Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

SIRST-5K: Exploring Massive Negatives Synthesis with Self-supervised Learning for Robust Infrared Small Target Detection (2403.05416v1)

Published 8 Mar 2024 in cs.CV

Abstract: Single-frame infrared small target (SIRST) detection aims to recognize small targets from clutter backgrounds. Recently, convolutional neural networks have achieved significant advantages in general object detection. With the development of Transformer, the scale of SIRST models is constantly increasing. Due to the limited training samples, performance has not been improved accordingly. The quality, quantity, and diversity of the infrared dataset are critical to the detection of small targets. To highlight this issue, we propose a negative sample augmentation method in this paper. Specifically, a negative augmentation approach is proposed to generate massive negatives for self-supervised learning. Firstly, we perform a sequential noise modeling technology to generate realistic infrared data. Secondly, we fuse the extracted noise with the original data to facilitate diversity and fidelity in the generated data. Lastly, we proposed a negative augmentation strategy to enrich diversity as well as maintain semantic invariance. The proposed algorithm produces a synthetic SIRST-5K dataset, which contains massive pseudo-data and corresponding labels. With a rich diversity of infrared small target data, our algorithm significantly improves the model performance and convergence speed. Compared with other state-of-the-art (SOTA) methods, our method achieves outstanding performance in terms of probability of detection (Pd), false-alarm rate (Fa), and intersection over union (IoU).

Definition Search Book Streamline Icon: https://streamlinehq.com
References (51)
  1. T. R. Goodall, A. C. Bovik, and N. G. Paulter, “Tasking on natural statistics of infrared images,” IEEE Transactions on Image Processing, vol. 25, no. 1, pp. 65–79, 2016.
  2. B. Zhao, C. Wang, Q. Fu, and Z. Han, “A novel pattern for infrared small target detection with generative adversarial network,” IEEE Transactions on Geoscience and Remote Sensing, vol. 59, no. 5, pp. 4481–4492, 2020.
  3. Z. Lv, G. Li, Z. Jin, J. A. Benediktsson, and G. M. Foody, “Iterative training sample expansion to increase and balance the accuracy of land classification from vhr imagery,” IEEE Transactions on Geoscience and Remote Sensing, vol. 59, no. 1, pp. 139–150, 2020.
  4. S. Ji, D. Wang, and M. Luo, “Generative adversarial network-based full-space domain adaptation for land cover classification from multiple-source remote sensing images,” IEEE Transactions on Geoscience and Remote Sensing, vol. 59, no. 5, pp. 3816–3828, 2020.
  5. Q. Liu, M. Kampffmeyer, R. Jenssen, and A.-B. Salberg, “Dense dilated convolutions’ merging network for land cover classification,” IEEE Transactions on Geoscience and Remote Sensing, vol. 58, no. 9, pp. 6309–6320, 2020.
  6. Z. Dong, M. Wang, Y. Wang, Y. Zhu, and Z. Zhang, “Object detection in high resolution remote sensing imagery based on convolutional neural networks with suitable object scale features,” IEEE Transactions on Geoscience and Remote Sensing, vol. 58, no. 3, pp. 2104–2114, 2019.
  7. F. Li, R. Feng, W. Han, and L. Wang, “High-resolution remote sensing image scene classification via key filter bank based on convolutional neural network,” IEEE Transactions on Geoscience and Remote Sensing, vol. 58, no. 11, pp. 8077–8092, 2020.
  8. R. Kou, C. Wang, Z. Peng, Z. Zhao, Y. Chen, J. Han, F. Huang, Y. Yu, and Q. Fu, “Infrared small target segmentation networks: A survey,” Pattern Recognition, vol. 143, p. 109788, 2023.
  9. K. Wang, S. Li, S. Niu, and K. Zhang, “Detection of infrared small targets using feature fusion convolutional network,” IEEE Access, vol. 7, pp. 146 081–146 092, 2019.
  10. M. Teutsch and W. Krüger, “Classification of small boats in infrared images for maritime surveillance,” pp. 1–7, 2010.
  11. H. Deng, X. Sun, M. Liu, C. Ye, and X. Zhou, “Small infrared target detection based on weighted local difference measure,” IEEE Transactions on Geoscience and Remote Sensing, vol. 54, no. 7, pp. 4204–4214, 2016.
  12. X. Wu, W. Li, D. Hong, R. Tao, and Q. Du, “Deep learning for unmanned aerial vehicle-based object detection and tracking: A survey,” IEEE Geoscience and Remote Sensing Magazine, vol. 10, no. 1, pp. 91–124, 2022.
  13. Y. Chen, H. Wang, Y. Pang, J. Han, E. Mou, and E. Cao, “An infrared small target detection method based on a weighted human visual comparison mechanism for safety monitoring,” Remote Sensing, vol. 15, 2023.
  14. D. Hong, L. Gao, J. Yao, B. Zhang, A. Plaza, and J. Chanussot, “Graph convolutional networks for hyperspectral image classification,” IEEE Transactions on Geoscience and Remote Sensing, vol. 59, no. 7, pp. 5966–5978, 2021.
  15. D. Hong, L. Gao, N. Yokoya, J. Yao, J. Chanussot, Q. Du, and B. Zhang, “More diverse means better: Multimodal deep learning meets remote-sensing imagery classification,” IEEE Transactions on Geoscience and Remote Sensing, vol. 59, no. 5, pp. 4340–4354, 2021.
  16. Z. Fan, D. Bi, L. Xiong, S. Ma, L. He, and W. Ding, “Dim infrared image enhancement based on convolutional neural network,” Neurocomputing, vol. 272, pp. 396–404, 2018.
  17. M. Liu, H.-y. Du, Y.-j. Zhao, L.-q. Dong, M. Hui, and S. Wang, “Image small target detection based on deep learning with snr controlled sample generation,” Current Trends in Computer Science and Mechanical Automation, vol. 1, pp. 211–220, 2017.
  18. Y. Dai, Y. Wu, F. Zhou, and K. Barnard, “Attentional local contrast networks for infrared small target detection,” IEEE Transactions on Geoscience and Remote Sensing, vol. 59, no. 11, pp. 9813–9824, 2021.
  19. C. L. P. Chen, H. Li, Y. Wei, T. Xia, and Y. Y. Tang, “A local contrast method for small infrared target detection,” IEEE Transactions on Geoscience and Remote Sensing, vol. 52, no. 1, pp. 574–581, 2014.
  20. Y. Dai, Y. Wu, F. Zhou, and K. Barnard, “Asymmetric contextual modulation for infrared small target detection,” pp. 950–959, 2021.
  21. O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks for biomedical image segmentation,” pp. 234–241, 2015.
  22. B. Li, C. Xiao, L. Wang, Y. Wang, Z. Lin, M. Li, W. An, and Y. Guo, “Dense nested attention network for infrared small target detection,” IEEE Transactions on Image Processing, vol. 32, pp. 1745–1758, 2022.
  23. X. Wu, D. Hong, and J. Chanussot, “Uiu-net: U-net in u-net for infrared small object detection,” IEEE Transactions on Image Processing, vol. 32, pp. 364–376, 2022.
  24. A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” Advances in neural information processing systems, vol. 30, 2017.
  25. Y. Li, Z. Li, C. Zhang, Z. Luo, Y. Zhu, Z. Ding, and T. Qin, “Infrared maritime dim small target detection based on spatiotemporal cues and directional morphological filtering,” Infrared Physics & Technology, vol. 115, p. 103657, 2021.
  26. X. Bai and F. Zhou, “Analysis of new top-hat transformation and the application for infrared dim small target detection,” Pattern Recognition, vol. 43, no. 6, pp. 2145–2156, 2010.
  27. B. McIntosh, S. Venkataramanan, and A. Mahalanobis, “Infrared target detection in cluttered environments by maximization of a target to clutter ratio (tcr) metric using a convolutional neural network,” IEEE Transactions on Aerospace and Electronic Systems, vol. 57, no. 1, pp. 485–496, 2020.
  28. S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: Towards real-time object detection with region proposal networks,” Advances in neural information processing systems, vol. 28, 2015.
  29. J. Redmon and A. Farhadi, “Yolov3: An incremental improvement,” arXiv preprint arXiv:1804.02767, 2018.
  30. Y. Xi, Z. Zhou, Y. Jiang, L. Zhang, Y. Li, Z. Wang, F. Tan, and Q. Hou, “Infrared moving small target detection based on spatial-temporal local contrast under slow-moving cloud background,” Infrared Physics & Technology, vol. 134, p. 104877, 2023.
  31. H. Zhang, M. Cisse, Y. N. Dauphin, and D. Lopez-Paz, “mixup: Beyond empirical risk minimization,” arXiv preprint arXiv:1710.09412, 2017.
  32. S. Yun, D. Han, S. J. Oh, S. Chun, J. Choe, and Y. Yoo, “Cutmix: Regularization strategy to train strong classifiers with localizable features,” in Proceedings of the IEEE/CVF international conference on computer vision, 2019, pp. 6023–6032.
  33. A. Uddin, M. Monira, W. Shin, T. Chung, S.-H. Bae et al., “Saliencymix: A saliency guided data augmentation strategy for better regularization,” arXiv preprint arXiv:2006.01791, 2020.
  34. J.-H. Kim, W. Choo, H. Jeong, and H. O. Song, “Co-mixup: Saliency guided joint mixup with supermodular diversity,” ArXiv, vol. abs/2102.03065, 2021.
  35. S. Venkataramanan, Y. Avrithis, E. Kijak, and L. Amsaleg, “Alignmixup: Improving representations by interpolating aligned features,” 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 19 152–19 161, 2021.
  36. M. Hong, J. Choi, and G. Kim, “Stylemix: Separating content and style for enhanced data augmentation,” pp. 14 862–14 870, 2021.
  37. H. K. Choi, J. Choi, and H. J. Kim, “Tokenmixup: Efficient attention-guided token-level data augmentation for transformers,” Advances in Neural Information Processing Systems, vol. 35, pp. 14 224–14 235, 2022.
  38. X. Ji, Y. Cao, Y. Tai, C. Wang, J. Li, and F. Huang, “Real-world super-resolution via kernel estimation and noise injection,” in The IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Workshops, June 2020.
  39. C. Doersch, A. Gupta, and A. A. Efros, “Unsupervised visual representation learning by context prediction,” in Proceedings of the IEEE International Conference on Computer Vision (ICCV), December 2015.
  40. J.-F. Rivest and R. Fortin, “Detection of dim targets in digital infrared imagery by morphological image processing,” Optical Engineering, vol. 35, no. 7, pp. 1886–1893, 1996.
  41. S. D. Deshpande, M. H. Er, R. Venkateswarlu, and P. Chan, “Max-mean and max-median filters for detection of small targets,” in Signal and Data Processing of Small Targets 1999, vol. 3809.   SPIE, 1999, pp. 74–83.
  42. J. Han, S. Moradi, I. Faramarzi, H. Zhang, Q. Zhao, X. Zhang, and N. Li, “Infrared small target detection based on the weighted strengthened local contrast measure,” IEEE Geoscience and Remote Sensing Letters, vol. 18, no. 9, pp. 1670–1674, 2020.
  43. J. Han, S. Moradi, I. Faramarzi, C. Liu, H. Zhang, and Q. Zhao, “A local contrast method for infrared small-target detection utilizing a tri-layer window,” IEEE Geoscience and Remote Sensing Letters, vol. 17, no. 10, pp. 1822–1826, 2019.
  44. C. Gao, D. Meng, Y. Yang, Y. Wang, X. Zhou, and A. G. Hauptmann, “Infrared patch-image model for small target detection in a single image,” IEEE transactions on image processing, vol. 22, no. 12, pp. 4996–5009, 2013.
  45. L. Zhang, L. Peng, T. Zhang, S. Cao, and Z. Peng, “Infrared small target detection via non-convex rank approximation minimization joint l 2, 1 norm,” Remote Sensing, vol. 10, no. 11, p. 1821, 2018.
  46. Y. Dai and Y. Wu, “Reweighted infrared patch-tensor model with both nonlocal and local priors for single-frame small target detection,” IEEE journal of selected topics in applied earth observations and remote sensing, vol. 10, no. 8, pp. 3752–3767, 2017.
  47. L. Zhang and Z. Peng, “Infrared small target detection based on partial sum of the tensor nuclear norm,” Remote Sensing, vol. 11, no. 4, p. 382, 2019.
  48. Y. Sun, J. Yang, and W. An, “Infrared dim and small target detection via multiple subspace learning and spatial-temporal patch-tensor model,” IEEE Transactions on Geoscience and Remote Sensing, vol. 59, no. 5, pp. 3737–3752, 2020.
  49. H. Wang, L. Zhou, and L. Wang, “Miss detection vs. false alarm: Adversarial learning for small object segmentation in infrared images,” in Proceedings of the IEEE/CVF International Conference on Computer Vision, 2019, pp. 8509–8518.
  50. J. Duchi, E. Hazan, and Y. Singer, “Adaptive subgradient methods for online learning and stochastic optimization.” Journal of machine learning research, vol. 12, no. 7, 2011.
  51. X. Glorot and Y. Bengio, “Understanding the difficulty of training deep feedforward neural networks,” pp. 249–256, 2010.
Citations (2)

Summary

We haven't generated a summary for this paper yet.