Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Stress Monitoring Using Low-Cost Electroencephalogram Devices: A Systematic Literature Review (2403.05577v1)

Published 28 Feb 2024 in cs.HC and eess.SP

Abstract: Introduction. Low-cost health monitoring devices are increasingly being used for mental health related studies including stress. While cortisol response magnitude remains the gold standard indicator for stress assessment, a growing number of studies have started to use low-cost EEG devices as primary recorders of biomarker data. Methods. This study reviews published works contributing and/or using EEG devices for detecting stress and their associated machine learning methods. The reviewed works are selected to answer three general research questions and are then synthesized into four categories of stress assessment using EEG, low-cost EEG devices, available datasets for EEG-based stress measurement, and machine learning techniques for EEG-based stress measurement. Results. A number of studies were identified where low-cost EEG devices were utilized to record brain function during phases of stress and relaxation. These studies generally reported a high predictive accuracy rate, verified using a number of different machine learning validation methods and statistical approaches. Of these studies, 60% can be considered low-powered studies based on the small number of test subjects used during experimentation. Conclusion. Low-cost consumer grade wearable devices including EEG and wrist-based monitors are increasingly being used in stress-related studies. Standardization of EEG signal processing and importance of sensor location still requires further study, and research in this area will continue to provide improvements as more studies become available.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (93)
  1. doi:10.1056/nejm199801153380307.
  2. doi:10.1152/physrev.00041.2006.
  3. doi:10.1016/s2215-0366(23)00193-1.
  4. doi:10.1016/j.neubiorev.2024.105566.
  5. doi:10.1109/TAFFC.2019.2927337.
  6. doi:10.1088/1741-2552/acc7cc. URL https://dx.doi.org/10.1088/1741-2552/acc7cc
  7. doi:10.1016/j.inffus.2019.06.006.
  8. doi:10.1016/c2015-0-01959-1.
  9. doi:10.3390/s20164402.
  10. doi:10.1016/j.jbi.2017.08.006.
  11. doi:10.3389/fbioe.2020.01037.
  12. doi:10.3390/s21155043.
  13. doi:10.1016/j.ynstr.2022.100452.
  14. doi:10.3389/fendo.2019.00749.
  15. doi:10.1145/3334480.3382891.
  16. doi:10.1038/s41597-020-00630-y.
  17. doi:10.3390/s22155792.
  18. doi:10.3390/s22051785.
  19. doi:10.1016/j.ijmedinf.2023.105026.
  20. doi:10.3389/fnhum.2018.00521.
  21. doi:10.1016/j.neubiorev.2012.10.003.
  22. doi:10.1109/smc.2015.540.
  23. doi:10.1109/SPMB.2015.7405423.
  24. doi:10.1109/tamd.2015.2431497.
  25. doi:10.1109/EMBC.2015.7319767.
  26. doi:10.3389/fncom.2016.00101.
  27. doi:10.1155/2018/1049257.
  28. doi:10.1038/sdata.2018.308.
  29. doi:10.3390/s19091991.
  30. doi:10.1109/jbhi.2019.2926407.
  31. doi:10.3390/s20071886.
  32. doi:10.1088/1742-6596/1502/1/012052.
  33. doi:10.3389/fnins.2020.542934.
  34. doi:10.3389/fnins.2020.602584.
  35. doi:10.1016/j.bspc.2020.101951.
  36. doi:10.1016/j.jsr.2019.12.015.
  37. doi:10.1016/j.bspc.2020.102018.
  38. doi:10.1016/j.heliyon.2020.e03425.
  39. doi:10.1016/j.inffus.2020.01.011.
  40. doi:10.1186/s40708-021-00133-5.
  41. doi:10.3389/fnbot.2021.819448.
  42. doi:10.3390/s21248370.
  43. doi:10.1016/j.compbiomed.2021.104377.
  44. doi:10.1016/j.autcon.2021.103560.
  45. doi:10.1016/j.ssci.2020.105092.
  46. doi:10.1016/j.eswa.2020.114516.
  47. doi:10.1016/j.neucom.2020.12.098.
  48. doi:10.1016/j.neucom.2020.09.017.
  49. doi:10.1016/j.buildenv.2021.108134.
  50. doi:10.1016/j.trf.2021.05.010.
  51. doi:10.1038/s41597-022-01211-x.
  52. doi:10.48550/arXiv.2206.10846.
  53. doi:10.1109/3ICT56508.2022.9990849.
  54. doi:10.31083/j.jin2101020.
  55. doi:10.1155/2022/7607592.
  56. doi:10.1155/2022/4086213.
  57. doi:10.3390/brainsci12070909.
  58. doi:10.3390/bios12121097.
  59. doi:10.1016/j.measen.2022.100554.
  60. doi:10.1016/j.buildenv.2022.108988.
  61. doi:10.59287/icsis.601.
  62. Deep Learning Framework for Classification of Mental Stress from Multimodal Datasets - ProQuest (2023).
  63. doi:10.1016/j.dajour.2023.100211.
  64. doi:10.1007/s00779-022-01707-8.
  65. doi:10.3390/s23063274.
  66. doi:10.1016/j.cmpb.2023.107380.
  67. doi:10.1016/j.ijpsycho.2023.04.002.
  68. doi:10.1016/j.ijmedinf.2021.104510.
  69. doi:10.5772/9651.
  70. doi:10.4103/jmss.jmss_131_21.
  71. doi:10.3389/fcomp.2020.00039.
  72. Emotiv, Emotiv (1 2022). URL https://www.emotiv.com
  73. InteraXon, Muse (1 2022). URL https://choosemuse.com
  74. NeuroSky, Neurosky (1 2022). URL https://neurosky.com
  75. OpenBCI, Openbci (1 2022). URL https://shop.openbci.com
  76. NEUROSPEC, Neurospec — research neurosciences (1 2022). URL https://www.neurospec.com
  77. doi:10.1016/j.neuroimage.2013.05.052.
  78. doi:10.1037/0033-2909.112.2.284.
  79. doi:10.1007/s10916-020-01648-w.
  80. doi:10.1037/h0054651.
  81. doi:10.1016/j.matpr.2019.06.073.
  82. doi:10.1037/t02889-000.
  83. C. D. Spielberger, State-trait anxiety inventory for adults (1983). doi:10.1037/t06496-000.
  84. MATLAB, Matlab (1 2022). URL https://www.mathworks.com
  85. E. D. Format, European data format (1 2022). URL https://www.edfplus.info
  86. doi:10.1016/j.medntd.2021.100102.
  87. doi:10.1088/1741-2552/aace8c.
  88. doi:10.1038/s41598-020-62154-0.
  89. doi:10.18502/ijps.v18i2.12372.
  90. doi:10.1016/j.neuroimage.2021.117894.
  91. doi:10.1111/psyp.13049.
  92. doi:https://doi.org/10.1016/0005-7916(94)90063-9.
  93. doi:10.1111/psyp.12639.
User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Gideon Vos (15 papers)
  2. Maryam Ebrahimpour (3 papers)
  3. Liza van Eijk (4 papers)
  4. Zoltan Sarnyai (6 papers)
  5. Mostafa Rahimi Azghadi (46 papers)
Citations (1)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets