Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Federated Joint Learning of Robot Networks in Stroke Rehabilitation (2403.05472v1)

Published 8 Mar 2024 in cs.RO

Abstract: Advanced by rich perception and precise execution, robots possess immense potential to provide professional and customized rehabilitation exercises for patients with mobility impairments caused by strokes. Autonomous robotic rehabilitation significantly reduces human workloads in the long and tedious rehabilitation process. However, training a rehabilitation robot is challenging due to the data scarcity issue. This challenge arises from privacy concerns (e.g., the risk of leaking private disease and identity information of patients) during clinical data access and usage. Data from various patients and hospitals cannot be shared for adequate robot training, further compromising rehabilitation safety and limiting implementation scopes. To address this challenge, this work developed a novel federated joint learning (FJL) method to jointly train robots across hospitals. FJL also adopted a long short-term memory network (LSTM)-Transformer learning mechanism to effectively explore the complex tempo-spatial relations among patient mobility conditions and robotic rehabilitation motions. To validate FJL's effectiveness in training a robot network, a clinic-simulation combined experiment was designed. Real rehabilitation exercise data from 200 patients with stroke diseases (upper limb hemiplegia, Parkinson's syndrome, and back pain syndrome) were adopted. Inversely driven by clinical data, 300,000 robotic rehabilitation guidances were simulated. FJL proved to be effective in joint rehabilitation learning, performing 20% - 30% better than baseline methods.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (32)
  1. B. H. Dobkin, “Strategies for stroke rehabilitation,” The Lancet Neurology, vol. 3, no. 9, pp. 528–536, 2004.
  2. P. Langhorne, J. Bernhardt, and G. Kwakkel, “Stroke rehabilitation,” The Lancet, vol. 377, no. 9778, pp. 1693–1702, 2011.
  3. G. Carpino, A. Pezzola, M. Urbano, E. Guglielmelli et al., “Assessing effectiveness and costs in robot-mediated lower limbs rehabilitation: a meta-analysis and state of the art,” Journal of healthcare engineering, vol. 2018, 2018.
  4. A. I. Károly, P. Galambos, J. Kuti, and I. J. Rudas, “Deep learning in robotics: Survey on model structures and training strategies,” IEEE Transactions on Systems, Man, and Cybernetics: Systems, vol. 51, no. 1, pp. 266–279, 2020.
  5. W. H. Chang and Y.-H. Kim, “Robot-assisted therapy in stroke rehabilitation,” Journal of stroke, vol. 15, no. 3, p. 174, 2013.
  6. C. Véliz, “Not the doctor’s business: Privacy, personal responsibility and data rights in medical settings,” Bioethics, vol. 34, no. 7, pp. 712–718, 2020.
  7. A. Al Kuwaiti, K. Nazer, A. Al-Reedy, S. Al-Shehri, A. Al-Muhanna, A. V. Subbarayalu, D. Al Muhanna, and F. A. Al-Muhanna, “A review of the role of artificial intelligence in healthcare,” Journal of Personalized Medicine, vol. 13, no. 6, p. 951, 2023.
  8. S. Hussain, P. K. Jamwal, P. Van Vliet, and M. H. Ghayesh, “State-of-the-art robotic devices for wrist rehabilitation: Design and control aspects,” IEEE Transactions on human-machine systems, vol. 50, no. 5, pp. 361–372, 2020.
  9. A. Denève, S. Moughamir, L. Afilal, and J. Zaytoon, “Control system design of a 3-dof upper limbs rehabilitation robot,” Computer methods and programs in biomedicine, vol. 89, no. 2, pp. 202–214, 2008.
  10. C. Pierella, E. Pirondini, N. Kinany, M. Coscia, C. Giang, J. Miehlbradt, C. Magnin, P. Nicolo, S. Dalise, G. Sgherri et al., “A multimodal approach to capture post-stroke temporal dynamics of recovery,” Journal of neural engineering, vol. 17, no. 4, p. 045002, 2020.
  11. M. J. Johnson, X. Feng, L. M. Johnson, and J. M. Winters, “Potential of a suite of robot/computer-assisted motivating systems for personalized, home-based, stroke rehabilitation,” Journal of NeuroEngineering and Rehabilitation, vol. 4, no. 1, pp. 1–17, 2007.
  12. K. Lo, M. Stephenson, and C. Lockwood, “The economic cost of robotic rehabilitation for adult stroke patients: a systematic review,” JBI Evidence Synthesis, vol. 17, no. 4, pp. 520–547, 2019.
  13. M. Boone et al., “Judicial rehabilitation in the netherlands: Balancing between safety and privacy,” European Journal of Probation, vol. 3, no. 1, pp. 63–78, 2011.
  14. E. Henriksen, T. M. Burkow, E. Johnsen, and L. K. Vognild, “Privacy and information security risks in a technology platform for home-based chronic disease rehabilitation and education,” BMC medical informatics and decision making, vol. 13, pp. 1–13, 2013.
  15. W. N. Price and I. G. Cohen, “Privacy in the age of medical big data,” Nature medicine, vol. 25, no. 1, pp. 37–43, 2019.
  16. Z. Wang, Y. Hu, S. Yan, Z. Wang, R. Hou, and C. Wu, “Efficient ring-topology decentralized federated learning with deep generative models for medical data in ehealthcare systems,” Electronics, vol. 11, no. 10, p. 1548, 2022.
  17. C. Sun, A. Shrivastava, S. Singh, and A. Gupta, “Revisiting unreasonable effectiveness of data in deep learning era,” in Proceedings of the IEEE international conference on computer vision, 2017, pp. 843–852.
  18. L. Sweeney, “k-anonymity: A model for protecting privacy,” International journal of uncertainty, fuzziness and knowledge-based systems, vol. 10, no. 05, pp. 557–570, 2002.
  19. M. Abadi, A. Chu, I. Goodfellow, H. B. McMahan, I. Mironov, K. Talwar, and L. Zhang, “Deep learning with differential privacy,” in Proceedings of the 2016 ACM SIGSAC conference on computer and communications security, 2016, pp. 308–318.
  20. Q. Li, Z. Wen, Z. Wu, S. Hu, N. Wang, Y. Li, X. Liu, and B. He, “A survey on federated learning systems: Vision, hype and reality for data privacy and protection,” IEEE Transactions on Knowledge and Data Engineering, 2021.
  21. Q. Dou, T. Y. So, M. Jiang, Q. Liu, V. Vardhanabhuti, G. Kaissis, Z. Li, W. Si, H. H. Lee, K. Yu et al., “Federated deep learning for detecting covid-19 lung abnormalities in ct: a privacy-preserving multinational validation study,” NPJ digital medicine, vol. 4, no. 1, p. 60, 2021.
  22. S. Chen, D. Xue, G. Chuai, Q. Yang, and Q. Liu, “Fl-qsar: a federated learning-based qsar prototype for collaborative drug discovery,” Bioinformatics, vol. 36, no. 22-23, pp. 5492–5498, 2020.
  23. X. Fan, Y. Ma, Z. Dai, W. Jing, C. Tan, and B. K. H. Low, “Fault-tolerant federated reinforcement learning with theoretical guarantee,” Advances in Neural Information Processing Systems, vol. 34, pp. 1007–1021, 2021.
  24. X. Liang, Y. Liu, T. Chen, M. Liu, and Q. Yang, “Federated transfer reinforcement learning for autonomous driving,” in Federated and Transfer Learning.   Springer, 2022, pp. 357–371.
  25. X. Su, F. Yuan, R. Zhang, J. Liu, M. Boltz, and X. Zhao, “Deploying a human robot interaction model for dementia care in federated learning,” in 2022 IEEE/ACM Conference on Connected Health: Applications, Systems and Engineering Technologies (CHASE).   IEEE, 2022, pp. 184–185.
  26. Y. Huang, L. Chu, Z. Zhou, L. Wang, J. Liu, J. Pei, and Y. Zhang, “Personalized cross-silo federated learning on non-iid data,” in Proceedings of the AAAI conference on artificial intelligence, vol. 35, no. 9, 2021, pp. 7865–7873.
  27. B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas, “Communication-efficient learning of deep networks from decentralized data,” in Artificial intelligence and statistics.   PMLR, 2017, pp. 1273–1282.
  28. J. Yang, D. Huang, J. Xia, and Y. Li, “Trajectory deformation with constrained optimization for bilateral rehabilitation robots,” IEEE/ASME Transactions on Mechatronics, 2023.
  29. T. Huang, Z. Li, H. Lu, Y. Shan, S. Yang, Y. Feng, F. Wang, S. You, and C. Xu, “Relational surrogate loss learning,” arXiv preprint arXiv:2202.13197, 2022.
  30. M. Capecci, M. G. Ceravolo, F. Ferracuti, S. Iarlori, A. Monteriu, L. Romeo, and F. Verdini, “The kimore dataset: Kinematic assessment of movement and clinical scores for remote monitoring of physical rehabilitation,” IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 27, no. 7, pp. 1436–1448, 2019.
  31. E. Rohmer, S. P. Singh, and M. Freese, “V-rep: A versatile and scalable robot simulation framework,” in 2013 IEEE/RSJ international conference on intelligent robots and systems.   IEEE, 2013, pp. 1321–1326.
  32. S. R. Buss, “Introduction to inverse kinematics with jacobian transpose, pseudoinverse and damped least squares methods,” IEEE Journal of Robotics and Automation, vol. 17, no. 1-19, p. 16, 2004.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com