Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An Adaptive Dimension Reduction Estimation Method for High-dimensional Bayesian Optimization (2403.05425v1)

Published 8 Mar 2024 in stat.ML and stat.ME

Abstract: Bayesian optimization (BO) has shown impressive results in a variety of applications within low-to-moderate dimensional Euclidean spaces. However, extending BO to high-dimensional settings remains a significant challenge. We address this challenge by proposing a two-step optimization framework. Initially, we identify the effective dimension reduction (EDR) subspace for the objective function using the minimum average variance estimation (MAVE) method. Subsequently, we construct a Gaussian process model within this EDR subspace and optimize it using the expected improvement criterion. Our algorithm offers the flexibility to operate these steps either concurrently or in sequence. In the sequential approach, we meticulously balance the exploration-exploitation trade-off by distributing the sampling budget between subspace estimation and function optimization, and the convergence rate of our algorithm in high-dimensional contexts has been established. Numerical experiments validate the efficacy of our method in challenging scenarios.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (1)
User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Shouri Hu (5 papers)
  2. Jiawei Li (116 papers)
  3. Zhibo Cai (5 papers)
Citations (1)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com