Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Survival probability of structures under fatigue: a data-based approach (2403.05397v1)

Published 8 Mar 2024 in cs.CE

Abstract: This article addresses the probabilistic nature of fatigue life in structures subjected to cyclic loading with variable amplitude. Drawing on the formalisation of Miner's cumulative damage rule that we introduced in the recent article [Cartiaux, Ehrlacher, Legoll, Libal and Reygner, Prob. Eng. Mech. 2023], we apply our methodology to estimate the survival probability of an industrial structure using experimental data. The study considers both the randomness in the initial state of the structure and in the amplitude of loading cycles. The results indicate that the variability of loading cycles can be captured through the concept of deterministic equivalent damage, providing a computationally efficient method for assessing the fatigue life of the structure. Furthermore, the article highlights that the usual combination of Miner's rule and of the weakest link principle systematically overestimates the structure's fatigue life. On the case study that we consider, this overestimation reaches a multiplicative factor of more than two. We then describe how the probabilistic framework that we have introduced offers a remedy to this overestimation.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (15)
  1. A probabilistic interpretation of Miner’s rule. SIAM Journal on Applied Mathematics, 16(3):637–652, 1968.
  2. Probabilistic formulation of Miner’s rule and application to structural fatigue. Probabilistic Engineering Mechanics, 74:103500, 2023.
  3. E. Castillo and A. Fernández-Canteli. A unified statistical methodology for modeling fatigue damage. Springer Science & Business Media, 2009.
  4. Specimen length effect on parameter estimation in modelling fatigue strength by Weibull distribution. International Journal of Fatigue, 28:1047–1058, 2006.
  5. N. E. Dowling. Mechanical Behavior of Materials. Pearson, fourth edition, 2013.
  6. Probabilistic SN fields based on statistical distributions applied to metallic and composite materials: State of the art. Advances in Mechanical Engineering, 11(8):1687814019870395, 2019.
  7. Probabilistic modeling of S–N curves. International Journal of Fatigue, 68:217–223, 2014.
  8. A review on fatigue monitoring of structures. International Journal of Structural Integrity, 14(2):133–165, 2023.
  9. M. A. Miner. Cumulative damage in fatigue. J. Appl. Mech., 12(3):A159–A164, 1945.
  10. E. Miranda. Modélisation et caractérisation des risques extrêmes en fatigue des matériaux. PhD thesis, Sorbonne Université, 2020. (available at https://theses.hal.science/tel-03264959v3).
  11. A. G. Palmgren. Die Lebensdauer von Kugellargern. Zeitschrift des Vereines Deutscher Ingenieure, 68(4):339–341, 1924.
  12. S. C. Saunders. A probabilistic interpretation of Miner’s rule. II. SIAM Journal on Applied Mathematics, 19(1):251–265, 1970.
  13. E. Thieulot-Laure. Méthode probabiliste unifiée pour la prédiction du risque de rupture en fatigue. PhD thesis, École Normale Supérieure de Cachan – ENS Cachan, 2008. (available at https://theses.hal.science/tel-01199575).
  14. W. Weibull. A statistical distribution function of wide applicability. J. Appl. Mech., 18(3):293–297, 1951.
  15. A. Wöhler. Über die Festigkeitsversuche mit Eisen und Stahl. Ernst & Korn, 1870.
Citations (1)

Summary

We haven't generated a summary for this paper yet.