the field.

Numerical Evidence and Performance

Numerical simulations assessing the performance of Q-CHOP against the standard adiabatic algorithm (SAA), which incorporates constraints through penalty terms, reveal Q-CHOP's superior efficacy. Benchmarks include various problem sets, from Maximum Independent Set (MIS) and Directed Minimum Dominating Set (DMDS) to Knapsack and Combinatorial Auction problems. Across these diverse scenarios, Q-CHOP consistently outperforms the SAA, achieving higher-quality solutions and demonstrating an increased probability of finding optimal solutions with scalability in problem size and quantum runtime.

Practical Implications and Theoretical Insights

The algorithm’s inherent design, particularly its focused search within the feasible solution space and the systematic treatment of constraints, underscores potential enhancements in quantum optimization's applicability and performance. Furthermore, Q-CHOP's framework suggests new directions for imposing constraints in quantum algorithms and invites further exploration into efficient Hamiltonian rotation strategies and counterdiabatic driving techniques for quicker convergence to solutions.

Future Directions in Quantum Constrained Optimization

Q-CHOP opens avenues for future work, including the exploration of variational and discretized versions for gate-based quantum computing, akin to Quantum Approximate Optimization Algorithm (QAOA) methodologies. The pursuit of quantitative performance guarantees, ideally tied to the algorithm’s spectral properties, also presents a promising research direction. Furthermore, the methodology to accommodate inequality constraints warrants additional investigation, aiming to extend Q-CHOP’s applicability across an even broader spectrum of constrained optimization problems.

In conclusion, Q-CHOP represents a significant advancement in quantum optimization, tailored to address the intrinsic complexity of constrained problem spaces. Its development not only highlights the growing sophistication of quantum algorithms but also aligns with the broader goal of harnessing quantum computing's potential to tackle pressing computational challenges across various industries and scientific disciplines.

Youtube Logo Streamline Icon: https://streamlinehq.com