Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Squeezing, trisqueezing, and quadsqueezing in a spin-oscillator system (2403.05471v1)

Published 8 Mar 2024 in quant-ph and physics.atom-ph

Abstract: Quantum harmonic oscillators model a wide variety of phenomena ranging from electromagnetic fields to vibrations of atoms in molecules. Their excitations can be represented by bosons such as photons, single particles of light, or phonons, the quanta of vibrational energy. Linear interactions that only create and annihilate single bosons can generate coherent states of light or motion. Introducing nth-order nonlinear interactions, that instead involve n bosons, leads to increasingly complex quantum behaviour. For example, second-order interactions enable squeezing, used to enhance the precision of measurements beyond classical limits, while higher-order interactions create non-Gaussian states essential for continuous-variable quantum computation. However, generating nonlinear interactions is challenging, typically requiring higher-order derivatives of the driving field or specialized hardware. Hybrid systems, where linear interactions couple an oscillator to an additional spin, offer a solution and are readily available across many platforms. Here, using the spin of a single trapped ion coupled to its motion, we employ two linear interactions to demonstrate up to fourth-order bosonic interactions; we focus on generalised squeezing interactions and demonstrate squeezing, trisqueezing, and quadsqueezing. We characterise these interactions, including their spin dependence, and reconstruct the Wigner function of the resulting states. We also discuss the scaling of the interaction strength, where we drive the quadsqueezing interaction more than 100 times faster than using conventional techniques. Our method presents no fundamental limit in the interaction order n and applies to any platform supporting spin-dependent linear interactions. Strong higher-order nonlinear interactions unlock the study of fundamental quantum optics, quantum simulation, and computation in a hitherto unexplored regime.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (27)
  1. R. J. Glauber, Phys. Rev. 131, 2766 (1963).
  2. D. F. Walls, Nature 306, 141 (1983).
  3. C. M. Caves, Phys. Rev. D 23, 1693 (1981).
  4. S. Lloyd and S. L. Braunstein, Phys. Rev. Lett. 82, 1784 (1999).
  5. N. Bloembergen, Rev. Mod. Phys. 54, 685 (1982).
  6. S. Haroche, Rev. Mod. Phys. 85, 1083 (2013).
  7. R. Sutherland and R. Srinivas, Phys. Rev. A 104, 032609 (2021).
  8. S. L. Braunstein and R. I. McLachlan, Phys. Rev. A 35, 1659 (1987).
  9. M. M. Fejer, Phys. Today 47, 25 (1994).
  10. The LIGO Scientific Collaboration, Nat. Photonics 7, 613 (2013).
  11. K. Banaszek and P. L. Knight, Phys. Rev. A 55, 2368 (1997).
  12. R. Takagi and Q. Zhuang, Phys. Rev. A 97, 062337 (2018).
  13. D. Gottesman, A. Kitaev, and J. Preskill, Phys. Rev. A 64, 012310 (2001).
  14. S. L. Braunstein and P. van Loock, Rev. Mod. Phys. 77, 513 (2005).
  15. J. I. Cirac and P. Zoller, Phys. Rev. Lett. 74, 4091 (1995).
  16. A. Sørensen and K. Mølmer, Phys. Rev. Lett. 82, 1971 (1999).
  17. A. Sørensen and K. Mølmer, Phys. Rev. A 62, 022311 (2000).
  18. K. Thirumalai, High-fidelity mixed species entanglement of trapped ions, Ph.D. thesis, University of Oxford (2019).
  19. C. F. Roos, New J. Phys. 10, 013002 (2008).
  20. All pulse durations quoted in this text are measured at full-width half-maximum of the pulse shape. The ramp shape is a sin(πt/2tramp)2\sin(\pi t/2t_{\rm ramp})^{2}roman_sin ( italic_π italic_t / 2 italic_t start_POSTSUBSCRIPT roman_ramp end_POSTSUBSCRIPT ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT with a total rise time given by the ramp duration trampsubscript𝑡rampt_{\rm ramp}italic_t start_POSTSUBSCRIPT roman_ramp end_POSTSUBSCRIPT.
  21. D. J. Heinzen and D. J. Wineland, Phys. Rev. A 42, 2977 (1990).
  22. E. Wigner, Phys. Rev. 40, 749 (1932).
  23. C. Flühmann and J. P. Home, Phys. Rev. Lett. 125, 043602 (2020).
  24. We choose this negative detuning Δ/2⁢π=−25 kHzΔ2𝜋times-25kilohertz\Delta/2\pi=$-25\text{\,}\mathrm{kHz}$roman_Δ / 2 italic_π = start_ARG - 25 end_ARG start_ARG times end_ARG start_ARG roman_kHz end_ARG to avoid off-resonantly driving an interaction corresponding to another motional mode of the ion.
  25. A. Bermudez, G. Aarts, and M. Müller, Phys. Rev. X 7, 041012 (2017).
  26. W. Magnus, Commun. Pure Appl. Math. 7, 649 (1954).
  27. T. P. Harty, High-fidelity microwave-driven quantum logic in intermediate-field 43Ca+, Ph.D. thesis, Oxford University, UK (2013).
Citations (2)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com